
On Efficient On-line Grouping of Flows with Shared Bottlenecks at Loaded
Servers

Ossama Younis and Sonia Fahmy
�

Department of Computer Sciences, Purdue University, W. Lafayette, IN 47907–1398, USA
e-mail:

�
oyounis,fahmy � @cs.purdue.edu

Technical Report CSD-02-018

Abstract

We design an efficient on-line approach, FlowMate, for
partitioning flows at a busy server into flow groups that
share bottlenecks. These groups are periodically input to
congestion coordination, aggregation, load balancing, ad-
mission control, or pricing modules. FlowMate uses in-
band packet delay measurements to the receivers to deter-
mine shared bottlenecks among flows. Packet delay infor-
mation is piggybacked on returning feedback, or, if impossi-
ble, flow (e.g., TCP) round trip time estimates are used. We
simulate FlowMate to examine the effect of network load,
traffic burstiness, network buffer sizes, and packet drop
policies on partitioning correctness. Our results demon-
strate accurate partitioning of medium to long-lived flows
even under heavy load and self-similar background traf-
fic. Experiments with HTTP/1.1 flows demonstrate difficul-
ties in partitioning bursty foreground traffic. We also study
fairness of coordinated congestion management when inte-
grated with FlowMate.

beginkeywords network measurement, network tomog-
raphy, TCP, shared bottleneck identification, coordinated
congestion control, load balancing endkeywords

1 Introduction

Current end system congestion control mechanisms reg-
ulate the sending rate of each individual connection (flow)
according to network conditions assessed by that particular
connection. Recent research has shown that coordinating
congestion control decisions among certain flows at a busy
end system (e.g., ftp/Web server) can increase the collec-
tive performance of the flows [3, 19]. An important prob-
lem in addressing coordinated congestion management is
�
This research has been sponsored in part by the Purdue Research

Foundation, and the Schlumberger Foundation technical merit award.

the partitioning of flows from a single sender to multiple
receivers into groups, in order to perform congestion man-
agement decisions on a per-group basis. Figure 1 depicts
a multiple receiver topology (referred to as Inverted-Y in
[22]). In current coordinated congestion management ap-
proaches [2, 9, 18, 23], flows between the same hosts (or
same LANs) are grouped together. This strategy assumes
that those flows will likely share the same bottlenecks along
their paths. This, however, may not necessarily be true, due
to network address translation (NATs), quality of service
(e.g., using several queues at certain router ports), load bal-
ancing schemes, and dispersity routing [1]. In these cases,
flows destined to the same host or LAN may be routed
on different paths with different bottlenecks, and, conse-
quently, should not be grouped and coordinated. Moreover,
extending coordination benefits to flows that share the same
bottlenecks, but are not destined to the same host, can sig-
nificantly enhance performance.

Receivers

Sender

Router

Figure 1. Logical inverted-Y topology

In this paper, we examine on-line partitioning of flows
at a sender into groups with shared bottlenecks, without in-
troducing out-of-band traffic. The problem can be stated
as follows: given a set of flows �����
	����	
����������	
��� , we
design a mapping protocol � that maps each flow 	
� to ex-
actly one group ��� , � �"!#�%$, such that &�! , all flows 	��(')�*�
share a common bottleneck. Our approach, which we call
FlowMate, can be integrated with any congestion coordina-
tion scheme that coordinates decisions within each group � � ,

such as the Congestion Manager [3] or TCP-Int [2]– the par-
titioning and coordination schemes are completely orthog-
onal. FlowMate outputs flow groups that can also be input
to load balancing, admission control, and pricing modules.

We use the packet delay correlation test proposed in [22]
to periodically determine shared bottlenecks and partition
flows. Delay correlation tests usually converge faster than
loss correlation, and yield more accurate results. Delay cor-
relation tests, however, impose the requirement of times-
tamping packets. We extend the techniques for timestamp-
ing packets in [13] for this purpose. The TCP timestamp-
ing option is currently supported in TCP implementations
in most operating systems, such as FreeBSD, Linux, and
Windows (it is currently enabled by default in the Windows
2000 TCP implementation). We use TCP round trip time
(RTT) estimates (which TCP maintains for timeout compu-
tation purposes), however, if timestamping is not possible.

Since TCP flows comprise the majority (80% or more)
of traffic in the Internet, we experiment with TCP flows,
although our algorithm can be generalized to any flow for
which delay information can be obtained (e.g., feedback in-
formation gathered by RTCP). Partitioning requires a time
scale larger than the life-time of very short TCP connec-
tions (e.g., small HTTP/1.0 transfers) to converge. Long
TCP connections (such as file downloads) still comprise a
dominant traffic load on the Internet (the heavy-tail portion
of the distribution). At the server, partitioning such medium
to long-lived connections (called elephants in the literature,
e.g., [15]), and coordinating congestion decisions within
a group, increases responsiveness and fairness among all
flows originating from the same server. We integrate our
algorithm with a coordinated congestion management strat-
egy and illustrate the improved fairness.

FlowMate has the following features that distinguish it
from other approaches in the literature: (1) no generation
nor transmission of out-of-band probing traffic, (2) on-line
adaptivity to flow and network dynamics during flow life-
times, (3) completely end-to-end: sender side only, or with
timetamping support at receivers, and (4) low overhead and
complexity.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 explains our de-
sign in detail. Section 4 analyzes the performance of Flow-
Mate in a number of network configurations with HTTP,
FTP and Telnet traffic, and demonstrates the effect of net-
work parameters on a correctness index metric, which we
define. Section 5 studies the performance of FlowMate in-
tegrated with coordinated congestion management. Finally,
section 6 summarizes our conclusions and discusses future
work.

2 Related Work

Coordination among flows has been proposed and stud-
ied in [2, 3, 9, 19]. The congestion manager (CM) [3]
provides a general framework for applications to coordi-
nate congestion management decisions among flows be-
tween the same end systems. TCP-Int [2] uses one conges-
tion window for all concurrent TCP connections between
the same end systems. Ensemble-TCP [9, 23] also groups
flows between the same end systems, and caches informa-
tion about the measured state of the network to expedite
the start-up of new connections. TCP Fast Start [18] ad-
ditionally marks these extra packets sent by new connec-
tions (more than the usual slow start permits) with a drop-
preference flag.

Padmanabhan [19] studies the benefits of performing co-
ordinated congestion control, and identifies topology dis-
covery, delay and/or loss correlation, and enhanced notifi-
cation as means of detecting shared bottleneck links among
flows.

Recently, a number of studies have investigated the in-
ference of internal network characteristics using end-to-
end measurements (sometimes referred to as “network to-
mography”), by applying innovative statistical techniques
[5, 8, 12, 16, 22]. Katabi et al [16] use an entropy fuc-
tion to compute correlation among flows at then receiver.
This technique does not require probe traffic and proposes
general flow partitioning algorithms, but partitioning cor-
rectness degrades under heavy cross-traffic. More recent
measurement results using Renyi (as opposed to Shannon)
entropy demonstrate more robust partitioning [17]. Ruben-
stein et al [22] propose novel loss and delay correlation tests
among flows to determine shared bottlenecks. They inject
Poisson probes to collect loss or delay information. They
do not use in-band measurements or present a general par-
titioning algorithm. Moreover, they do not discuss main-
taining information from multiple receivers. We adopt their
delay-correlation test, but address the additional issues re-
quired for its on-line application for multiple flows at a busy
server. Delphi [21] sends probes at the sender to collect de-
lay information from receivers organized in a multifractal
wavelet model to infer the amount of cross traffic at certain
bottlenecks. The accuracy of this approach depends on the
utilization levels at bottlenecks. The higher the utilization,
the more accurate the computed estimates. Harfoush et al
[12] use Bayesian probing instead of Markovian probing to
infer shared losses. Their approach is more effective with
active probing, rather than in-band measurements.

To avoid problems with collecting delay information and
clock synchronization, correlation among TCP round trip
time (RTT) estimates (e.g., [6]) or throughput estimates at
the sender (e.g., [24]) may substitute one-way delays. Al-
though using these metrics eliminates any changes (e.g.,

timestamping support) to the receiver, the delay on the for-
ward path cannot be isolated from that of the reverse path
and the delays at the receivers themselves, as discussed in
the next section.

3 FlowMate Design

This section describes our system and analyzes its com-
plexity. Figure 17 contains pseudocode for FlowMate.

3.1 Basic Architecture

Receiver

FlowMate

Transport Layer Transport Layer

Lower Layers

ACKs

Lower Layers

Outgoing Packets Arriving Packets
Timestamped

Timestamped

Sender

Load

FlowMate

Sampler

Delay Lists

Correlator

ACKs

Flow

Flow Groups

CM PricingBalancer

Timestamped

Figure 2. FlowMate organization

The FlowMate module can be invoked to provide infor-
mation about groups of flows sharing common bottlenecks
along their paths from a sender to various receivers. The
FlowMate organization is depicted in figure 2. Basic mod-
ifications to the TCP implementation are required at the
sender side to provide delay samples for correlation. Pack-
ets are timestamped before being sent. Usable samples are
later selected at the “Sampler” when timestamped ACKs are
received, as described in section 3.3. Sample delay lists are
then provided to the “Flow Correlator” module, which per-
forms partitioning and sends the resulting groups to other
modules, e.g., load balancer.

3.2 Correlation Tests

The delay correlation test that we use in FlowMate was
proposed in [22] to statistically identify shared bottlenecks
using Poisson-distributed probe packets. We apply an anal-
ogous method on actual data packet delays. Pearson’s cor-
relation function [22, 26] is used on the delay samples as
follows: � ��� � ����� �
	 �
���� �
	 ��� ����� ��	 ��� � ���� �
	 �� �
where,

� ��� is the correlation coefficient (with range � 	 ������)
of the two sample sets

� � and
 � whose averages are

�
and

respectively. The closer

� ��� approaches � � (�), the more
positively (negatively) linear the samples

��� � � � are. If� ��� ��� , the samples show no linear relationship.

The correlation test among two flows is defined as fol-
lows [22]: (1) Compute the cross-measure, � � , between
pairs of packets in two flows 	�� and 	
� , spaced apart by
time ����� . (2) Compute the auto-measure, �! , between
packets within a flow, spaced apart by time "#�$� . (3) If� � �%�& , then the flows share a common bottleneck, oth-
erwise they do not. The intuition behind this test is that if
two flows share a bottleneck, then the cross correlation co-
efficient should exceed the auto correlation coefficient, if
the spacing between packets of different flows after the bot-
tleneck is smaller than the spacing between packets within
the same flow.

3.3 Delay Computation

The delays of packets on the forward path from sender
to receiver should be collected at the sender. If timestamp-
ing ACKs is not possible, RTT samples (which TCP any-
way computes for retransmission timeout calculation pur-
poses) are used instead. The receiver need not handle the
TCP timestamping option field (or an equivalent applica-
tion layer mechanism) in this case: the receiver is entirely
FlowMate-unaware. Using RTT information instead of for-
ward delay may, however, degrade the partitioning accuracy
when bottlenecks in the reverse direction alter the packet de-
lay correlation properties. Furthermore, delayed acknowl-
edgments (and even the operating system and scheduling at
the receiver) affect the RTT. We have repeated all our exper-
iments in section 4 with RTT samples instead of one-way
delays, and the reduction in accuracy values was less than
5%. This performance degradation is primarily due to the
interference of reverse path bottleneck dynamics with delay
correlation values.

Standard timestamping mechanisms presented in [13]
use the Options field in the TCP header [20] to include the
time a packet is sent by the sender, and the time an ACK is
sent by the receiver, as shown in figure 3. We extend this
field (KIND=8) to also include the time at which the packet
was received. (Alternatively, this information can be added
to the application layer payload if the receiver does not sup-
port this extension.) Note that clock-skewness between the
sender and receiver clocks is not a problem if it is approxi-
mately constant throughout the flow duration.

10 TS Echo Reply

1 1 4 4

1 4 4 4

Kind = 8

Kind = 8

TS Value

TS Recv. TimeTS Echo ReplyTS Value14

1

Figure 3. Extending the timestamped ACK op-
tions field

3.4 In-Band Packet Sampling

The scalability of out-of-band delay correlation tests to
flows at a busy server is limited due to the need for generat-
ing and transmitting Poisson probes on all flow paths [22].
To avoid injecting out-of-band control traffic in the network,
we use selected data packets as samples. The sampling pro-
ceeds as follows. For the two flows being tested, we merge
the two sets of sample delays according to their packet send
times. We compute the average spacing between every two
consecutive packets, � . To compute the autocorrelation of
one of the two flows, samples are selected from its sam-
ple set with packet spacing higher than � . This is the main
restriction on the correctness of the correlation tests (as ex-
plained in [22]), and not how probes are distributed. To
verify this, we repeated our experiments with the simple
sampling approach illustrated in figure 4. We selected data
packets that are closest to Poisson probe send times (at a
rate of 10 Poisson samples per second), and then applied
the spacing restriction discussed above. Our results were
not significantly different in both cases. Therefore, in sec-
tion 4, we only use the inter-packet spacing restriction.

Time

Packets
Transmitted Selected samples

Poisson
Arrivals

Figure 4. Poisson-like sampling

3.5 Data Structures

FlowMate uses three main data structures to maintain in-
formation about flows and groups, as shown in figure 5:

� The Flow Info maintains information related to a flow
with flow ID fid and destined to host address dst. Two
lists are maintained for each flow: (1) SampleList
maintains sample delay values gathered during the cur-
rent interval of time. This list is reset after partitioning
is performed for the current interval; and (2) CorrList
is used to maintain correlation history of one flow with
other group flows (used in future partitioning for bet-
ter accuracy). After performing correlation tests for
two flows, this information is stored in the history list
of the flow with smaller fid.

� The Flow Table maintains Flow Info of all flows. The
table is hashed based on the last 8 bits of the desti-
nation address to speed up searches [14]. (Moreover,
flows to the same destination IP address can be found
in the same “bucket.” This facilitates applying simple
partitioning mechanisms that assume no NAT or dis-
persity routing [1] for certain flows.)

� The Group List is the final output of each partition-
ing process. This list is reset before re-partitioning.
Each “group” contains a list of highly correlated flows.
Due to the locality patterns of flows and the power-law
properties of Internet topology, the number of groups
is usually limited during any given interval, conse-
quently aiding in performing better coordinated con-
gestion management/load balancing/pricing decisions.

..............................

.........

Flow Table

fid

Flow Info

dst last sample seed

List

G1 G2 Gn

Flow Info
List

1 2 255

Correlation

Sample
List

History
List

Group List

Flow

Figure 5. Data structures used in FlowMate

3.6 Triggering Partitioning

It is important to trigger partitioning only when sufficient
samples are usable. This cannot be easily achieved for all
flows, however, since each flow has its own congestion win-
dow according to its start time and encountered losses. As-
sume that the last partitioning was invoked at time � . We
next trigger partitioning at time � � � , where

�
is a period

during which all flows have received at least a minimum of� delay values. Assuming a minimum of � usable sam-
ples are required for correlation testing, the threshold � is
selected to be at least twice the value of � . We have exper-
imentally determined that ��� ��� is usually adequate. Un-
der low background load, at least 20 samples are required
for accurate results. The value of � is also dependent on
how packets of various flows are interleaved. With little in-
terleaving, more samples are required, as discussed in sec-
tion 4.3.5. If a time

��� � elapses before the threshold �
is satisfied for all flows, partitioning is automatically trig-
gered. In this case, we only consider flows with sufficient
samples. To prevent frequent triggering, partitioning is not
invoked before a period

� � � � elapses since the last parti-
tioning.

grouping can
not be invoked

grouping must
d_maxd_min

grouping can be
invoked during
this interval if
condition is met

interval

which grouping
last time at

was invoked (t)

be invoked after
d_max if not
invoked since t

during this

Time

Figure 6. Summary of triggering conditions

3.7 Partitioning

FlowMate partitioning starts with empty group lists and
a set of target flows (with sufficient samples) to be grouped.
We designate a “representative” flow in every group. A new
flow is only compared to the group representative to deter-
mine whether it should join the group. This ensures that all
flows that are grouped together are highly correlated with
the same representative flow. FlowMate selects the first flow
in a group to be its representative. Selecting and switch-
ing the group representative dynamically is currently under
study. A new flow is compared to all group representatives
to determine if it should join an existing group or create a
new group. Consider, however, the case when a new flow is
highly correlated with more than one group representative.
FlowMate follows a conservative rule: no grouping is better
than incorrect grouping. The cross correlation coefficients
of the new flow in all successful tests are compared, and
the flow joins the group with highest cross coefficient. This
is because a flow typically exhibits the highest correlation
with the correct group. Optionally, whenever a new group
is created, all flows in other groups, except for the represen-
tatives, may be compared to the new group representative to
determine if they have a higher correlation with the newly
created group. This technique increases accuracy in cases
where flow delay patterns are similar. Note that the cross
and auto measures and their delay statistics are maintained
and continuously updated for every pair of flows that have
been tested. When partitioning is triggered, new samples
update the mean and variance of flow delay samples, and
consequently, the corresponding cross and auto measures.

3.8 Time Complexity

FlowMate computations are divided into two main com-
ponents: (1) sample selection, and (2) correlation tests. Us-
ing appropriate bounds in the triggering condition limits the
number of delay values to process for each flow. Computing
the coefficients depends on the number of selected samples,
which is less than the number of delay values received. As-
sume that � flows are currently being partitioned; � is the
number of generated groups; and ��� is the average group
size. FlowMate time complexity is � � ��� � , where � is
approximately ���	� � . This is better than comparing ev-

Table 1. Simulation parameters
TCP flows 12–48; infinite FTP flows; Telnet flows;

HTTP/1.1 flows
Cross traffic 24 flows, CBR (256 Kbps each)
Background traf-
fic

to all receivers (256 Kbps
Pareto/traces)

Reverse traffic 64 Kbps average rate for each (from re-
ceivers to sender)

Queue size 250 packets (except in one experiment)
Drop policy Drop-Tail (RED in one experiment)

ery pair of flows which is � � � � � . Therefore, FlowMate
partitioning is a lower-cost approximation of the K-Means
clustering technique [7]. In addition, flows with insufficient
samples are excluded from partitioning, which may further
reduce complexity. FlowMate overhead is lowest if only a
few large groups are formed. Large groups do not require
as many correlation tests among individual flows (due to
the representative-based approach). The worst case occurs
if all flows do not share any common bottlenecks and each
is grouped separately, which would not occur often. This
is due to the locality of server requests, as well as Internet
topology power-law characteristics.

4 Performance Analysis

We have implemented FlowMate in the ns-2 network
simulator [25]. In this section, we conduct several ex-
periments to evaluate its performance. We investigate
FlowMate robustness under heavy background traffic us-
ing Pareto sources or self-similar traces, and with various
foreground traffic models, including FTP, Telnet and HTTP.
We also study the effect of physical bandwidth constraints,
buffer sizes, drop policies and FlowMate parameters. Ta-
ble 1 summarizes the simulation parameters. Two topolo-
gies (one symmetric and one asymmetric) are used in the
experiments. In the first topology (figure 7), a single source
has a number of concurrent TCP connections with receivers
on three different branches. The upper two branch links are
bottlenecks with bandwidths 1.5 Mbps and 3 Mbps, respec-
tively. The third branch link has a bandwidth of 10 Mbps,
but is congested by a number of cross CBR flows. All other
links have a capacity of 10 Mbps. A number of multiplexed
Pareto flows (originating at the same source) are generated
as background traffic. Other multiplexed Pareto flows are
generated by the receivers in the reverse direction.

Figure 8 depicts the second simulation topology, where
the upper two branch links have limited bandwidth, while
the link on the third branch is congested by high back-
ground traffic load. This topology is not as symmetric as

Background Traffic

r1 r2 r4

r3

r5

Source

D(0)

D(k−1)

D(k)

D(h−1)

D(n−1)

Cross−traffic
destination

traffic
Reverse

D(h)

Bottleneck link

TCP flows

5 ms

9 ms

4 ms

2 ms 4 ms

17 m
s

3 m
s

1 ms

11 ms

14ms

12ms

2 ms

2 ms

generator
Cross−traffic

Figure 7. Simple simulation configuration

the first one. Background traffic is injected using a real traf-
fic trace (the “Star Wars” movie [11]). One “Star Wars”
flow is transmitted on each of the three main branches start-
ing from router

���
to a randomly-chosen receiver on each

branch, so as not to create a bottleneck on the main shared
path. In both topologies, three groups of flows comprise the
expected partitioning: one group for each one of the three
branches.

r2 r4

r3

r6
D1

D2

D3r11r7

Bottleneck due
to high cross−
traffic load

Cross−traffic
generator

5ms 2ms

Bottleneck link

Reverse
traffic

r8

D8 D7

5ms

D9

D10
r9

r5Cross−traffic
destination

4ms

3ms

2ms

1ms

12ms

13ms

11ms

12ms

14ms

19ms

14ms

9ms

8ms

2ms 3ms

17ms

r10
D115ms

D124ms

Background traffic

13ms
r1

TCP flows

Source r12

3ms

9ms
r13

1ms

2ms D5

D4

D6

2ms

Figure 8. More complex simulation configura-
tion

4.1 Group Accuracy Metric

Partitioning inaccuracies are introduced by either erro-
neous grouping of flows (including merging two or more
groups) or splitting a group into two or more subgroups. We
use the term “false sharing” (fs) to denote erroneous group-
ing of a flow with a group it does not share bottlenecks with.
Let � denote the total number of flows; ��� denote the set
of correct groups; ��� denote the set of resulting groups;
$��	� denote the number of flows grouped erroneously in a

resulting group; and
 � denote the number of subgroups of
a correct group ' � � that was split into
 � subgroups in ��� .
The group accuracy index (AI) is computed as follows:

������ � � � �� $ ��� � � � ��� � � 	
��� �������� � � $ ��� � �

� 	
��� �� !��"� � �
�� 	 � �

�
where

� $���� � � of a group � � ' �#� is computed as follows:
Map � � to a corresponding group � � ' � � , such that $ � �&% � � $
is maximized. The total number of flows 	 such that 	 '
� �(' 	 �' � � is the number of flows grouped erroneously� $���� � � .

For example, consider 6 flows with correct groups
� 1,2,3 � and � 4,5,6 � . If the groups produced by FlowMate
are � 1,2 � , � 3,4,5 � , and � 6 � , then the accuracy index is com-
puted as: � 	 �) 	+* �-, �/.) � � � 021 . In this case, one sixth is
deducted for flow 3, which was incorrectly grouped, and an-
other one sixth is deducted for the split of group � 4,5,6 � into
groups � 4,5 � and � 6 � . Note that a single flow is penalized
only once, either for being grouped incorrectly, or for not
being grouped (merged). Table 2 gives some additional ex-
amples. There is no case in which all flows are erroneously
grouped. Therefore, the accuracy index varies between a
fraction (above 0) and 1. For a fixed number of flows, as the
number of correct groups increases (decreases), the average
number of flows per group decreases (increases). There-
fore, the merge effect is, on the average, diminished (ex-
acerbated). The split effect is constant, since it only de-
pends on the number of flows. Our interpretation of accu-
racy considers a group split into two or more groups to be of
equal severity (thus prompting an equal deduction) to incor-
rect grouping of one flow (while incorrect merging of two
groups entails a penalty for each flow that was incorrectly
merged with the larger set). This may be too strict, since
group splits often occur during transient periods. In addi-
tion, group splits have fewer undesirable effects than false
sharing. A group split simply does not exploit the full ben-
efits of coordination among the group, but the consequent
decisions (congestion control, load balancing, or pricing)
are not incorrect. This is in contrast to false sharing which
may, for example, cause a flow to enter the slow start phase
if other members of that group are bottlenecked. We are
currently investigating the effectiveness of our accuracy in-
dex metric more carefully.

4.2 FlowMate Accuracy

In this section, we discuss the results of experiments on
the topology in figure 7. In our first experiment, we com-
pute the accuracy index with different numbers of flows.
Figure 9(a) shows the performance using 24, 36, and 48
TCP flows as foreground traffic. To interpret the results
more easily, we trigger partitioning at fixed intervals and

Table 2. Computing the accuracy index
(AI) for 10 flows with 2 optimal groups
(� 1,..,5 � , � 6,..,10 �)

Output Groups AI Interpretation

All split: � 1 � , � 2 � , ����� , � 10 � 0.2 1 correct flow per
group

All merged: � 1,2, ����� ,10 � 0.5 only 1 correct group
Splitting: � 1,2,3 � , � 4,5 � ,
� 6,7,8 � , � 9,10 �

0.8 2 errors (splits)

More splitting: � 1,2 � ,
� 3,4 � , � 5 � , � 6 � , � 7,8 � ,
� 9,10 �

0.6 4 errors (splits)

Some false sharing:
� 1, ����� ,7 � , � 8,9,10 �

0.8 2 errors (flows 6 and
7)

More false sharing:
� 1, ����� ,9 ��� 10 �

0.6 4 errors (flows 5 to 9)

Combined errors: � 1,2,3 � ,
� 4,5,6,7 � , � 8,9,10 �

0.7 3 errors (1 split + 2
false sharing)

Combined errors: � 1,2 � ,
� 3,4 � , � 5,6 � , � 7,8 � , � 9,10 �

0.6 4 errors (3 splits + 1
false sharing)

do not trigger it early if sufficient samples are received be-
fore

��� � . The value used for
��� � is 6 seconds. There-

fore, the results of the first partitioning can be seen at time
6 seconds, the second at time 12, and so on. Triggering par-
titioning according to the number of samples (as proposed
in section 3.6) may improve system performance (e.g., con-
gestion control or load balancing) if it occurs between

� � � �
and

� � � . The main effect of only triggering at
� � � in-

tervals on FlowMate accuracy computation is to alter the
number of flows considered for partitioning (according to
their number of samples). Note that we compute the accu-
racy index by comparing against a static correct partition-
ing, even though the background traffic variations entail a
dynamic partitioning goal. We select this more conserva-
tive approach for ease of accuracy index computation, and
to show the worst case index value.

We observe that in steady state, performance is reason-
able (average index � 90%). During the initial transient pe-
riod, which includes the first one or two partitioning invoca-
tions, sample delay patterns are not unique for each group of
flows, so accuracy is lower. After the transient, accuracy is
higher: observed inaccuracies are mostly due to a few group
splits. Flows used in this experiment start at 10 to 50 ms in-
tervals apart. We also perform experiments with more stag-
gered start times with 36 TCP flows and 12 receivers. In the
first experiment, half of the flows begin at time zero (using
a 40 ms mean interval between flows), and the remaining 18
start around 30 seconds later. In a second experiment, one
third of the flows start near time zero, another third after

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 6 12 18 24 30 36 42 48 54 60

A
c
c
u
r
a
c
y

I
n
d
e
x

Time (sec)

24 flows, 12 receivers
36 flows, 12 receivers
48 flows, 12 receivers

(a) Performance under different loads

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 6 12 18 24 30 36 42 48 54 60
A
c
c
u
r
a
c
y

I
n
d
e
x

Time (sec)

Experiment 1: 2 start times
Experiment 2: 3 start times
Experiment 3: 4 start times

(b) Performance with staggered start times

Figure 9. Accuracy index with FlowMate

approximately 18 seconds, and the last third after approxi-
mately 36 seconds. Finally, we conduct a third experiment
where flows are divided into 4 groups, each starting at times
near 0, 18, 30, and 48 seconds. The performance results
are depicted in figure 9(b). A large number of flows start-
ing during the same period causes an abrupt degradation in
accuracy, unlike the case where flows are added gradually.
The performance is still reasonably good in the steady state,
and if a dynamic accuracy metric (that considers transient
bottlenecks) is used, the accuracy index increases.

4.3 Impact of Network Conditions

The performance of FlowMate is affected by network
conditions. Router buffer size is an important network pa-
rameter since the delay correlation test performs better in
networks with large buffer sizes [22]. The packet drop,
policy and traffic patterns may also impact the results. We
demonstrate the effect of these parameters on the topology
shown in figure 8. The effect of varying the maximum cor-
relation interval duration

� � � does not have a profound
impact on the results. Results for

� � � values between 2
and 10 seconds follow almost the same pattern as the re-
sults with 6 seconds given in this section as shown in fig-

ure 10. As mentioned above, the “Star Wars” trace is used
as a source of self-similar background traffic, except when
varying background traffic load, when a number of Pareto
sources are multiplexed (in order to easily experiment with
different background rates and on/off periods). 24–36 TCP
flows are used as foreground traffic, evenly divided among
all 12 receivers, and, as before, the correct partitioning is
three groups– one for each main branch. Simulation time
is 60 seconds. This allows the effect of the transients to be
visible, even in experiments where the average accuracy is
computed over the simulation period.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

A
c
c
u
r
a
c
y

I
n
d
e
x

Correlation period (sec)

Configuration 1
Configuration 2

Figure 10. Effect of the maximum correlation
period

4.3.1 Buffer Size

Although the delay correlation is more clearly manifested in
bottlenecked routers with long queues, varying buffer sizes
from 50 to 500 packets does not result in significant perfor-
mance variation in steady state, as illustrated in figure 11-
(a). Detailed results for specific buffer sizes are shown in
figure 11-(b). Variation in performance is more pronounced
during the transient period, which is expected any time a
large number of connections start at the sender simultane-
ously. We believe that having routers with larger buffers
usually enhances performance.

4.3.2 Packet Drop Policy

The most common drop policy used in routers is Drop-Tail.
We use this policy in all our experiments, except in this ex-
periment, where we use Random Early Detection (RED).
Figure 12 shows the resulting accuracy index in three cases.
One case uses the Drop-Tail policy for all queues, another
case uses some Drop-Tail and some RED queues, and the
last case uses only RED in all queues. Results show that
using RED for all queues reduces the accuracy. This agrees
with the results presented in [12] about Markovian probing
performance with the RED queuing discipline. The reason

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200 250 300 350 400 450 500

A
c
c
u
r
a
c
y

I
n
d
e
x

Buffer Size (Packets)

Buffer Size=50 to 500

(a) Average accuracy index (averaged over the
simulation time)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 6 12 18 24 30 36 42 48 54 60

A
c
c
u
r
a
c
y

I
n
d
e
x

Time (sec)

q=100
q=200
q=300
q=400

(b) Transient and steady state performance

Figure 11. Effect of router buffer size

for RED interference is that random packet drop alters sam-
ples and introduces noise to the correlation process. Varia-
tions among different flow delay patterns are also reduced
by RED, which complicates the process of determining the
best group for a certain flow. This is consistent with the
results presented in [22]. The Drop-Tail policy currently
prevails in Internet routers, however, and even with the use
of other policies in some routers on a path, FlowMate still
performs reasonably well.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 6 12 18 24 30 36 42 48 54 60

A
c
c
u
r
a
c
y

I
n
d
e
x

Time (sec)

Drop Tail
DropTail/RED

ALL RED

Figure 12. Effect of packet drop policy

4.3.3 Background Traffic Load

We study the performance of FlowMate in our two config-
urations (figure 7 and figure 8) under different background
traffic loads: we multiplex a number of Pareto sources, each
with average rate of 400 Kbps. The Pareto sources are syn-
chronized to start at the same time (1 second before fore-
ground traffic starts). The load values shown on the

�
-axis

in figure 13-(a) are computed according to the first branch
which has the least physical bandwidth; load is slightly
lower on other branches. Results show that FlowMate is
robust under heavy background traffic. We also conducted
another experiment in which the ratio of the on/off periods
of the Pareto sources is varied to demonstrate the effect of
different burst sizes. The results, depicted in figure 13-(b)
illustrated that performance is consistent, which indicates
that different on/off period ratios have a relatively minor
effect on the partitioning accuracy. It is worth noting that
performance on the more complex configuration is superior
to the simpler one. This can be attributed to its asymmetric
nature.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

40 45 50 55 60 65 70 75 80 85 90 95

A
c
c
u
r
a
c
y

I
n
d
e
x

% background load

Configuration 1
Configuration 2

(a) Different background average load

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

A
c
c
u
r
a
c
y

I
n
d
e
x

% on:off periods

Configuration 1
Configuration 2

(b) Different ratios of on-off periods

Figure 13. Performance under different back-
ground load and burstiness

4.3.4 Foreground Traffic Load

In our experiments thus far, we have used FTP applications
as our foreground traffic sources. In this experiment, we
demonstrate the effect of higher burstiness in foreground
traffic, and determine the number of samples required for
correct results. We use Telnet traffic with bursty packet
inter-arrivals, and control the packet inter-arrival mean � .
Figure 14-(a) shows results with different inter-packet ar-
rival periods. As shown in figure 14-(b), a large � value
reduces the number of samples available for correlation and
consequently reduces accuracy. For � � ��� � ms, the fig-
ure depicts significant performance degradation since very
few samples are used in the correlation tests. In most of the
cases where we saw group splits, the number of available
samples was less than 10 per flow. Degraded performance
continues throughout the simulation period. We conclude
that large average packet inter-arrival times limit FlowMate
effectiveness, since the reduced number of samples either
disables the partitioning entirely or impacts the results.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100

A
c
c
u
r
a
c
y

I
n
d
e
x

Packet inter-arrival time (msec)

t=10ms to 100ms

(a) Average accuracy index (over simulation
time) with increasing foreground traffic aver-
age packet inter-arrival time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 6 12 18 24 30 36 42 48 54 60

A
c
c
u
r
a
c
y

I
n
d
e
x

Time (sec)

t=10ms
t=50ms
t=100ms

(b) Transient and steady state performance

Figure 14. Performance degradation with
bursty Telnet traffic

Table 3. HTTP simulation parameters
Number of web clients 12, 18, and 24
Number of sessions/client 20
Mean number of pages/session 50
Mean inter-page interval 10 ms
Mean page size 12 KB
Mean number of embedded objects/page 2
Mean object size 120 KB

4.3.5 HTTP Traffic

Many problems arise when HTTP traffic is considered.
First, most HTTP connections are short-lived [15]. This
implies that a connection may very well terminate before
partitioning is triggered, even for a small

� � � � value. Sec-
ond, since HTTP packets are sent in short bursts, and since
we only select samples whose inter-packet spacing exceeds
the inter-flow packet spacing, then we may have no avail-
able samples during many intervals. The above two prob-
lems are exacerbated by the delayed ACKs option, which
delays receiver ACKs in order to piggyback them on any
available data in the reverse direction. Fortunately, these
problems are somewhat mitigated by HTTP/1.1 with persis-
tent or pipelined connections [10]. The HTTP/1.1 specifi-
cation entails that connections are not terminated after each
request/response as in the case of HTTP/1.0. A connection
remains alive to be used for other requests and only times
out if it stays idle for a specified interval of time. Although
this resolves the short connection problem, burstiness re-
mains an important concern.

FlowMate was applied to HTTP/1.1 traffic on the two
configurations in figure 7 and figure 8. We used the SURGE
model [4] for web workload traffic generation. This model
is implemented in “nsweb” [27]. Table 3 summarizes the
HTTP/1.1 parameters used in our experiments. SURGE pa-
rameters are chosen as in [4], while other parameters used
in the experiments are similar to those in [27]. Figure 15-
(a) depicts the performance of FlowMate using different
numbers of web clients on the first configuration with 12
receivers (figure 15-(b) shows results for the second con-
figuration). Performance is similar with different numbers
of clients. We have found that accuracy is actually higher
than what is computed by our accuracy metric. This is be-
cause the metric compares against static groups throughout
the simulation, and does not capture scenarios where two
flows have samples with totally disjoint sets of send times.
In such cases, correlation fails (correctly), and FlowMate
avoids false sharing. We conclude that partitioning HTTP
flows significantly depends on two main factors, namely,
connection lifetime and traffic burstiness. While it is still
possible for FlowMate to perform reasonably well under

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 6 12 18 24 30 36 42 48 54 60

A
c
c
u
r
a
c
y

I
n
d
e
x

Time (sec)

12 clients
18 clients
24 clients

(a) Using first configuration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 6 12 18 24 30 36 42 48 54 60
A
c
c
u
r
a
c
y

I
n
d
e
x

Time (sec)

12 clients
24 clients

(b) Using second configuration

Figure 15. Using FlowMate with HTTP/1.1

some burstiness, connection life-time is crucial in determin-
ing if partitioning is applicable. When partitioning is trig-
gered, short-lived flows have either already terminated and
their information has been deleted, or they do not exceed the
minimum threshold of samples required to be considered in
the correlation process.

5 Application of FlowMate to Coordinated
Congestion Management

In this section, we demonstrate one application that may
benefit from FlowMate, namely, coordinated congestion
management. As previously stated, groups of flows are pro-
vided as the input to any coordinated congestion manage-
ment scheme, such as CM. We implement a simple coordi-
nation mechanism that works as follows. Each flow main-
tains its own congestion window. When loss is detected
by any member of a group, all group member windows are
reduced to react to incipient congestion. All group mem-
bers increase their windows after three consecutive window
increases within the group. Thus, flows react more conser-
vatively to detected available bandwidth. Experiments are
conducted using the configuration in figure 8. Figures 16(a)
and (b) show the number of ACKed packets during a simu-
lation period of 120 seconds for one of the resulting groups,

without and with FlowMate and simple coordination. Fig-
ure 16(b) illustrates that the flow throughput values are more
similar and consequently fairness among flows sharing a
common bottleneck is better with FlowMate. We believe
that using flow groups generated by FlowMate in schemes
such as [2, 3, 9, 18, 23] will extend the benefits of these con-
gestion coordination schemes to flows with different desti-
nations but common bottlenecks. Moreover, FlowMate will
also false sharing of state among flows with different bot-
tlenecks.

0

200

400

600

800

0 20 40 60 80 100 120

#

A
C
K
e
d

p
a
c
k
e
t
s

Time (sec)

(a) One group without coordination

0

200

400

600

800

0 20 40 60 80 100 120

#

A
C
K
e
d

p
a
c
k
e
t
s

Time (sec)

(b) One group with coordination using Flow-
Mate

Figure 16. Using FlowMate for congestion co-
ordination

6 Conclusions and Future Work

In this paper, we have presented FlowMate, an algorithm
that exploits end-to-end packet delays to periodically par-
tition flows originating at a busy sever into groups, based
upon whether they share bottlenecks. FlowMate does not
require generation and transmission of probe traffic for col-
lecting delay information. Although using out of band
probes introduces little load (usually about 5% of the to-
tal load), the overhead of generating probe flows is propor-
tional to the number of flows to be grouped. Moreover, a

flow and its corresponding probe flow may not follow the
same path, and may, consequently, face different bottle-
necks. This emphasizes the need for a scheme to dynam-
ically group flows based on in-band measurements.

FlowMate will likely produce multi-member groups at
a busy server, due to the locality of requests and Internet
topology characteristics. Therefore, FlowMate complex-
ity, which depends on the number of groups, is reasonable.
FlowMate accuracy is high in various configurations with
different propagation delays, bottlenecks, buffer sizes, and
drop policies. The main factor that degrades performance
is the burstiness of the flows being partitioned themselves,
as seen in our HTTP/1.1 and Telnet results. Background
traffic load and burstiness do not have a detrimental effect,
due to our design which considers the history of correlation
statistics.

We have implemented FlowMate in the Linux kernel
v2.4.17. We plan to measure the benefits of FlowMate with
coordination schemes in wide area experiments. UDP flows
may also be considered by measuring delays at the applica-
tion layer. For example, RTP flows can be grouped with
TCP flows or with each other (at large time scales) and con-
trolled according to multimedia application requirements.
Finally, we will integrate FlowMate into other components
in addition to congestion management– specifically load
balancing in overlay networks.

Acknowledgments

We would like to thank Dan Rubenstein (Columbia Uni-
versity) for providing us with his correlation computation
code; Anja Feldmann and Jorg Wallerich (University of
Munich) for answering our “nsweb” questions; and the
anonymous reviewers for their valuable comments.

References

[1] S. A. Akella, S. Seshan, and H. Balakrishnan. The Impact
of False Sharing on Shared Congestion Management. CMU-
CS-01-135, June 2001.

[2] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, M. Stemm,
and R. H. Katz. TCP Behaviour of a Busy Web Server:
Analysis and Improvements. In Proceedings of IEEE IN-
FOCOM, March/April 1998.

[3] H. Balakrishnan and S. Seshan. An Integrated Congestion
Management Architecture for Internet Hosts. In RFC 3124
and MIT technical report MIT/LCS/TR-771, 2001. Also ap-
pears in ACM SIGCOMM 1999.

[4] P. Barford and M. Crovella. Generating Representative Web
Workloads for Network and Server Performance Evaluation.
In Proceedings of ACM SIGMETRICS, July 1998.

[5] R. Caceres, N. Duffield, J. Horowitz, D. Towsley, and
T. Bu. Multicast-based Inference of Network-internal Char-
acteristics: Accuracy of Packet Loss Estimation. In Pro-

ceedings of the IEEE INFOCOM, New York, March 1999.
http://www.ieee-infocom.org/1999/papers/03a 04.pdf.

[6] H. Chang, R. Gopalakrishna, and V. Prabhakar. Intelligent
Grouping of TCP Flows for Coordinated Congestion Man-
agement. Purdue University/Technical Report CSD-TR-01-
017, 2001.

[7] R. O. Duda, P. E. Hart, and D. G. Stork, editors. Pattern
Classification and Scene Analysis, Part 1: Pattern Classifi-
cation. John Wiley, second edition, 2001.

[8] N. Duffield, F. L. Presti, V. Paxson, and D. Towsley. In-
ferring Link Loss Using Striped Unicast Probes. In Pro-
ceedings of the IEEE INFOCOM, Anchorage, Alaska, April
2001. http://www.ieee-infocom.org/2001/papers/687.pdf.

[9] L. Eggret, J. Heidemann, and J. Touch. Effects of Ensemble-
TCP. In ACM Computer Communication Review, January
2000.

[10] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext Transfer Protocol –
HTTP/1.1. RFC 2616, June 1999.

[11] M. W. Garrett and W. Willinger. Analysis, Modeling and
Generation of Self-Similar VBR Video Traffic. In Proceed-
ings of ACM SIGCOMM Conference, pages 269–280, Lon-
don, UK, 31st - 2nd 1994.

[12] K. Harfoush, A. Bestavros, and J. Byers. Measuring Bottle-
neck Bandwidth of Targeted Path Segments. BUCS-2001-
016, July 2001.

[13] V. Jacobson, R. Braden, and D. Borman. TCP Extensions
for High Performance. RFC 1323, May 1992.

[14] R. Jain. A Comparison of Hashing Schemes for Address
Lookup in Computer Networks. IEEE Transactions on Com-
munications, 40(3):1570–1573, 1992.

[15] S. Jin, L. Guo, I. Matta, and A. Bestavros. The War Be-
tween Mice and Elephants. In Proceedings of IEEE ICNP,
November 2001.

[16] D. Katabi, E. Bazzi, and X. Yang. A Passive Approach for
Detecting Shared Bottlenecks. In Proceedings of IEEE IC-
CCN, October 2001.

[17] D. Katabi and C. Blake. Inferring Congestion Sharing and
Path Characteristics for Packet Interarrival times. MIT-LCS-
TR-828, December 2001.

[18] V. Padmanabhan and R. Katz. TCP Fast Start: A Technique
For Speeding up Web Transfers. In IEEE GLOBECOM 98
Internet Mini-Conference, November 1998.

[19] V. N. Padmanabhan. Coordinated Congestion Management
and Bandwidth Sharing for Heterogeneous Data Streams. In
Proceedings of NOSSDAV, 1999.

[20] J. Postel. Transmission Control Protocol. RFC 793, Septem-
ber 1981.

[21] V. Rebeiro, M. Coates, R. Riedi, S. Sarvotham, B. Hen-
dricks, and R. Baraniuk. Multifractal Cross-Traffic Estima-
tion. In Proceedings of ITC Specialist Seminar on IP Traf-
fic Measurement, Modeling, and Management, September
2000.

[22] D. Rubenstein, J. F. Kurose, and D. F. Towsley. Detecting
Shared Congestion of Flows via End-to-end Measurement.
In Proceedings of ACM SIGMETRICS (Measurement and
Modeling of Computer Systems), pages 145–155, 2000. Ex-
tended version to appear in IEEE/ACM Transactions on Net-
working.

[23] J. Touch. TCP Control Block Interdependence. RFC 2140,
April 1997.

[24] T. Tuan and K. Park. Multiple Time Scale Congestion Con-
trol for Self-Similar Network Traffic. Performance Evalua-
tion, 36:359–386, 1999.

[25] UCB/LBNL/VINT groups. UCB/LBNL/VINT Network
Simulator. http://www.isi.edu/nsnam/ns/, May 2001.

[26] H. Wadsworth, editor. Handbook of Statistical Methods
for Engineers and Scientists. McGraw-Hill, second edition,
1998.

[27] J. Wallerich. Design and implementation of WWW work-
load generator for the ns-2 network simulator, August
2001. http://www.net.uni-sb.de/ � jw/nsweb (also on ns-2
web page).

PROCEDURE TriggerPartitioning(condition) PROCEDURE Partition()
IF (condition is met) FOR i � 1 TO numFlows DO
THEN return triggered BEGIN
ELSE return not triggered IF (GroupsList = NULL) THEN BEGIN

END PROC � � � create new group for 	��
� � .representative � 	��

END
PROCEDURE SelectSamples(Flow f1, Flow f2) ELSE BEGIN

Flow f3 � NULL MaxCoeff � NEGATIVE VALUE
Flow f4 � NULL ChosenGroup � NULL
f3 � merge samples from f1 and f2 FOR k � 1 TO numGroups DO
AvgDist � average time between consecutive packets in f3 BEGIN
f4 � f2 packets with inter-packet distance � AvgDist 	�� � ��� .representative
return f3 and f4 (, 	��) � SelectSamples(� , 	��)

END PROC result � Test(, 	 �)
j � min(i, k)
	�� .CorrList.add(result)

PROCEDURE Regroup(GroupsList) IF (result.success) and (result � MaxCoeff)
�	���	� � !
� $ ��� �

�
�
� � � � � �

THEN BEGIN
$ � numGroups ChosenGroup � ��
FOR k � 1 TO $ 	 � DO Update MaxCoeff
BEGIN END

for each flow 	 � of ��� END
(, 	��) � SelectSamples(� , � � .representative) IF (ChosenGroup = NULL) THEN BEGIN
result = Test(, 	��) numGroups � numGroups + 1
check (result.CrossCoeff � original coeff with ���) k � numGroups
IF (TRUE) THEN BEGIN �� � create a new group for 	 �
remove 	�� from � � � � .representative � 	��
add 	�� to � � Regroup(GroupsList)

END END
END END

END PROC END
END PROC

FlowMate MAIN PROC
Initialize:

Groups List � NULL
Flows Table � NULL

Start:
FOR i � 1 TO numFlows DO

SampleList(�) � NULL
collect delay information from received ACKs
store delay information in Flow Table
check TriggerPartitioning(condition)
If (triggered) THEN
BEGIN
Partition()
generate GroupList
Goto Start

END
ENDPROC

Figure 17. The FlowMate algorithm

