Scheduling Diverse QUIC Streams
Yufeng Chen, Akhil Prasad, Sonia Fahmy, Voicu Popescu
Department of Computer Science, Purdue University
E-mail: {chen4044, prasad67, fahmy, popescu}@purdue.edu

Background

• Applications like VR have delay and loss-(in)sensitive data.
• QUIC offers multiple streams and easy application integration.
• Applications can use multiple reliable streams and unreliable datagrams in QUIC.
• Scheduling among them becomes important.

Challenge

• Balance overhead and application Quality of Experience (QoE) as the number of concurrent streams, and the scheduling sophistication, increase.

<table>
<thead>
<tr>
<th>Static scheduler</th>
<th>Dynamic scheduler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data structure</td>
<td>Priority Queue (priority levels) + Queue for each priority level</td>
</tr>
<tr>
<td>Implementation</td>
<td>B-Tree + Double-ended vector</td>
</tr>
<tr>
<td>Enqueue operation</td>
<td>$O(\log m)$</td>
</tr>
<tr>
<td>Dequeue operation</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

m: current number of priority levels
n: current total number of streams

Design

• Data properties and real-time network information can be used for scheduling at the sender.
• Schedulers can be static or dynamic, depending on the operations executed when dequeueing.

Methodology

• Measure resource usage, sender queueing delay (from data generation to sending onto network), and application QoE.

Future Work

• Map diverse VR application data types to reliable streams and unreliable datagrams.
• Experiment with scheduling approaches.
• Test under different network conditions and QUIC implementations and parameters.

This work has been supported in part by NSF grant 2212200.