
CoRE: Non-Linear 3D Sampling for Robust
360◦ Video Streaming

Mijanur R. Palash
Purdue University

mpalash@purdue.edu

Voicu Popescu
Purdue University

popescu@purdue.edu

Amit Sheoran
Purdue University

asheoran@purdue.edu

Sonia Fahmy
Purdue University

fahmy@cs.purdue.edu

Abstract—CoRE is an approach for streaming 360◦ videos
based on a non-linear sampling of the equirectangular video cube.
CoRE is robust to view prediction errors.

Index Terms—360◦ video streaming.

I. INTRODUCTION
360◦ videos are gaining popularity as they offer an immer-

sive experience. Content providers like Facebook and YouTube
provide 360◦ videos for clients to stream, but this requires high
network bandwidth and client processing power. The transfer
and processing requirements can be reduced by only sending
to the client the part of the video viewed by the user. However,
sending each frame incurs the prohibitive latency of traversing
the network twice per frame, to request and to receive the
frame. A promising approach is to transfer only and all the
360◦ video data required for the next sequence of frames,
which is then rendered at the client, bypassing network latency.
Two problems must be overcome. The first problem is view
direction prediction, to determine which part of the 360◦ video
is needed for the next sequence, e.g., via machine learning; to
mitigate missing data artifacts when prediction fails, Flare [1]
pads the prediction, whereas Rubiks [2] transfers an additional
complete 360◦ video at a lower resolution. The second prob-
lem is 360◦ video partitioning, to allow extracting the needed
part. Partitioning typically uses tiling [1]–[3].

Tiling brings flexibility to carving out the needed part of
a 360◦ video, and a tile is essentially a small video that can
be handled by existing video codec (e.g., H.264) and transfer
(e.g., DASH) infrastructure. However, tiling has several disad-
vantages. Decoding overhead: the client has to decode tens of
tiles, which, even though a tile is small, implies computational
and power consumption overhead. Compression inefficiency:
compressing individual tiles fails to take advantage of data re-
dundancy across tiles, increasing the required bandwidth. Par-
titioning coarseness: increasing tile size reduces the number of
tiles which alleviates some tiling disadvantages, but large tiles
preclude a high-fidelity approximation of the predicted part of
the 360◦ video, which results in transferring unnecessary data.
Discontinuous frame quality: rendering the frame at the client
from tiles of various resolutions creates objectionable abrupt
changes in image quality. Transfer scheduling complexity:
managing the set of tiles to be transferred to keep up with

This work has been funded in part by NSF grant CNS-1717493.

changes in view direction prediction is challenging. Non-
uniform partitioning: a uniform tiling of an equirectangular
360◦ video translates to a non-uniform partitioning of the unit
sphere, which increases the number of tiles needed to cover
tilted view directions, and decreases quality for horizontal
view directions.

Fig. 1: CoRE architecture.

In this poster, we introduce CoRE, a non-linear 3D video
sampling method for robust 360◦ video streaming, inspired
by earlier work on non-uniform sampling of 2D images [4].
Given a 360◦ video V , a range of view direction pan and tilt
angles [θ0, θ1] × [φ0, φ1], and a time interval [t0, t1], we build
a non-linearly sampled CoRE video that covers the 3D sub-
volume S=[θ0, θ1]×[φ0, φ1]×[t0, t1] at full quality, but also
covers V −S, at lower quality. Quality is uniformly high inside
S, and decreases gradually with distance from S, which avoids
the frame quality discontinuity of tiling. A CoRE video covers
all view directions, albeit at a lower spatial sampling rate,
which brings robustness to view direction prediction errors. A
CoRE video covers time points beyond t1, albeit at a lower
frame rate, which avoids stalls when network conditions delay
receiving data for the next user frame sequence. Finally, CoRE
transfers a single file for each time interval, avoiding the
decoding overhead, compression inefficiency, and scheduling
complexity of tiling, at the expense of storage at the server.

II. APPROACH
As depicted in Fig. 1, the server builds a set of CoRE

videos for each 360◦ video, offline (1). Then, once the client
connects, the server provides every few seconds a CoRE video
for rendering an entire sequence of user frames at 60Hz (2).978-1-7281-2700-2/19/$31.00 2019 © IEEE

(a) Original 360◦ video frame (b) Rotated 360◦ video frame (c) CoRE frame (magnif.) (d) Output frame

Fig. 2: Sample output for the stages of the CoRE pipeline from Fig. 1 on a checkered cube scene. The black outline shows
the viewport for which the CoRE was constructed, and the orange outline shows the viewport of the output frame.

(1) Given a 360◦ video, the server builds one CoRE video
for each direction and each time interval. For example, for a
400s 360◦ video, with a 20◦×20◦ direction discretization and
a 4s time interval, 18×9×100 CoRE videos are built. A CoRE
video is built one frame at the time. Given a direction (θ, φ),
a time step t, and the horizontal and vertical fields of view
(h, v) of the viewport, a Compressed Rotated Equirectangular
(CoRE) frame is built from the 360◦ video frame t ((a) in
Fig. 1 and 2) by rotating it to center (θ, φ) ((b) in the figures),
and by compressing the parts outside (h, v) non-linearly (c).
The CoRE video is encoded conventionally (e.g., H264). The
video has a variable frame rate, with full frame rate for its
time interval and decreasing frame rate beyond.

(2) CoRE works with view direction prediction, when the
client requests a CoRE video for the predicted view, or without
prediction, when the client requests a CoRE video for the
current view. The server sends the best matching CoRE video.
The client renders the output frame (Fig. 2d) on the CPU, by
resampling the CoRE frame, or on the GPU, by rendering a
sphere mapped with a CoRE video texture.

III. PRELIMINARY RESULTS
We evaluated CoRE via simulations on 4k equirectangular

360◦ videos with pre-recorded HMD data traces. The output
frame had a 110◦ horizontal field of view and a 16:9 aspect
ratio. Compression reduces the 3, 840×2, 160 input resolution
to a CoRE resolution of 1, 706× 1, 175, by keeping the con-
struction viewport at the original resolution, and by shrinking
the outer parts non-linearly with an application-chosen average
compression factor, here 5×. Fig. 2c magnifies the CoRE
frame for illustration purposes.

Fig. 3 illustrates the CoRE non-linear sampling. One graph
(left y axis) shows the mapping from the CoRE frame to the
uncompressed frame, which changes quadratically over the
compressed left and right boundary regions, and linearly over
the uncompressed central region. The second graph (right y
axis) shows the derivative of the first graph, and corresponds to
the sampling step in the uncompressed image. As expected, the
sampling step decreases (increases) linearly over the left (right)
boundary regions, and it is exactly one for the uncompressed
central region. The maximum (average) sampling step is 9 (5).
In addition to avoiding quality discontinuities, the CoRE non-
linear sampling yields higher quality close to the inner edge of
a boundary region, compared to its outer edge. This translates
to higher quality output frames when the output viewport

extends slightly beyond the CoRE construction viewport. In
other words, the quality penalty for an incorrect view direction
prediction is often small in CoRE, and always commensurate
to the error magnitude.

0 500 1000 1500
CoRE Coordinate [pix]

0

1000

2000

3000

4000

U
nc

om
pr

es
se

d
C

oo
rd

in
at

e
[p

ix
]

0

5

10

15

S
am

pl
in

g
S

te
p

[p
ix

]Uncompressed Coordinate
Sampling Step

Fig. 3: Sampling over the equator of a CoRE frame.

Fig. 4 shows that CoRE transfers less data, even compared
to 10×10 tiling. In practice, decoding tens of tiles on the client
is prohibitively expensive, and applications resort to fewer,
larger tiles. Flare [1] employs 4× 6 1s tiling, which transfers
60% more than CoRE, even without including the padding
needed by tiling to compensate for prediction inaccuracy.

2x2 4x6 8x8 10x10
Transfer mechanism

0%

25%

50%

75%

100%

%
 o

f 3
60

 v
id

eo
 tr

an
sf

er
re

d

Tiling 4s
Tiling 1s
CoRE

Fig. 4: Comparison of transferred data amount.

Our future work plans include completing the CoRE system
for hand-held and head-mounted display interactive viewing.

REFERENCES

[1] F. Qian, B. Han, Q. Xiao, and V. Gopalakrishnan, “Flare: Practical
viewport-adaptive 360-degree video streaming for mobile devices,” in
Proceedings of MOBICOM, 2018.

[2] J. He, M. A. Qureshi, L. Qiu, J. Li, F. Li, and L. Han, “Rubiks: Practical
360-degree streaming for smartphones,” in Proceedings of MobiSys, 2018.

[3] Y. Guan, C. Zheng, X. Zhang, Z. Guo, and J. Jiang, “Pano: Optimizing
360 video streaming with a better understanding of quality perception,”
in Proceedings of SIGCOMM, 2019.

[4] V. Popescu, P. Rosen, L. Arns, X. Tricoche, C. Wyman, and C. M.
Hoffmann, “The general pinhole camera: Effective and efficient nonuni-
form sampling for visualization,” IEEE transactions on visualization and
computer graphics, vol. 16, no. 5, pp. 777–790, 2010.

