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Abstract—In this paper, we investigate the applicability of simulation and
emulation for denial of service (DoS) attack experimentation. As a case
study, we consider low-rate TCP-targeted DoS attacks. We design con-
structs and tools for emulation testbeds to achieve a level of control com-
parable to simulation tools. Through a careful sensitivity analysis, we ex-
pose difficulties in obtaining meaningful measurements from the DETER
and Emulab testbeds with default system settings, and find dramatic differ-
ences between simulation and emulation results for DoS experiments. Our
results also reveal that software routers such as Click provide a flexible ex-
perimental platform, but require understanding and manipulation of the
underlying network device drivers. We compare simulation and testbed re-
sults to a simple analytical model for predicting the average size of the con-
gestion window of a TCP flow under a low-rate TCP-targeted attack, as a
function of the DoS attack frequency. We find that the analytical model and
ns-2 simulations closely match in typical scenarios. Our results also illus-
trate that TCP-targeted attacks can be effective even when the attack fre-
quency is not tuned to the retransmission timeout. The router type, router
buffer size, attack pulse length, attack packet size, and attacker location
have a significant impact on the effectiveness and stealthiness of the attack.

Keywords—simulation, emulation, testbeds, TCP, congestion control, de-
nial of service attacks, low-rate TCP-targeted attacks

I. INTRODUCTION

Denial of Service (DoS) attacks have become increasingly
prevalent [27], [29]. Significant damage, such as network par-
titioning, can potentially be caused by attacks that target the In-
ternet infrastructure, such as inter-domain routing protocols, key
backbones, and Domain Name System (DNS) servers (which
were attacked in 2002). In this work, we address the question
of when simulation and emulation are inadequate for studying
DoS attacks. A key component of the answer to this question
is the sensitivity of simulation and emulation results to param-
eter settings and testbed capabilities. As a case study, we take
an in-depth look at low-rate TCP-targeted attacks [16], [22]. In
particular, we consider a scenario where an attacker transmits
short pulses at an arbitrary frequency. This attack exploits the
TCP Additive Increase Multiplicative Decrease (AIMD) mech-
anism to cause TCP performance degradation. We use a simple
analytical model for predicting the average size of the conges-
tion window of a TCP flow under attack, as a function of the
attack frequency. The model serves as a lower bound (for the
case with no timeouts) when each pulse causes loss. The results
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from the analytical model are compared to the results from the
ns-2 simulator, and the DETER and Emulab emulation testbeds.

TCP-targeted attacks are an interesting case study because
they are a major cause for concern (they are easy to launch,
stealthy, and may be extremely damaging), and produce traf-
fic oscillations. In a deterministic simulation environment, such
oscillations can lead to phase synchronization effects [15] with
slight parameter changes. Such effects might appear interesting,
but they are not representative of real systems. Additionally, ex-
periments with this attack on testbeds may yield large variations
in the results depending on parameter settings and testbed capa-
bilities.

A number of recent studies [16], [24], [36], [10] have stud-
ied defenses against TCP-targeted attacks. Among these studies,
only [16], [24] conducted testbed experiments, but these exper-
iments were conducted with (tc, iproute2), NIST-net, or Dum-
myNet [35] for link shaping and queue management, without in-
vestigating system parameters, or relating the results to simula-
tions. In contrast, our work investigates emulation environments
via a more careful sensitivity analysis, and highlights the danger
of default system parameter settings. To the best of our knowl-
edge, this is the first work to quantify and explain key differences
between simulation and emulation results for DoS experiments.

The contribution of this work is twofold: (1) We compare re-
sults from simulation and emulation experiments with different
attack and system parameters. We design constructs for the em-
ulation testbeds to achieve a level of control comparable to sim-
ulation tools, and configure PC routers via Click for high fidelity
emulation. We explore key problems that arise due to differences
in testbed capabilities and default parameter settings. (2) We use
a simple analytical model of TCP performance degradation, in
the presence of a special case of TCP-targeted DoS attacks, as
a lower bound in our comparisons. We find that the analytical
and simulation results closely match for a set of values of the
attack pulse length and the router buffer size. Testbed results
only match the analysis and simulations when routing nodes are
overloaded. This overload occurs when the received flow rates
exceed the node forwarding capacity. Our results also illustrate
that TCP-targeted attacks can still be effective even when the at-
tack frequency is not precisely tuned to the retransmission time-
out, as suggested in [16], [22]. The router type, router buffer
size, attack pulse length, and attacker location have a significant
impact on both the effectiveness and stealthiness of the attack.
Finally, we find that configurable software routers such as Click
provide a flexible experimental platform, but require careful ma-
nipulation of the underlying network device drivers.



The remainder of this paper is organized as follows. Section II
surveys related work on TCP-targeted attacks. Section III dis-
cusses a simple analytical model of the performance degradation
caused by the attacks. Section IV describes the emulation envi-
ronment we use, and tools we developed for the DETER emula-
tion testbed. Section V describes our experimental setup. Sec-
tions VI and VII discuss our results from DETER, Emulab, and
ns-2 simulations. Section VIII describes our experiences with
the Click router. Finally, Section IX summarizes our findings
and discusses defenses against such attacks.

II. TCP-TARGETED ATTACKS

Most well-publicized DoS attacks have utilized a large num-
ber of compromised nodes to create constant high-rate flows to-
wards the victims. Such “flooding attacks” are effective, but
have major shortcomings from the attacker’s perspective. First,
the attacks are easy to detect due to the high volume of uniform
traffic, e.g., UDP or ICMP. Several defense mechanisms against
these (and more sophisticated) DoS attacks have been proposed
in the literature [33], [39], [18], [8], [20]. Second, the attacks can
self-congest at some bottleneck and not reach the intended des-
tination. Finally, users of the compromised machines typically
notice a performance degradation, prompting these machines to
be examined by system administrators, who can then eliminate
the vulnerabilities that caused the machines to be compromised
in the first place.

An attack that is less susceptible to these limitations is the
low-rate TCP-targeted attack, introduced in [22]1. This attack
has generated significant interest due to its potential to do great
harm, go undetected, and the ease by which it can be generated.
The basic idea of low-rate TCP-targeted attacks [22] is that an
attacker transmits short pulses, i.e., square waves, with periodic-
ity close to the Retransmission-Timeout (RTO) interval [19] of
ongoing TCP connections. These short pulses induce sufficient
packet loss to force the TCP flows under attack to time out, and
to continually incur loss as they attempt to begin TCP slow start.
Therefore, the goodput of these TCP flows virtually goes to zero.
Such an attack can be used to strategically target key routers or
servers in the network, thus causing wide-spread degradation of
TCP performance.

A key feature of this attack is that it is stealthy, i.e., it does
not continuously generate significant traffic, and thus cannot be
easily distinguished from other legitimate flows (e.g., video or
other bursty traffic). Moreover, an attacker does not have to be
highly sophisticated to generate these attacks. It is straightfor-
ward to generate UDP pulses, or use raw sockets to bypass the
TCP congestion avoidance mechanism altogether.

A recent study [16] has considered a more general class of
low-rate TCP attacks, referred to as the Reduction of Quality
(RoQ) class of attacks. In a RoQ (pronounced “rock”) attack, the
attacker sends pulses at arbitrary frequencies, rather than trying
to precisely match the RTO periodicity. The attack exploits the

1We do not consider other types of application-specific, protocol-specific, or
implementation-specific DoS attacks, such as SYN attacks, BGP attacks, LAND,
or TEARDROP, in this work. We only focus on attacks against TCP congestion
control.

TCP Additive Increase Multiplicative Decrease (AIMD) mech-
anism to cause TCP goodput degradation, rather than focusing
on timeouts. The premise is that during the congestion avoid-
ance phase, when packet losses occur due to attack pulses, TCP
halves its congestion window, but when a successful transmis-
sion occurs, it only linearly increases its window size. The mo-
tivation behind RoQ attacks is that they need not be precisely
tuned to the RTO frequency, since RTO may be difficult to as-
certain, and can be changed for different TCP sessions. While
RoQ attacks may not cause TCP goodput to virtually go to zero,
as in the case of [22], they can still significantly degrade the
service quality. Moreover, these attacks may be even more dif-
ficult to detect, since they do not operate at a known frequency.
Therefore, we use these attacks as a case study in our work. As
previously discussed, these attacks have not been experimentally
studied in prior work, except in extremely limited settings, with
no sensitivity analysis, or comparisons to analytical or simula-
tion results.

III. SIMPLE ANALYTICAL MODEL

In this section, we describe a simple analytical model, which
is a special case of a model in [24]. The model characterizes TCP
performance degradation as a function of the TCP-targeted at-
tack frequency. In prior work, e.g., [32], models of TCP through-
put as a function of the round-trip time and loss event rate were
developed. These models, however, do not consider the presence
of periodic attacks. In contrast, we compute the average TCP
window size as a function of the TCP-targeted attack parameters.
The analysis assumes that TCP Reno [7] in the congestion avoid-
ance phase is being employed for a single flow under attack.2 As
discussed in Section II, the objective of this attack is to exploit
the TCP AIMD mechanism and not to cause RTOs. Since Reno
can typically recover from a single packet loss without an RTO,
it is assumed that every attack pulse will induce a packet loss. A
loss of a single data packet will cause a reduction of the conges-
tion window by half in TCP Reno, after which additive increase
will be employed. For simplicity of the analysis, the short fast
recovery phase is ignored. The resulting TCP congestion win-
dow saw-tooth pattern is depicted in Figure 1 for a fixed attack
frequency. Observe that the model also gives a close approxima-
tion of the behavior of TCP New Reno [14] or TCP SACK [26]
even with a few packet losses with every pulse, since these TCP
flavors can typically recover from multiple packet losses without
RTOs.

Let Wi be the size of the congestion window (Cwnd) right
before the reduction caused by pulse i, i ≥ 0. Let rtt be the
flow round trip time (RTT). Let α be the growth in Cwnd size
during the attack sleep time t between pulses i and i + 1. Then,
Wi+1 = Wi

2
+ α, where α (the growth of the window during t)

is equal to t
2rtt

(assuming that every other packet is acked; t
rtt

if
every packet is acked).

Let WI be the initial Cwnd size before the attack starts. We
need to compute Wmax, the maximum congestion window size

2We have generalized our model to multiple flows under attack, but, for sim-
plicity of illustration, present only the single-flow case here.
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Fig. 1. Saw-tooth pattern of congestion window evolution due to periodic loss
every 4 seconds.

after the attack reaches steady state, as well as the average win-
dow size Wavg . From the above equation, one can easily com-
pute W1, W2, · · ·. For example, W3 can be expressed as:

W3 =

WI

2
+α

2
+ α

2
+ α.

Therefore, Wmax (assuming the limit on the receiver window
size is not reached) can be expressed as:

Wmax = lim
i→∞

(2−iWI + α(

i−1∑

j=0

2−j)) = 2α.

The steady state minimum window size is simply Wmax/2 = α.
Since α = t

2rtt
, therefore, Wavg = α+2α

2
= 3t

4rtt
.

IV. EMULATION ENVIRONMENT AND TOOLS

In order to experiment with this DoS attack in a high fi-
delity – but quarantined – setting, we leverage the DETER
(www.isi.deterlab.net) and Emulab (www.emulab.net) testbeds.
Emulab is a time- and space-shared network emulator located at
the University of Utah [38]. The system is comprised of hun-
dreds of linked PCs that can be connected in any specified topol-
ogy, and a suite of software tools that manage them. The Cy-
ber Defense Technology Experimental Research Network (DE-
TER) is an emulation testbed – based on Emulab – that allows
researchers to evaluate Internet security technologies [13]. DE-
TER can be accessed remotely, but is quarantined from the Inter-
net. The Evaluation Methods for Internet Security Technology
(EMIST) project, in which we are participating, is a companion
project that designs testing methodologies and benchmarks for
the DETER testbed.

The primary advantage of using a network emulator – as op-
posed to a simulator – for security experiments is that an emu-
lation environment affords higher fidelity, and real security ap-
pliances can be tested on it. This can expose unforeseen im-
plementation vulnerabilities, protocol interactions, and resource
constraints. This is because an emulation testbed uses real com-
puters with limited resources, and real applications and operat-
ing systems running on them, to faithfully represent every host
in an experiment. Flaws and vulnerabilities are not abstracted
by a simplified simulation model. One exception to this rule are
router nodes. In the current versions of Emulab and DETER,

routers are represented by regular PCs that act as forwarding
gateways. We refer to these as PC routers. Our experiences
with the Wisconsin Advanced Internet Laboratory (WAIL) at
www.schooner.wail.wisc.edu/ have demonstrated that a regular
commodity PC running Linux with Fast Ethernet or Gigabit Eth-
ernet cards can outperform a Cisco 3600 series router. Specialty
PC routers like the ones created by ImageStream [2] are usually
created from high end PCs that have multiple PCI buses, SMP,
fast memory, and industrial network cards [4], [5]. The perfor-
mance of specially configured PC routers can easily challenge
that of Cisco 7000s/7500s as well as Juniper M-5/M-10 routers
according to [2], [3]. Therefore, using PC routers is not unreal-
istic.

Developing efficient PC routers has been the subject of sig-
nificant research, e.g., [12], [28], [21]. In these studies, polling
and/or DMA are used as an alternative to packet receive inter-
rupts to eliminate receive livelock at high packet rates. This is
because interrupts can consume much of the CPU and bus ca-
pacity of mid-range machines (i.e., Pentium III and below) at
100 Mbps+ speeds. In [21], programmed I/O (PIO) interaction
with the Ethernet controllers is eliminated using Direct Mem-
ory Access (DMA). We have found that livelock can occur on
Cisco 3600 series routers, limiting the forwarding performance
to 10-15 Kpackets/sec per interface.

We first experiment with PC routers without using such sys-
tems, since not all device drivers support polling, and hence un-
derstanding their behavior is important. Section VIII describes
our experiences with a polling-based PC router [21].

Event Control System. In network simulators such as ns-
2 [37] and iSSF/iSSFNet [34], it is easy to create a topology,
assign tasks to the nodes, and monitor every single packet. A
basic testbed – without any software support that mirrors some
of these capabilities – is limited in its usefulness, since it re-
quires the experimenters to be experts in system-level program-
ming. Achieving the same level of control provided by a simu-
lator on physical testbed machines is a significant undertaking.
Basic topology creation capabilities are provided by emulation
testbeds, such as Emulab and DETER, but an experimenter only
acquires bare machines that form the desired topology, without
any tools running on them.

A natural approach to describe the tasks that must be per-
formed on the testbed nodes is to use event scripts, much like
events in an event-driven simulator. The Emulab software im-
plements a few event types such as link failures; however, most
of the interaction with the nodes must be performed via a secure
shell (SSH) session. We have designed a flexible mechanism to
control all test machines from a central location, since manually
using each computer is impossible, especially when timed events
are involved. We have developed a multi-threaded utility, which
we refer to as a Scriptable Event System, to parse the script of
timed events and execute it on the test machines (communicat-
ing with them on the control network). Our utility is capable of
receiving callbacks for event synchronization.3

Measurement Tools. Instrumentation and measurement on a

3This software can be freely downloaded from
http://www.cs.purdue.edu/∼fahmy/software/emist/



testbed pose a significant challenge. The capability to log and
correlate different types of activities and events in the test net-
work is essential. Not only are packet traces important, but also
system statistics must be measured for DoS attacks. We have
developed a set of tools to log events on the test nodes on a per
second basis. Statistics such as CPU utilization, packets per sec-
ond, and memory utilization are logged to the local disk for later
manipulation. Scripts for measuring, merging, and plotting sys-
tem data are also available for download.

V. EXPERIMENTAL SETUP

The topology used for both simulation and emulation experi-
ments is depicted in Figure 2. This is a simple dumb-bell topol-
ogy with four end systems and two routers that connect via a
link with 60 ms delay. The attacker and the attack sink are var-
ied from one side of the topology to another.4 The same basic
ns-2 script is used for both simulations and testbed experiments.
All testbed nodes run the zombie process that forms the basis of
our Scriptable Event System.

Attacker/SinkAttacker/Sink

Node 3

Node 2

Node 1

60 msec

10 msec

10 msec

Node 0

SenderR1 R2

100 Mbps

100 Mbps

100 Mbps

100 Mbps
10 msec

100 Mbps
10 msec

Receiver

Fig. 2. Simple dumb-bell topology with 160 ms round-trip-time and 100 Mbps
links.

On the DETER testbed, all nodes use a Pentium III 733 MHz
processor and have 1024 MB of RAM and Intel Pro/1000 cards.
On Emulab, end systems are 600 MHz, while nodes represent-
ing R1 and R2 are 850 MHz. The nodes have Intel EtherExpress
Pro 100 cards in different configurations. In our first set of ex-
periments (Section VII), all nodes run Linux 2.4.20 with IRQ-
driven packet processing, thus being susceptible to receive live-
lock [28]. We use TCP SACK [26] with delayed acknowledg-
ments in ns-2, and on the testbed machines, for the flow under
attack. The ns-2 TCP receiver window size is set to 70 packets,
and (drop tail) buffer sizes for routers are set to 50 packets (ex-
cept in experiments when we vary the queue size). The buffer
size of 50 was chosen because it is the default value on DE-
TER/Emulab and, according to DummyNet documentation, it is
a typical queue size for Ethernet devices. We found that by de-
fault the receive and transmit device driver buffers on DETER
can hold 256 descriptors (64 on Emulab), according to ethtool.

Link delays on the DETER/Emulab testbeds are emulated by
DummyNet, meaning that there is a hidden “delay” node on ev-
ery link. Special care was taken to manually select and con-
figure the delay nodes to be at least as fast as the rest of the

4This simple topology is not representative of the Internet, but we have se-
lected it in order to be able to analyze the results in depth. Our future work plans
include experiments with multiple bottleneck configurations and other traffic pat-
terns.

test nodes, so that no significant packet loss occurs at the de-
lay nodes. To accomplish this task, we have selected Dual Pen-
tium 4 Xenon 2.8 GHz machines with PCI-X, running SMP and
polling-enabled FreeBSD-4.10 to act as delay nodes on DETER,
and 850 MHz uniprocessor nodes on Emulab. Although shaping
methods such as DummyNet or tc have been found to induce ar-
tifacts (due to their bursty behavior and their not being always
true to the desired properties) [1], [6], our current experiments
use a single TCP flow, and hence the bursty behavior of Dum-
myNet is not significant.

A. Attack Parameters

On DETER and Emulab, the attack packet sizes we use (as
well as all header fields and transmission rates) can be easily
configured in our event script. Since most queues are composed
of Maximum Transmission Unit (MTU)-sized slots, we use small
UDP packets for our DoS attacks. Attacks with smaller pack-
ets (and hence higher packet rates) may be more damaging since
each packet requires a certain amount of header processing at
routers and packet processing at end systems. (Analysis of the
publicly available DoS agents by David Dittrich [11] shows that
Stacheldraht and TFN by default use 1024 and 789 byte pack-
ets respectively.) Although the attack tool is easily able to use
IP source and destination address spoofing, we do not employ
spoofing in our experiments, in order to avoid the additional Ad-
dress Resolution Protocol (ARP) overhead, and avoid backscat-
ter [29] overhead on PC routers.

In our ns-2 experiments, the attack is created by a CBR agent
that pulses at regular intervals, transmitting 38-byte packets at
full link capacity. To achieve the same behavior on DETER
nodes running Linux, we use raw sockets for packet transmission
at link rate. System timers were used to measure the duration of
the attack pulse, and the sleep time when no packets are sent by
the attacker. Using real clock timers is crucial when sub-second
granularity is required. However, the attack pulse on Linux is
less precise than its ns-2 counterpart, since CPU scheduling, etc,
affect the pulse precision. This produces small variations in the
experimental data during identical runs on DETER and Emulab.
Therefore, we repeat each experiment ten times and average the
results. We also compute the variance which we find to be low.

B. Traffic Generation and Measurement Tools

To gauge the impact of the attack on DETER and Emulab, we
use ttcp [30] to create a single long-lived TCP flow by transfer-
ring a large file. We chose to have a single “good” flow as this
creates the worst case for the attacker, since the attacker has to
send enough traffic to cause loss. A long-lived TCP flow is not
unrealistic, as there are several sites that offer large downloads,
e.g., DVD-quality movies. In addition, this scenario simplifies
the comparison between emulation and simulation results. The
ttcp tool we use reports statistics such as total time, transfer rate,
and other system-specific information. In our case, the transfer
rate is a good indicator of the attack potency. Traces collected
by tcpdump are processed by tcptrace to produce an estimated
weighted average of the congestion window. To validate the esti-
mated weighted average of the congestion window derived from



tcptrace, we have developed a simple tool that records the win-
dow for a specific connection from /proc/net/tcp several times
per second. We found that the average of these polled values is
close to the value derived from the tcptrace output. Therefore,
we are confident in the window size results we report.

On DETER and Emulab, we first start the measurement tools
as well as tcpdump. Then, we trigger the attack agent and, later,
the file transfer. The sending node, Node0, is instructed to trans-
fer a 30 MB file to Node2 via ttcp. Upon successful completion
of the task, the attacker ceases the attack, and the measurement
and tcpdump files are transferred to the project account. The
ns-2 simulations and the DETER/Emulab experiments use the
same basic tcl script, and we log the attributes of the ns-2 TCP
agent directly. The simulation time is 500 seconds to ensure that
steady state has been reached. To conduct accurate transfer rate
comparisons between ns-2 and DETER/Emulab, we set the ns-2
TCP packet size to 1447 bytes, as 1447 is the average size re-
ported by tcptrace when it analyzes DETER/Emulab tcpdump
files.
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C. Experimental Design

In our experiments, we investigate the impact of varying the
following parameters:

(i) The attack sleep time from 500 ms to 4000 ms in increments
of 500 ms;
(ii) The attack pulse length to be 20, 40, 60, 80, 120, 160, or
200 ms;
(iii) The attack packet payload size to be 2, 10, 80, 100, or 700
bytes;
(iv) The round-trip time of the attack flow and the long-lived
TCP flow to be 60, 80, 120, 160, or 200 ms;
(v) Router buffer sizes on ns-2 routers to be 25, 50, 100, or 150
packets;
(vi) Router buffers sizes on Click to be 25, 50, or 256 packets;
(vii) The transmission ring buffer size of the e1000 driver to be
80 or 256 packets; and
(viii) The placement of the attacker to be either Node1 or
Node3.

We compute the following metrics:

(i) Average goodput in KBps (KBytes/sec), computed by divid-
ing the transfer size by the transfer completion time;
(ii) Average congestion window size in packets, computed by
dividing the weighted congestion window average by the aver-
age MSS reported by tcptrace;
(iii) CPU percentage utilization from /proc/uptime; and
(iv) Packets per second received and sent on the test network
interfaces from /proc/net/dev.
System-level measurements, e.g., CPU utilization, cannot be
collected in simulations, since ns-2 does not model host CPUs,
etc.

VI. SIMULATION RESULTS

In this section, we compare results from the analytical model
in Section III and the ns-2 simulator. We first investigate the
impact of varying the length of the attack pulse on the average
congestion window size. The length of the attack pulse controls
the tradeoff between attack damage and attack stealthiness. Fur-
ther, it determines the probability of packet loss(es). Recall that
the analytical model had assumed that every attack pulse results
in cutting the window by half. By varying the length of the attack
pulse, we study the conditions under which the analytical results
match the simulations. The RTT is set to 80 ms in this experi-
ment (R1 to R2 link delay in Figure 2 is changed to 20 ms), while
the length of the attack pulse is set to 20, 40, 80, or 120 ms.

From Figure 3, it is clear that longer attack pulses reduce TCP
performance (at the cost of reduced attack stealthiness). Ex-
tremely short pulses, such as 20 ms pulses, are ineffective be-
cause the TCP sender sends packets in bursts. If the attack pulse
does not overlap with the burst of legitimate data, no packets are
lost. In this case, the legitimate flow Cwnd size can continue to
increase with no cuts, and the frequency of Cwnd cuts is lower
than the attack frequency. Increasing the length of the attack
pulse increases the probability of overlap of the two bursts. We
find that attack pulses that are of length greater than or equal to
the RTT of the legitimate flow result in packet drop(s) and win-
dow cut(s) with virtually every attack pulse.

Another interesting observation from Figure 3 is the non-
monotonic increase of the average congestion window for ns-2
with the increase of the sleep time. This can be explained as fol-
lows. In ns-2, the lack of overlap between sender and attacker
traffic can lead to fewer Cwnd cuts than expected for certain val-
ues of sleep time, thus causing the average window to be higher
(as discussed above). However, for other values of sleep time,
synchronization of the sender and attacker or RTOs can result in
a smaller average Cwnd value. Since the ns-2 simulator compo-
nents in this experiment are deterministic, such synchronization
effects are amplified, which is consistent with the observations
in [15]. Adding randomization to the attack traffic is likely to
reduce or eliminate such effects.

The figure also shows that there is a close match between the
analytical model and simulation results in the experiments where
the length of the attack pulse is close to or longer than the RTT.
This is because pulses longer than or equal to the RTT guaran-
tee that each pulse causes a window cut(s). This observation is
confirmed by Figure 4, where we fix the attack pulse length to
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be equal to the RTT, for different values of RTT. The matches
between the analytical model and simulations hold for different
RTT values.
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Figure 5 illustrates the impact of varying the sizes of router
buffers (queues) on the average congestion window size. For a
queue size of 100 or 150 packets, an attack pulse of length equal
to the RTT is inadequate to cause goodput degradation for a sin-
gle TCP flow under attack. The attack is effective with smaller
queue sizes, such as 25 and 50 packets. With a longer attack
pulse length or more flows under attack, the attack is likely to be
effective, even when the router buffer sizes are larger.

VII. DETER/EMULAB TESTBED RESULTS

In this section, we undertake the more challenging task of
comparing results from the analytical model (Section III) and
ns-2 simulator to the DETER and Emulab testbeds. We first
use the default system settings for the DETER/Emulab nodes,
since the ns-2 configuration was derived from these values. In
this set of experiments, the attack packet payload size is 10
bytes on DETER and ns-2, but it is set to 100 bytes on Emu-
lab, as smaller packet sizes on Emulab cause the experiments to
take several days, which is problematic in a shared and heavily
used testbed like Emulab. The RTT is set to 160 ms, as de-

picted in Figure 2. Figure 6 gives the average congestion win-
dow (Figures 6(a) and 6(b)) and average goodput (Figures 6(c)
and 6(d)), for an attacker at node Node1 (forward direction) or
node Node3 (reverse direction). From Figures 6(a) and 6(c), we
observe key discrepancies between the DETER results and the
analytical, simulation, and Emulab results. The analytical, sim-
ulation, and Emulab results are similar, except for small sleep
time periods, when ns-2 windows and goodput exceed the ana-
lytical results for the same reasons discussed in Section VI (the
attack pulse does not overlap with the short burst of data traffic,
and thus not every pulse causes a window cut).

From Figures 6(a) and 6(c), we find that for all values of sleep
time, DETER results are not affected by the attack as much as
ns-2 results. This is because the DETER PC router nodes are
able to handle the attack pulse and the single TCP flow under
attack. The DETER results are comparable to ns-2 results with
a router buffer size of 100 packets (Figure 5). For larger values
of sleep time, the DETER curve levels off instead of increasing
as with ns-2. This is because the goodput in these cases starts
approaching the goodput value when no attack is present (203
KBps) for an RTT of 160 ms. This goodput value corresponds
to a receiver window size of 34715 bytes (24 segments), which
is the value reported by the receiver in our experiments. This
receiver window size, set by the ttcp application, limits the max-
imum goodput when no attack is present. Results on the Em-
ulab testbed (even though attack packets are larger) appear to
be similar to the analysis and ns-2 results, since the attack cre-
ates overload on the Emulab PC routers, causing packet loss and
window cuts. We found that the attack causes a significant num-
ber of RTOs on Emulab for sleep times 500–1500 ms, while the
number of RTOs is negligible for other sleep times on Emulab,
and for all cases on DETER and ns-2.5 More details on why the
attack is much more effective on the Emulab testbed are given
below.

Observe that in the DETER and Emulab experiments, real data
is pushed between the nodes, so there is a certain overhead for
reading data from disk, sending it over the network through PC
routers, and redirecting it to /dev/null. In contrast, packet loss in
ns-2 only occurs in case of buffer overflow. The ns-2 nodes them-
selves have “infinite CPU and bus capacity,” and are capable of
processing any flow without contention. Since the queue service
times are thus faster in ns-2 than on the testbeds, packet drops
are less frequent. Another difference is that, due to the bounded
capacities of the physical devices on the testbed, we find that
maximum testbed packet rates cannot exceed 148 Kpackets/s,
while ns-2 reports up to 250 Kpackets/s.

Packet sizes. Our DETER experiments with different attack
packet sizes (results not shown here for brevity) have shown that,
in case of packets with 700 byte-payload, there is an even less
significant goodput degradation, confirming that small packets
can cause more damage on PCs and PC routers due to higher

5We have observed that the Emulab and DETER goodputs are similar over this
range of sleep times when we induce higher loss on DETER by using randomly-
generated source and destination addresses in attack packets. This results in
significant ARP traffic, as well as load from backscatter packets, which reduces
goodput on DETER to the values we see on Emulab.
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Fig. 6. Comparison of the average congestion window size and the average goodput from analysis, simulations, DETER and Emulab for different sleep time periods,
and an attack pulse of length 160 ms. RTT is 160 ms. ns-2 results are not plotted in the reverse case because the attack has little impact.

packet rates, packet processing overhead, and slot based queues.
Results with a payload size of 2 bytes show a slightly higher
goodput degradation than with a payload of 10 bytes. In contrast,
with SMP-enabled dual-CPU PC routers, goodput degradation
for the same experiment was minimal, even with an attack packet
payload size of 2 bytes, as processing can still be completed on
such PC routers while executing an interrupt handler.

Attacker location. Another important point is that the ns-2
attack flow does not interfere with the file transfer if it is flow-
ing in the opposite direction (i.e., attacker at Node3), since links
are full-duplex, port buffers are not shared, and there is no CPU
or IRQ (interrupt) overhead per packet in ns-2. Since there is
no interference and one cumulative ACK loss does not typi-
cally cause a multiplicative reduction of Cwnd (just a potentially
slower Cwnd increase), ns-2 is unaffected when the attack traffic
flows in the opposite direction of the data traffic. We do not plot
ns-2 results on Figures 6(b) and 6(d), since the system is only
receiver window-limited, and the average goodput goes up.

Observations from DETER and Emulab experiments tell a dif-
ferent story: the average window and goodput are clearly af-
fected by an attack in the opposite direction (e.g., Emulab good-
put with an 80-byte attack packet payload size is reduced to 1.41

KBps for a 500 ms sleep time period, as shown in Figure 6(d)).
The interference on DETER and Emulab is due to the fact that
the Network Interface Card (NIC) on a PC router which receives
a high bandwidth packet flow will consume all available system
resources, and other NICs will starve. This results in interfer-
ence among flows in opposing directions. Since PC routers [2]
are used on Internet edges today due to their flexibility, e.g., act-
ing as firewalls and address translators, as well as their low cost,
our observation is important in understanding their operation un-
der high loads or DoS attacks.

PC router measurements. To understand the dependence of
emulation testbed results on hardware and software, we conduct
the same experiment on both DETER and Emulab (but with dif-
ferent attack packet sizes) but we now measure CPU utilization
at the two PC router nodes R1 and R2. Figure 7 depicts the
results. The only difference between the setup of the DETER
experiment and the Emulab experiment is that on Emulab, the
attack packet includes an 83-byte payload, compared to a 2-byte
payload on DETER. The nodes acting as the two routers are Pen-
tium III 850 MHz with 256 MB RAM on Emulab; and Pentium
III 733 MHz with 1024 MB RAM on DETER. The delay nodes
on both testbeds are at least as fast as the router nodes. On Em-
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Fig. 7. Comparison of Emulab and DETER results with attack packet payload sizes of 83 versus 2 bytes respectively (attack pulse length and RTT are 160 ms; sleep
time is 500 ms). In (a) the CPU utilization for R2 is always below 5% as R1 fails to forward a significant portion of the traffic.

ulab, the attacker (Node3 in this experiment) is a Pentium III
600 MHz with 256 MB RAM, while on DETER the attacker is
of the same type as a router nodes. With faster routers, a slower
attacker, and a larger attack packet payload size on Emulab, plus
identical OS images, one would expect the router CPU utiliza-
tion to be lower on Emulab PC router nodes than on DETER PC
router nodes. The plots show that, surprisingly, the CPU load on
one of the Emulab PC router nodes is much higher. This causes
the attack to be much more effective on Emulab than on DE-
TER. This behavior is likely to be due to differences in testbed
hardware and system software, e.g., network devices and buses.
Therefore, we conclude that testbed measurements can signifi-
cantly vary based on hardware and system software attributes.

Analysis of our DETER and Emulab measurements has
alerted us to a number of interesting issues. We quickly learned
that it is crucial to measure several network and system param-
eters to get a clear picture of each experiment, as ttcp good-
put/window results are insufficient to judge the fidelity of mea-
surements. For example, we have uncovered an interesting prob-
lem with using delay nodes: since our experiments overload
nodes, it is impossible to use the default Emulab optimization
of delaying (shaping) two links using a single delay node. The
Emulab and DETER teams were quick to provide us with a new
command that allows mapping each link to a single delay node.

VIII. USING CLICK ROUTERS

To increase the fidelity of the experiments and reduce depen-
dence on default system settings, the PC routers were configured
to run an SMP-enabled Linux-2.4.26 kernel with a multi-thread-
enabled Click-1.4.3 [21] Linux module. Because the machines
on DETER have the Intel Pro/1000 Ethernet cards, it was pos-
sible to use Click’s e1000-5.7.6 NAPI polling driver to make
sure that receive livelock does not occur, and Click has the most
direct access to the driver. Since Emulab machines we used did
not have the Intel Pro/1000 cards, we were unable to conduct ex-
periments with Click on Emulab, since the performance would
be worse than the default Linux IP stack. Nodes R1 and R2 in

Figure 2 were configured to run as IP routers using Click’s pro-
gramming language.

In Click, the entire packet path is easily described, and one
can easily configure a simple IP router that bypasses the OS IP
stack. Simplification of the packet path yields a performance
boost, making the PC router less vulnerable to overload under
high packet flows. When the router is configured, each affected
network device has to be included into the configuration. It is
easy to change the queuing discipline and the queue depth for
the queue at each output port. This feature allows more realis-
tic queuing since the queuing is done at the actual node and not
on the next DummyNet node as in previous scenarios. We will,
however, show that it is insufficient to change the Click Queue
element depth. This is because Click (or any software system
for that matter) has to go through a device driver when it accepts
or outputs a packet. Like any Linux network device driver, the
driver for the Intel Pro/1000 card has internal transmit (TX) and
receive (RX) buffers. The Click Queue elements serve as inter-
mediaries between these.

In a baseline experiment, the Click routers were configured
with a queue size of 50 per output port. The transmit (TX) buffer
on the device drivers was left at the default value of 256 MTU
sized packets.6 With Click routers, the TCP sender was able
to achieve an average rate of 74 KBps during a non-stop flood,
showing that the PC router can cope with the load. An attack
with a pulse length of 160 ms and a sleep period of 500 ms
yielded no perceivable difference from the average goodput of
206 KBps when no attack was present (206 KBps is not far from
DETER results for large sleep periods in Figure 6(c), but much
better than DETER for short sleep periods).7 Since Click was
able to cope with high rates and the TCP flow was receiver win-
dow limited, ttcp was configured to use large buffers (and hence

6The flooding agent used in the experiments was compared with Click’s udp-
gen to ensure that our generator is on par with that of Click and can produce over
148 Kpackets/sec, when using UDP packets with a 10-byte payload.

7Interference in the reverse direction was found to be much less than without
using Click (Figure 6(d)).



larger receiver windows) in order to investigate the effectiveness
of the attack. The large buffers increased the maximum TCP
transfer to rate to 560 KBps. In this case, the attack with a
160 ms pulse length and a sleep period of 500 ms was reported
to generate 37960 packets per second or 1.97 MBps by Click’s
udpcount. This attack reduced the TCP goodput to almost one
fifth of the value without an attack. This confirms that the attack
has a potential for great damage while still being perceived as
low rate on the average.
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Our final set of experiments aim at understanding the effect of
varying Click and device driver buffer sizes. The Click Queue
element size was set to 25, 50, or 256 slots, while the driver
transmit (TX) buffer was set to 80 (minimum setting) or 256
(default). We did not experiment with varying the receive (RX)
buffer sizes since [9] demonstrated that receiving is much faster
than transmitting on PCs, and hence drops do not occur due to
RX buffer overflow. The default drop-tail queuing discipline was
used. Figure 8 demonstrates that varying the TX buffer size pro-
duces significant variation in the results. It is also important to
note that the TX buffer size has a much more profound impact
than the Click queue size. Figure 8 clearly shows that a TX of
256 and a Click Queue of 50 performs much better than a TX of
80 and a Click Queue of 256. This implies that it is crucial to be
aware of the driver settings.

IX. SUMMARY AND LESSONS LEARNED

In this paper, we have investigated the applicability of simula-
tion and emulation for DoS attack experimentation. Our results
give insights into the effectiveness of low-rate TCP-targeted at-
tacks, as well as more generally into how to conduct high fidelity
experiments. We summarize our findings below.

Effectiveness and stealthiness of TCP-targeted attacks.
Our results validate that variants of low-rate TCP-targeted at-
tacks can still be effective even when the attack frequency is not
precisely tuned to the retransmission timeout [16], [22], [24].
The router type and buffer size, attack pulse length and packet
size, and location of the attacker have a significant impact on
the effectiveness and stealthiness of the attack. Simulation re-
sults have indicated that the attack is most successful when it is
multiplexed with TCP data and not ACKs; however, this was not

true when PC routers were bottlenecks in DETER and Emulab
experiments. As in previous studies [28], we have demonstrated
the superiority of the NAPI (polling) approach under high packet
rates, underscoring the need to have more NAPI capable drivers.
Results with Click PC routers have shown that we need a bet-
ter understanding of how to compare performance with certain
Click Queue sizes and device driver buffer sizes to performance
with other types of routers and to simulation models. Results
have also revealed that attack pulses much shorter than the RTT
are ineffective and cannot throttle the connection at a desired
rate, due to non-overlapping attack pulse and file transfer bursts.
Even attack pulses of length equal to the RTT are ineffective
when router buffers are large, and there is a single TCP flow
under attack.

Defending against TCP-targeted attacks. The stealthiness
of variants of TCP-targeted low-rate attacks makes defending
against them a challenging task. In the original TCP-targeted
low-rate attacks work [22], the authors studied active queue man-
agement mechanisms such as FRED [23], RED-PD [25], and
SRED [31], for defending against the attacks. They concluded
that these mechanisms only reduce – but not eliminate – the ef-
fectiveness of the attacks. There are several important consid-
erations for defense against TCP-targeted attacks: (i) Unknown
frequency of attack: The attack in [22] is generated with a fre-
quency matching the RTO. This attribute is exploited in [36] to
detect the attack by examining the autocorrelation function of
traffic measurements at the attacked link. The attacker(s), how-
ever, can send pulses at an unknown or random frequency. (ii)
More general attacks: An attacker need not use a precise square
wave to generate the attack (e.g., [22] discusses a possible stair-
case pulse). (iii) Detecting attacker(s): Once it is determined
that an attack has occurred, misbehaving flows can be prevented
access into the network. A promising direction in [17] uses spec-
tral analysis techniques to determine the number of attackers.

Simulation versus emulation. Our comparisons between
simulation and emulation experiments with seemingly identical
configurations have revealed key differences in the results. Some
of these differences occur because simulators abstract a number
of system attributes, and make several assumptions about packet
handling. For example, since PCs are used on the Emulab and
DETER testbeds, their CPUs, buses, devices, and device drivers
may be bottlenecks that simulators do not model. Another im-
portant observation from comparing data from the Emulab and
DETER emulation testbeds is that even though the hardware and
software on both testbeds may appear similar, the nodes on Em-
ulab experience a much higher CPU load than the DETER nodes
for the same packet rate. This means that the same experimen-
tal setup (configuration files, etc.) may produce widely different
outcomes (specifically, a much more effective attack on Emulab
than on DETER), as results are highly dependent on the details
of underlying hardware and software, and their default settings.
These different settings do not cause widely different outcomes
in typical networking and operating systems experiments, but
cause dramatic differences under DoS attacks that overload the
system. Although this appears to be undesirable, it has a positive
side: Since the Internet is constantly evolving, and is comprised



of heterogeneous hardware and software – and not simplified
models as in simulators – it is of great value to identify cases
where the same experiment yields very different results depend-
ing on the components of the test hardware/software, and un-
foreseen interactions among them. In addition, PC routers like
those used on the testbeds are used on the Internet today, and
hence understanding their behavior is important.

Future work. We plan to repeat our experiments with dif-
ferent commercial routers, and quantify the differences in the
results. WAIL contains 34 Cisco routers ranging from Cisco
GSR 12000 to Cisco 2600. DETER recently started support-
ing Juniper MI70 routers. We also plan to investigate how var-
ious devices can be modeled in simulators. Finally, we plan to
study more complex topologies and traffic patterns, with mul-
tiple flows (with different bottlenecks and RTTs) and multiple
attackers and attack traffic rates.
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