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Abstract. Many long-lived network protocols were not designed with
adversarial environments in mind; security is often an afterthought. De-
veloping security mechanisms for protecting such systems is often very
challenging as they are required to maintain compatibility with existing
implementations, minimize deployment cost and performance overhead.
The Domain Name System (DNS) is one such noteworthy example; the
lack of source authentication has made DNS susceptible to cache poi-
soning. Existing countermeasures often suffer from at least one of the
following limitations: insufficient protection; modest deployment; com-
plex configuration; dependent on domain owners’ participation. We pro-
pose CGuard which is an adaptive defense framework for caching DNS
resolvers: CGuard actively tries to detect cache poisoning attempts and
protect the cache entries under attack by only updating them through
available high confidence channels. CGuard’s effective defense is imme-
diately deployable by the caching resolvers without having to rely on
domain owners’ assistance and is compatible with existing and future
solutions. We have empirically demonstrated the efficacy of CGuard. We
envision that by taking away the attacker’s incentive to launch DNS
cache poisoning attacks, CGuard essentially turns the existence of high
confidence channels into a deterrence. Deterrence-based defense mecha-
nisms can be applicable to other systems beyond DNS.

1 Introduction

At the inception of network protocol design and system development, designers
were oftentimes more focused on attaining scalability, instead of robustness in
adversarial environments. Security mechanisms were thus only introduced retro-
spectively after suffering damaging attacks. This requires security mechanisms
to be compatible with existing installations, manage overhead and deployment
cost, and remain incentive compatible at the same time. Such design restrictions
induce security mechanisms that are often ineffective in many corner cases or
require major infrastructural overhaul that risks widespread adoption. One prag-
matic approach to remedy this often hopeless situation, is to aim for deterrence.
The key idea behind practical deterrence-based defense mechanisms is to ensure
that the attacker has to invest a substantial amount of resources to carry out a
successful attack, hence removing the incentives for attackers to launch attacks.



Such a principle is reminiscent of the classic deterrence theory [59]. In this paper,
we apply the principle of deterrence-based defense for the case of DNS.

DNS is a critical part of the core Internet infrastructure. From the out-
set, DNS lacked a robust mechanism to authenticate DNS responses which en-
abled attackers to poison a caching resolver’s cache of DNS entries by response
spoofing—violating the integrity guarantees expected from DNS caches. Despite
years of patching, DNS cache poisoning attacks still plague the DNS infrastruc-
ture [5, 6, 30, 33]. As shown by recent reports, successful cache poisoning can
further enable a variety of other attacks; e.g., mail handling hijacks [53, 58],
drive-by downloads [13], and phishing [20,48,50].

The revelation of the Kaminsky attack in 2008 [35] was a wake-up call for
the DNS community. Many software vendors started to implement source port
randomization [15]—the effectiveness of which has been shown to be limited,
particularly if the resolver is behind a Port Address Translator (PAT) that uses
a deterministic port allocation scheme [2, 28, 34]. Efforts have also been made
in further increasing the entropy of DNS packets [22, 44]. This line of defense,
however, faces a dichotomy of challenges: each proposal has its own corner cases
that limit robustness; and using such mechanisms while remaining compatible
with entities that do not support them requires significant management effort [7].

An alternative is to run the DNS protocol on top of TCP [RFC5966] instead
of the connectionless UDP. TCP provides better DNS response authentication
than UDP. However, as reported in previous studies [10,19,31,32,60,62] and also
observed in our own experiments, DNS over TCP, if not deployed with carefully
chosen optimizations (recommended but not mandated by [RFC7766]), incur a
noticeable overhead and negatively impact overall DNS performance.

Another line of cache poisoning defenses (e.g., DNSSEC, DNSCurve), em-
ploys cryptographic primitives to provide authenticity guarantees to DNS re-
sponse. DNSSEC in particular has been considered to be the future of DNS.
These solutions, however, have not seen prevalent adoption. The deployment of
DNSSEC is currently very limited [54,57], and ICANN will not deploy DNSCurve
in the root zone due to key distribution and management issues [17].

The central research question we seek to answer in this paper, is whether it is
possible to design a robust defense mechanism for resolvers—without cooperation
from the domain owners—that is applicable irrespective of the deployment rate of
new defenses (e.g., DNSSEC)? We focus our discussion on recursive resolvers, as
they are higher-valued attack targets than stub resolvers (i.e., resolvers running
on a client machine) due to impact on more victims, and we argue that operators
of recursive resolvers have an incentive in deploying reliable DNS services for
their customers. We particularly focus on racing cache poisoning attacks carried
out by off-path/blind attackers.

To this end, we propose an adaptive defense framework against DNS cache
poisoning that we refer to as CGuard. In short, CGuard actively tries to detect
attack attempts on cache entries and switches to a higher confidence channel for
cache updates. Though mechanisms that switch to TCP during spoofing attacks
have been described before [29, 41], developing a robust but flexible adaptive



defense involves subtle design decisions that, as we show through a case study,
if not chosen carefully, can make the resolver vulnerable to an adaptation of
Kaminsky attack.

CGuard provides strong guarantees and is readily deployable by operators
of recursive resolvers. As a flexible framework, CGuard can be instantiated by
configuring its detection sensitivity and providing a list of usable channels, or-
dered in preference. Since the various high-confidence channels are used only
when CGuard detects an attack, it greatly limits any attacker’s success proba-
bility while maintaining a good overall performance. This also allows the various
proposed high confidence channels to potentially cover for each other in terms
of both corner cases and availability.

We envision that by ensuring attacks have a low probability of success, the
incentives for rational attackers to launch poisoning attacks could be removed,
effectively turning CGuard into a deterrence, without having to always pay for
the high overhead associated with the various high confidence channels.
Contributions. In summary, this paper makes the following two contribu-
tions. First, we show how previously proposed cache poisoning defenses, though
well-designed, fall short in practice due to different reasons. Second, based on
the lesson learned from an adaptive defense case study, we design the CGuard
adaptive deterrence framework against racing cache poisoning attacks, and em-
pirically evaluate its effectiveness based on a particular instantiation of CGuard
that we implemented.

2 Background

We now give a brief primer on DNS, and establish some of the terminology
and notations that are used throughout the rest of the paper. For a detailed
taxonomy of DNS cache poisoning attacks, we refer the readers to [52].

DNS queries from users are typically sent to an upstream recursive resolver,
which will fully answer the query (or give an error) by traversing the DNS domain
tree and querying other name servers. When a valid response is received, it is used
to answer the query and cached for future queries. DNS queries and responses
typically go over UDP, though the standard also supports message exchange over
TCP. A response over UDP is considered valid if the query information, including
the transaction ID (TXID), query name, and query type, matches that of the
query. As such matching heuristic is not strongly authenticated, this presents an
opportunity for cache poisoning attacks [49].

Depending on their capabilities, cache poisoning attackers can be classified
as in-path, on-path, and off-path. On-path attackers have the ability to observe
DNS query packets, and therefore can easily create forged response packets that
will be accepted. In-path attackers have the additional capability to delay and
drop packets. These are usually powerful nation-state adversaries, often used
in implementing censorship [23, 40]. For DNS resolvers that operate outside the
jurisdiction of such censors, however, connection controlling in-path and on-path
attackers are much less likely. One is mostly concerned about off-path attackers



who cannot observe but can query resolvers with domain names of their choosing.
Protecting DNS resolvers against such off-path attackers is extremely important,
as the number of parties who can potentially carry out off-path attacks could be
very large. In addition, once a cache entry is poisoned, it can affect other clients
that are configured to use the same resolver.

3 Assessing Proposed Defenses

We now discuss previously proposed defenses against cache poisoning, with a
focus on their deployment challenges, availability, and corner cases.

3.1 Increasing Entropy

One school of thought on hardening DNS is to introduce more entropy on top
of the 16-bit entropy provided by TXID.
Source port randomization. One possibility is to use random source ports
for DNS UDP queries [2, 15]. This defense is adopted by several major DNS
implementations. Ideally, close to 16 bits of entropy would be added. However,
network middleboxes (e.g., the likes of firewalls, proxies and routers) that per-
form Port Address Translation (PAT), depending on their configurations, might
reduce the randomness of UDP source ports used by resolvers behind them [2,34],
and such resolver-behind-NAT scenario is reported to be quite common [26,28].
It has also been shown that if a DNS server and an attacker-controlled machine
are behind the same NAT, then the attacker can force the NAT to make highly
predictable choices of UDP ports, possibly removing any extra entropy [28].
0x20 Encoding. This mechanism rewrites the domain name in a DNS query
by randomly using upper/lowercase letters [22]. If a domain name contains k
alphabetic characters, the entropy gain is k bits. The method is less effective
for domain names with few letters. To poison the entries for name servers of
.com, attackers can send queries with domain names such as 853211.com in
Kaminsky attacks [28]. Another deployment hurdle is that some name servers
always respond with names in lowercase [7]. Some others, in violation of the
DNS standards [RFC4343], try to match the exact case of the name in the
query, hence fail to resolve. Google Public DNS’s solution is to create a whitelist
of name servers which is compatible with 0x20 encoding. Name servers in the
whitelist constitute about 70% of all traffic [7].
WSEC DNS. Another proposal is to prepend a random nonce label to query
QNAME [44]. This is possible because, in most cases, requests to the root or top-
level domain (TLD) name servers will result in a referral to a name server lower
in the hierarchy, instead of an actual answer with IP addresses. For example,
asdf.www.msn.com should yield the same resource record (RR) as www.msn.com
when querying the root or .com name servers. It has been argued that WSEC
DNS is ineffective against Kaminsky attacks [28]. This is because the total num-
ber of characters in a domain name cannot exceed 255, thus attackers can query



near 255-byte-long domain names to circumvent the mechanism. Furthermore,
this defense applies only to requests where referrals are expected. The Google
DNS team faced challenges in deciding when is such defense applicable [7].
Randomizing destination and source IP addresses. Destination IP ad-
dress can be randomized if there exists a pool of possible server addresses, and
source IP address can be randomized at an NAT that can inspect and rewrite
IP addresses. The actual entropy gain of these two proposals, however, are loga-
rithmic to the number of servers and size of a network, hence often quite limited.
Summary. Proposals on increasing entropy are generally opportunistic, and
there exist corner cases that would yield limited gains. Some mechanisms like
WSEC DNS and 0x20 encoding require significant manual effort on tracking
incompatible servers. Consequently, when we develop our adaptive approach, we
do not use these mechanisms.

3.2 DNSSEC

DNSSEC (Domain Name System Security Extensions) digitally signs DNS RRs
using public-key cryptography [RFC4033–4035]. Although DNSSEC was pro-
posed back in 1997 [RFC2065] its adoption has been slow. The number of
DNSSEC validating clients is growing, albeit slowly [4, 12, 38]. Meanwhile, the
adoption rate on the domain side remains low. It has been shown that only
around 1% of all the .com and .net domains are secured by DNSSEC [27,54,57].
The measurement of our experiment below shows similar findings. To enjoy the
assurances of DNSSEC, domain owners are often required to take the initiative in
configuring it. Misconfiguration can be used by DDoS reflection attacks [18,47],
and can lead to loss of users [38]. A recent study showed that many DNSSEC-
signed domains are also plagued by poor key generation practices [51]. There
are no real technical reasons why DNSSEC should not be used, though cost and
management issues exist that are deterring adoption.
DNSSEC support. To test whether DNSSEC is deployed, for each authori-
tative name server address4 we request the DNSKEY type record of the domains
for which it is authoritative. If a domain has DNSSEC correctly deployed, the
authoritative name servers should return a response with DNSKEY type and a
RRSIG type RR. We then consider the authoritative name server as supporting
DNSSEC if the signature validates. A domain is considered to support DNSSEC
if all its authoritative name servers support DNSSEC. We observe that among
the top 15, 000 domains, only 1.1% have DNSSEC support.
Summary: DNSSEC availability is currently very limited but we will use it in
our adaptive defense mechanism whenever applicable, as it has been standardized
and the Internet community has been promoting its adoption [8, 9, 39].

4 We obtained 18,075 unique IP addresses from 19,669 authoritative name servers of
the top 20, 000 domains as ranked by Alexa. Many of our subsequent experiments
are also based on this data.



3.3 DNS over TCP

Although TCP support is mandated by the standard, it is typically only used by
resolvers as a fall-back mechanism when packets are long, or if a TCP connection
has already been established and is open [RFC5966]. DNS over TCP enjoys
both reliable transport and extra entropy. Specifically, the combined entropy
from TXID and TCP sequence number is high enough to make off-path attack
unappealing. We would like to quantify the overhead if all the resolutions are
done over TCP.
TCP support. For each authoritative name server address, using TCP as the
transport protocol, we ask for the A records of the domains it is authoritative
for. If a valid response is returned, then this authoritative name server address
is considered to support TCP. If not, we send the same query again but through
UDP, to verify that the server is responsive. In the end, 636 addresses did not
respond to any TCP or UDP queries. Out of the 17,439 authoritative name
server addresses that responded, 15,774 (90.4%) support TCP. About 85% of the
top 15, 000 domains have TCP support on all of their authoritative name servers.
TCP overhead in recursive resolvers. We empirically determine the over-
head a recursive resolver incurs due to resolving queries iteratively through TCP.
We extract domains whose authoritative name servers support TCP, and query
for A records using the drill utility. For each domain, after measuring the
latency with UDP, we clear the cache, reset the resolver software, and then
measure the latency with TCP. This guarantees that the recursive resolver will
perform iterative queries from the root for each measurement instance. In the
end, the average time for UDP was 423 ms/domain and TCP was 834 ms/do-
main, over 17, 340 domains. On average, the total communication overhead for
TCP is roughly twice of UDP, as shown in Figure 1. This result is consistent
with the number reported in a recent work [62] (Fig. 7(b), with full TCP hand-
shake and no connection reuse), which is unsurprising as each such DNS over
TCP instance needs two round-trip times whereas UDP needs only one [62].

We note that various optimizations like connection reuse, pipelining and out-
of-order processing that can improve the performance of DNS over TCP are
also discussed in [62]. For the latter two, as noted in [62], major software have
no/partial support, so we do not consider them here. For connection reuse, its
effect depends on actual traffic pattern and server configurations. Also note
that in [RFC7766], connection reuse and pipelining are recommended but not
mandated for clients. Our experiments here can be thought of as stressing servers
at a worst-case scenario.
TCP overhead in authoritative name servers. We attempt to find empiri-
cally, from the point of view of an authoritative name server, how much overhead
it will incur if all the resolvers use TCP for queries, without connection reuse.

We did an emulation study using a machine with Intel Core i5 2.5 GHz CPU
and 8 GB RAM, running Unbound 1.5.4 configured as an authoritative name
server (of a local zone). Client is another machine with Intel Core i7 2.2 GHz
CPU and 16 GB RAM running a modified version of queryperf++ [56].



Top
100

Top
1000

Top
5000

Top
10000

Top
15000

���
��

0
100
200
300
400
500
600
700
800
900
1000

��
	�
���


�
	��

��
	�
�

�	����	��
�	

TCP
UDP

Fig. 1. Resolution latency between
recursive and authoritative servers

Fig. 2. Service rate and CPU
usage of an authoritative server

For both TCP and UDP, we vary the query window size (i.e., number of
parallel outstanding queries on the client side) to produce different volumes
of traffic. For each window size, the average CPU usage of the authoritative
name server for {TCP, UDP} is obtained by taking the mean of 600 data points
measured over 1, 200 seconds of queries. The results can be found in Figure 2. As
we allow more outstanding parallel queries, the service rate (queries responded
per second) also increases, up to a point where it saturates. Comparing to TCP,
UDP yields a higher peak service rate. When the window size is 2 for UDP and 6
for TCP, the service rate becomes comparable, and UDP exhibits a much lower
(roughly half) CPU usage than that of TCP.
Summary: TCP support is widely available, though without the recommended
optimizations, it negatively impacts overall DNS performance, which motivates
the benefits of having an adaptive deterrence that uses the TCP channel. Given
its standardized status and good general availability, we will use TCP in our
adaptive defense mechanism whenever applicable.

3.4 Other Defenses

Other proposals including CoDNS [43], DoX [61], ConfiDNS [45] and Anax [11]
require significant resources and changes to the DNS infrastructure in order to
be deployed at DNS resolvers, making their adoption unlikely.

Another cryptographic mechanism is DNSCurve [14]. Though promising, it
has not received wide deployment on authoritative name servers. Overhead is
one of its discussed drawbacks, particularly because embedding cryptographic
keys in names would render existing resolver caching mechanisms ineffective [36],
increasing query traffic at authoritative name servers. Moreover, due to key
distribution and management issues in potentially hostile regions, it has been
said that ICANN will not deploy DNSCurve in the root zone [17].

4 Adaptive Defense: Challenges

We now discuss the challenges involved in making the adaptive defense paradigm
(i.e., attack detection and protection) effective against Kaminsky-style racing
cache poisoning attacks. Though adaptively switching to TCP during spoof-
ing attack has been mentioned as a possible countermeasure before [29, 41], to



make such a defense robust and widely applicable is actually non-trivial. The
intricacies are hidden in (1) the decision logic of when to use which channel,
(2) the granularity of detection and protection, and (3) the availability of high
confidence channels and a reasonable preference. Using a real world instantia-
tion from Nominum [41] as a case study, we will explain the associated challenges
and show how a simplistic implementation falls short in effectiveness. Our design
decisions will be discussed in Section 5.

4.1 Preliminary

Threat Model: We consider an off-path or a blind attacker targeting a DNS
caching resolver. The attacker can neither observe any outgoing query posed
by the resolver nor has the capability to stop it. We also consider the attacker
to have the knowledge of the deployed mechanism enabling him to adapt his
attack strategy. We consider that the TXIDs are randomly generated and are
unpredictable to the attacker. Finally, we assume that the attacker may control
many edge hosts (e.g., a botnet) and have coordination capabilities resulting in
a substantial amount of attack bandwidth.
Mismatched DNS Response and Attack: If a DNS resolver sends a DNS
query q and receives a response r such that r agrees with q on all the deterministic
fields but disagrees on one or more of the randomized fields (e.g., TXID, source
port), then we call the response r a mismatched DNS response.

At a first glance, it seems very enticing to consider receiving any mismatched
DNS response to be a sign of active cache poisoning attack; we want to point
out that a mismatched response can also occur in a benign setting. Suppose a
resolver does not get a response to a pending DNS query within a threshold
amount of time, and it sends out a new query with a new random TXID. While
waiting for the response to the new query, the old response arrives, and the
old response’s TXID does not match the current pending query’s TXID. This is
plausible as UDP does not provide reliability guarantees.
Kaminsky Attack: Suppose an off-path attacker Adv intends to poison caching
resolver R’s DNS cache entry for google.com’s authoritative name server (e.g.,
ns1.google.com). Adv starts off by querying R with an inevitably non-existant
domain of the form dshmik.google.com which is unlikely to be stored in R’s
cache, resulting in a cache miss. Without loss of generality, suppose the IP ad-
dress of google.com’s name server ns1.google.com (e.g., 1.2.3.4) is stored in
R’s cache and random TXID is the only form of available entropy. In which case,
R will query ns1.google.com to resolve the query.

Adv then races the legitimate name server’s response by flooding R with fake
DNS responses with spoofed source IP address 1.2.3.4 where it tries different
values of TXID. Adv generated fake DNS responses contain a glue record which
provides the IP address of ns1.google.com to be one of Adv’s choice. If one of
the fake responses submitted by Adv contains the correct TXID and it arrives
before the legitimate response, R will cache the malicious glue record; poisoning
it. Once poisoned, any future resolution of any subdomain of google.com (e.g.,
docs.google.com), Adv’s name server is going to be consulted. If Adv cannot



guess the correct TXID, he can restart the same attack with a different non-
existant domain (e.g., rksjtw.google.com). This attack has the following two
desirable characteristics over regular cache poisoning: (1) The attacker can start
the attack without having to wait for a cache entry to expire; (2) The attacker
does not have to pay any penalty (i.e., no waiting), even if he cannot submit a
fake response with correct TXID before the legitimate response arrives.
Nominum’s Adaptive Defense: In Nominum’s approach implemented in their
proprietary Vantio CacheServe product, whenever a resolver receives a mis-
matched DNS response for an outstanding DNS query, the resolver considers
the query to be under attack and immediately switches to TCP for responding
that pending query. For spoofing the DNS response, the attacker additionally
has to guess the TCP sequence number increasing the overall entropy to around
48 bits (i.e., 32 bit TCP sequence number + 16 bits for TXID).

4.2 Attack Detection: Challenges

We now discuss the challenges a resolver has to overcome for effectively detecting
an active cache poisoning attempt.
(1) Attack Detection Settings: A resolver can possibly attempt to detect
an attack in a local setting or in a global setting. In the local setting, the
resolver checks to see whether a particular unit is under attack. In case of a
detected attack, only that unit is protected. In this setting, different protection
units are considered independent. Nominum’s attack detection operates in the
local setting. Depending on the attack detection granularity (discussed next),
it may be possible to bypass the detection mechanism in the local setting by
slightly modifying the original Kaminsky attack.

In the global setting, however, when the resolver detects an attempted attack,
it proactively starts protecting all the cache entries. Under the assumption that
cache entry protection incurs some amount of additional overhead (e.g., network
bandwidth, memory), even if only one query (or cache entry) is under attack,
other queries will suffer, thus it is undesirable to always use this setting.
(2) Granularity of Detection and Protection: A fundamental challenge in
successfully detecting cache poisoning attacks is to be able to correlate different
attack instances. In the above example of Kaminsky attack, both dshmik.google.com
and rksjtw.google.com queries are part of the attacker’s goal of poisoning the
name server (e.g., ns1.google.com) of google.com. This induces the critical
design decision of the granularity of attack detection. The three alternatives are:
(i) per-query, (ii) per-domain, and (iii) both per-query and per-domain.

In the per-query attack detection, whenever the resolver receives one or more
mismatched responses for a pending DNS query, the query (answered in the An-
swer Section of the responses) is considered to be under attack. When a resolver,
however, is detecting attack at per-domain granularity, it considers its zone to
be under attack if the domain (and its subdomain) was in the records of the
Additional Section of one or more mismatched DNS responses. Detecting at-
tacks at both the per-query and per-domain granularity offers better protection.



Nominum’s implementation detects attack at per-query granularity and it is sus-
ceptible to the following attack.
Bypassing Per-Query Attack Detection: Detecting attacks at per-query
level, with mismatch threshold of one, only limits an off-path, Kaminsky-style
attacker to send one mismatched response for each attack query. After the first
mismatched response, the resolver will start protecting the query (e.g., using
TCP to resolve the query as in Nominum’s implementation) thwarting all sub-
sequent forged responses by the attacker. However, it does not stop the
attacker to start a new attack instance right away. This is due to the
fact that the resolver cannot correlate two attack instances dshmik.google.com
and rksjtw.google.com, by only keeping track of queries. One can thus modify
the original Kaminsky attack, which we dubb as Parallel Kaminsky Attack
(PKA), to send only one forged response (instead of many forged responses)
for each non-existant DNS query.

Each PKA instance has a 1
2r success probability when r-bit entropy is avail-

able to the resolver. For the traditional Kaminsky attack, on the contrary, if the
attacker can send n forged responses before the legitimate response arrives, the
attacker’s success probability is n

2r . A PKA instance succeeds when the single
forged response for the query happens to match. The attacker, however, does
not need to wait until one attack has failed to carry out another attack. If the
resolver has only a 16-bit entropy, either because source port randomization is
not available or is severely limited, and the attacker can cause the server to
send, e.g., 500 queries/second, then it takes just a couple of minutes for PKA
to succeed. With 30-bit entropy, it takes the attacker about 2 days to succeed.
Note that imposing rate limiting on outstanding queries of the same question
(i.e., Birthday attack [42] protection) does not prevent PKA as the query for
each PKA instance is different.
(3) Storing Attack History: Irrespective of the attack detection setting and
granularity, the affected domains, queries, or cache entries should be stored in
some data structure so that the resolver can protect them. One of the main
challenges is the resolver-side overhead and accuracy trade-off for storing attack
information. If the resolver stores fully accurate attack information, the attacker
can strategically make the overhead prohibitive whereas if the resolver stores
attack information in a probabilistic data structure (e.g., bloom filter) its at-
tack detection accuracy may deteriorate due to false positives. One possibility is
to maintain a fixed-size cache which contains fully accurate attack information.
This, however, signifies that past information may have to be evicted to accom-
modate new attack information, exposing an attack vector where an attacker
can strategically try to remove entries from the attack history cache.
(4) Lifetime of an Attack Entry: The next natural question is how long does
the resolver protect a query, a domain, or a cache entry under attack. This is
similar to the time-to-live (TTL) field for DNS cache entries. Suppose the TTL of
an attack entry is 2 minutes. In this case, a greedy attacker with the goal of poi-
soning one of the top 100, 000 domains can possibly carry out a spray attack
on different domains. Such an attack could be carried out by posing the fol-



lowing queries in succession: 〈random1〉.google.com, 〈random2〉.facebook.com,
〈random3〉.yahoo.com, . . . By the time attacker comes back to attacking google.com
again, hopefully the 2 minutes are up; forcing the resolver to forget about the
attack on google.com.

4.3 Protection: Challenges

Under the assumption that an effective attack detection mechanism is in place,
the resolver has to establish a mechanism to protect a domain, a query, or a
cache entry. The following are few possibilities with which a resolver can protect
a domain, a query, or a cache entry.
(1) Employ a High-Confidence Channel: Although DNS was designed to
run on top of UDP for scalability, some authoritative name servers expose high
confidence channels such as TCP and DNSSEC. When a resolver detects an at-
tack on a cache entry (or, a query), it can employ one of these high confidence
channels to update the cache entry under attack. Along with the additional
overhead imposed by these high confidence channels, one of the major obstacles
of employing high confidence channels is their low adoption rate. Nominum’s
implementation employ TCP as the high confidence channel. Based on our mea-
surements in Section 3.2 and 3.3, among Alexa’s top 15, 000 domains, TCP avail-
ability is about 85% and DNSSEC availability is about 1%. This means more
high-confidence channels are needed to provide protection to more domains.
(2) No Caching: When a resolver detects an attack on a cache entry, it may
decide not to update the entry even if it is part of a possibly legitimate response
(e.g., glue record). This, however, leads to significant performance degradation
due to the need to traverse the domain hierarchy even for benign cases.
Summary: Why Nominum’s adaptive defense approach is inadequate?
Nominum’s implementation does not achieve the full defense potential due to the
following two limitations: (I) Due to their query level attack detection, they are
susceptible to PKA; (II) They do not take into consideration the possibility of
an authoritative name server not supporting TCP.

5 CGuard: An Effective Adaptive Defense

We now present our instantiation of the adaptive defense paradigm which we
refer to as by CGuard. CGuard proactively tries to detect racing cache poisoning
attack attempts and switches to one of the available high confidence channels to
update those cache entries that are under attack. We detail CGuard’s attack
detection, the high confidence channels we currently consider, and the overall
defense mechanism.

5.1 Attack Detection of CGuard

CGuard conservatively detects attack at both global and local setting. To prevent
spray attacks across a large variety of different domains, if CGuard observes a



total of mm_thresh (default value 10, configurable) mismatched responses over
the last 10 minutes, it considers a system-wide attack and starts protecting all
cache entries. In other case, CGuard detects attack at local setting using both
per-domain and per-query granularities for attack detection. For storing attacks
CGuard uses a set-associative cache with least-recently used (LRU) replacement
policy. We use a non-cryptographic hash function to map a domain to its set
in the attack cache. The life-time of each attack entry is attack_TTL with the
default value being 15 minutes.

For a pending DNS query, if CGuard receives a mismatched response, we con-
sider the query, the additional RRs, and their associated zones to be under
attack. A DNS response can have additional RRs that the resolver did not ex-
plicitly ask for. These additional RRs can be viewed as prefetching of NS records
(authoritative name server records) signifying that the authoritative name server
of a domain has changed. For each RR in the additional section of a mismatched
response, we consider that RR’s domain (and if it is an NS record, then also
its zone), to be under attack. This is based on the intuition that if the TXID
would have matched, then the RR would have been cached, and hence it is safe
to consider it under attack. Without considering the zone of the RRs to be under
attack, the threat of PKA lingers as demonstrated by the following example.
Example attack scenario. Suppose an attacker Adv started a PKA instance
by posing an A-type query for a non-existent domain xdRfggh.google.com. Ob-
viously, there is no A record in the resolver R’s cache for that domain. Suppose
R has not observed any attack so far. R starts traversing the domain hierar-
chy and observes that it has the following authoritative name server for the
zone google.com in its cache: ns1.google.com. Suppose that R also has the
name servers’ A records in its cache and sends the query to it. Adv then sends
a mismatched, forged response for xdRfggh.google.com; trying to poison the
cache entry for ns1.google.com. A hypothetical attack detection mechanism
that does not add the name servers’ zone, will add the following domains to the
attach cache: xdRfggh.google.com and ns1.google.com. In the next PKA in-
stance, Adv sends an A record request for YUrrpom.google.com to R. R will ask
ns1.google.com for the A record of the domain YUrrpom.google.com. However,
this time around Adv gets lucky and correctly guesses the TXID. In this forged re-
sponse, Adv also adds a new name server for google.com, say ns2.google.com,
and provides a glue record for it. The glue records for ns1.google.com can be
ignored as it is under attack. However, the glue record for ns2.google.com will
be cached resulting in a cache poisoning. If we monitor whether a name server’s
zone is under attack, in the above example, we will check whether google.com
is under attack—which it is—before we add an NS record for google.com and
update the A record for ns2.google.com, hence thwarting the attack.

5.2 High Confidence Channels

CGuard uses high confidence channels to update a cache entry when that entry
is affected by a detected attack. As an abstract framework, CGuard can be
instantiated to use any desirable high confidence channels in a preferred order



in actual deployment. As discussed in Section 3, various previously proposed
defense proposals currently suffer availability issues and a lack of robustness
given certain corner cases. We envision that by combining them in the CGuard
way, the high confidence channels that stem from the various proposals can
effectively cover for each other.

In our particular instantiation, we choose to use plain UDP as the base
channel, as it has the best availability and performance. Alternative, one can
choose to always use a base channel that is of higher confidence (e.g., TCP, 0x20
Encoding [22], etc.) at additional performance and management costs.

We now present the high confidence channels that we consider in our im-
plementation of CGuard for the resolver to resolve DNS queries under active
cache poisoning attack. For ease of management, we focus on leveraging existing
standardized channels (i.e., UDP, TCP, and DNSSEC), though this is not an in-
herent restriction of the CGuard framework. We leave the incorporation and the
subsequent evaluation of other high confidence channels (e.g., the likes discussed
in Section 3, as well as the new proposed standards of DNS over TLS/DTLS
[RFC7858, RFC8094]) as future work.

Having multiple such channels is vital as some of these channels are not
supported by certain name servers. Based on our measurements in Section 3,
14.79% of Alexa’s top 15,000 domains have authoritative name servers that sup-
port neither TCP nor DNSSEC. Consequently, we propose to leverage three high
confidence channels in addition to TCP and DNSSEC. The first two are both
based on the fact that the mappings between domain names and IP addresses
of a large number of domains remain fairly stable over time; we call this the
domain name-IP stability observation. One may question the mapping sta-
bility given the prevalence of CDNs (Content Delivery Networks). We note that
not all CDNs perform DNS-based redirection. In fact, a large portion of CDNs
leverage anycast-based services [1, 21, 24, 37, 46, 55], where one IP address is
shared by various hosts distributed in different locations. Comparing to DNS-
based CDNs, anycast-based setups are generally considered to be more resilient
to DDoS attacks and more compatible with public resolvers [16].
UDP double query (UDQ). One possible high confidence channel that lever-
ages the domain name-IP stability observation, is for the resolver to simultane-
ously send out two queries with the same question over UDP. If answers to both
queries match and there is no attack detected then we can accept the answers
with high confidence. We call this channel “UDQ”.
UDQ support. This experiment is to determine when an authoritative name
server is queried two consecutive times over UDP about the same domain, would
the addresses it returns be the same. For each of the name servers we found,
we send two A queries about a domain for which it is authoritative. Once the
responses are received, we compare the IP addresses in the two responses. If the
sets of IP addresses match exactly, the domain is said to support double query.
We found 89.57% of Alexa’s top 15, 000 domains exhibit double query stability.
Long-term stability (LTS). This channel is applicable for a query whose
answer is already in the cache but the entry’s TTL has expired. In such a case,



one can send out a DNS query over UDP and if the answer (i.e., IP address for
A query) in the DNS response matches the value in the cache, then we can take
that answer to be correct with high confidence. This is safe under the assumption
that the DNS cache was not poisoned to begin with.
LTS support. For measuring this, we keep querying name servers about do-
mains for which they are authoritative over a period of 30 days (from Sept.
11, 2015 to Oct. 11, 2015). Our goal is to validate that the mappings between
a domain and its addresses remain mostly stable over time. We observed that
for the top 15, 000 domains, 94.3%, 92.7%, and 88.8% of them have the exact
same list of addresses after 7, 14, and 28 days, respectively.

In addition to the main domains (e.g., nih.gov), we also correlated with
the data from DNSCensus 2013 [3]. We found 25502 existing subdomains (e.g.,
dpcpsi.nih.gov), and measured the stability of their address over a period of
two weeks (from May 4, 2016 to May 18, 2016). About 95% of them have the
exact same list of addresses after 12 days.
Public resolver over TCP (PR-TCP) as a last resort. According to our
experiments, 5.41% of Alexa top 15, 000 domains do not support any of the
aforementioned high confidence channels. In such cases, one possibility is to
ask a somewhat trusted public resolver to resolve the query over TCP. We call
this channel “PR-TCP”. The rationale for not always using PR–TCP is that (1)
simply delegating all queries to PR-TCP has additional privacy implications; (2)
there may be conflict of interests between the recursive resolver provider and
companies behind public resolvers like Google and Cisco; (3) always relying on
public resolvers may negatively impact the optimality of DNS-based redirections
in CDNs. We thus consider using PR–TCP only as a last resort.
High confidence channel preference. Our preference criteria is jointly based
on network delay and confidence level. LTS is our first choice as it has the lowest
cost (the resolver has to send only one UDP query) while delivering a fairly
high confidence. We then prefer DNSSEC as it can run on top of UDP and does
not incur the connection establishment cost of TCP while delivering a higher
confidence. Finally, TCP has a higher confidence than UDQ. Hence, we use the
following preference in our mechanism: LTS > DNSSEC > TCP > UDQ.

If desired, CGuard can be flexibly instantiated with other preferences on
the high confidence channels. For example, one might prioritize confidence level
and use the channels in this order: DNSSEC > TCP > LTS > UDQ.

5.3 CGuard’s Adaptive Defense: Putting it Altogether

We now briefly describe how CGuard’s active, fine-grained attack detection and
use of high confidence channels achieve a robust defense against racing cache poi-
soning attacks; removing the incentive of a rational attacker to attack a CGuard
resolver and consequently achieving deterrence. Note that when we refer to the
attack state of a CGuard resolver we mean CGuard’s attack cache and global
attack state (timestamps of most recent mm_thresh attacks).



When a CGuard resolver receives a client DNS query and the answer to
the query is in the cache, CGuard responds with its cached result. In case of a
cache miss, CGuard consults the attack state to see whether the system is either
under global attack, or a particular query, domain or zone is under attack. In
case of an attack, CGuard uses one of the high confidence channels to resolve this
query and update its cache. If a domain’s authoritative name server ns does not
support a particular high confidence channel hc1, it goes to the next available
high confidence channel according to our priority (see Section 5.2) and in the
process stores the information that ns does not support hc1. When resolving for
the same domain (or, its zone) in future, this information can be used to avoid
walking the priority chain of high confidence channels. When such information
expires in the cache, CGuard will once again walk through the chain of possible
high confidence channels, which can be thought of as a passive probing of the
domain for newly added high confidence channels. In the case that neither the
query (domain or its zone) nor the whole system is under attack CGuard resumes
its benign behavior by using UDP.

When CGuard receives a matched DNS response through a high confidence
channel, it caches it and uses it to possibly respond to pending client queries. In
case the response arrives through UDP (as in normal DNS operation), it consults
the attack state to see whether to cache it. If the attack state does not point
to attack to the query (or, its zone) or the system, it caches it; otherwise, it
drops the packet and sends the query with a high confidence channel. In case
of a mismatched response through UDP (as in normal DNS operation), CGuard
updates the system’s attack state.

6 Evaluation

Setup. For evaluation purposes, we use Unbound 1.5.4 as a recursive resolver,
and also use it as an authoritative name server (of a local zone). Our version
of CGuard was also implemented based on Unbound 1.5.4. Here we evaluate
CGuard along two dimensions: (1) the overhead it incurs, and (2) how resistant
it is to attacks. We emphasize that this is just a proof-of-concept implementation;
it does not mean CGuard can only be implemented in Unbound. In fact, one
should easily be able to implement CGuard in other software.

We use pidstat from sysstat [25] to capture statistics about CPU usage,
and pmap for memory measurements. All readings are taken after waiting an
initial short period of time for the system to stabilize.
CPU Overhead. We evaluate the overhead of CGuard under normal oper-
ations by setting up both the original and modified Unbound as recursive re-
solvers, sharing the same configurations. We then issue queries using queryperf++
asking the resolver about A records of Alexa’s top domains. We let this experi-
ment run for 450 seconds separately for each setup. We collected the CPU usage
and the service rate that the resolver delivered. The results are depicted in Fig-
ure 3. As can be seen, CGuard does not incur significant overhead comparing to
its unhardened counterpart in the benign case. We note that the actual service
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rate delivered by the resolver fluctuates due to environmental reasons including
but not limited to non-deterministic network delay.
Memory Overhead. We also measured the memory usage of CGuard for be-
nign cases and when under attack. We used the same setup as above and ran
the 450-second query blasting experiment six times. We measured the memory
usage of CGuard and the original Unbound. We use RSS to denote resident set
size and VIRT to denote virtual memory. On average, after system initializa-
tion, the original Unbound consumes 22,727 kB RSS (547,696 kB VIRT) while
CGuard consumes a comparable 22,278 kB RSS (547,638 kB VIRT). After
handling all the queries, on average, the original Unbound consumes 43,000 kB
RSS (548,519 kB VIRT) and CGuard consumes 42,887 kB RSS (548,570 kB
VIRT), which shows that the memory overhead, if any, is negligible. We ad-
ditionally ran 7 attacks on CGuard targeting different domains. When under
attack, the memory usage of CGuard peaked at 44,180 kB RSS (548,572 kB
VIRT). We note that OS-level memory measurements can vary due to various
environmental factors. The results here is not a proof of CGuard being more
memory efficient but they show that the memory overhead is not heavy.
Probabilistic Modeling. To determine the average latency CGuard intro-
duces, we probabilistically model its operation under varying volumes of attack
traffic. The result in Figure 4 depicts the average of 5 separate simulation runs.
For simplicity, we assume the following key parameters: (a) latency (ms) for each
channel: 30 for UDP, 60 for TCP, 300 for DNSSEC, 40 for UDP double query,
and 55 for asking Google; (b) the probability of a domain supporting each chan-
nel: 100% for UDP, 85% for TCP , 85% for long-term stability, 85% for UDP
double query, 1% for DNSSEC, and 100% for Google Public Resolver. As shown
in Figure 4, on average, CGuard has a much lower resolution time than always
using DNSSEC, and when attacks occur only infrequently, it will also perform
better than always using TCP without optimizations.
Attack Resistance. As Nominum’s Vantio CacheServe is a proprietary prod-
uct, we do not attempt to evaluate it. Instead, we launch PKAs on the original
and modified Unbound, both configured as recursive resolvers, running on a sin-
gle thread, and only 10 bit entropy is used in the TXID. Note that not using
the full 16-bit gives an attacker an advantage in launching a successful attack
since it is easier to match the TXID. To mitigate the influence of source port



Table 1. Six runs of Parallel Kaminsky attack on (Original and Modified) Unbound
1.5.4 recursive resolver

Turn # 1 2 3 4 5 6

O Instances 2266 1331 3072 1884 2519 1674
Result Poisoned Poisoned Failed Poisoned Poisoned Poisoned

M Instances 3072 3072 3072 3072 3072 3072
Result Failed Failed Failed Failed Failed Failed

randomization, we forced Unbound to use a fixed source port. This resembles a
scenario where the recursive resolver is behind a NAT.

We repeat the attack 6 times. Each time we stop the attack after at most
3×210 = 3, 072 instances. For each attack instance, we randomly generate a likely
non-existent sub-domain of a victim domain and send a query about it to the
resolver. Consequently, the recursive resolver is going to perform iterative queries
in attempt to find an answer, which gives an attack window. We then send one
forged DNS response to the resolver by spoofing the sender address to be one
of the authoritative name servers. With the unprotected original Unbound, each
attack instance has an independent probability of 1

210 of being successful and
hence the expected number of instances needed to have one success is simply
210. The results of the 6 attack attempts can be found in Table 1. Across the
5 successful attempts, on average, it took 1, 934 instances for the attack to be
successful, which is within 2 standard deviations from the theoretical expected
value. When Unbound was hardened with CGuard, it detected the attack and
did not allow the cache to be poisoned. Hence, all attack instances in all 6 runs
failed. This shows the efficacy of CGuard in detecting and defending against
cache poisoning.
Threat of Performance Attack. One might suspect that given an adaptive
attacker, CGuard might be forced to continuously stay on system-wide attack
mode. This is true, however, the outcome of such a case should be close to
that of always using the heaviest high-confidence channel (say DNSSEC), with
a small manageable detection and bookkeeping overhead. CGuard would then
opportunistically fall back to low-confidence channels once the attacks are over.

7 Conclusion

We present CGuard that proactively detects whether cache entries are under ac-
tive attack and protects them by using high confidence channels. CGuard com-
plements existing cache poisoning solutions; unlike many existing solutions, DNS
resolvers can enjoy CGuard’s protection for a minimal deployment cost without
having to rely on any substantial effort from domain owners. By incorporating
multiple high confidence channels, CGuard also enables them to cover for each
other in terms of availability and against some tricky corner cases. Our evalu-
ation of CGuard—implemented in Unbound DNS resolver 1.5.4—demonstrates
that CGuard is effective at thwarting DNS cache poisoning attacks and incurs
minimal overhead under normal operation. We envision that by taking away
the attacker’s incentive to launch DNS cache poisoning attacks, CGuard essen-



tially turns the existence of high confidence channels into a deterrence. Such a
deterrence-based defense mechanism can be relevant to other applications.

Being a critical infrastructure of the Internet, DNS continues to attract efforts
on making it more robust and trustworthy. Recent developments include the
various documents produced by the DNS Private Exchange (dprive) workgroup.
Motivated by the need for privacy and confidentiality against eavesdroppers,
dprive recently proposed new standards on DNS over TLS/DTLS [RFC7858,
RFC8094], which also adds resilience against cache poisoning attacks. As for
future work, we intend to investigate the adoption of the TLS/DTLS-based
high confidence channels in CGuard instantiations, and possibly evaluate their
performance when compared with other channels.
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