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Abstract—Sensor nodes are prone to failures due to their lim-
ited hardware capabilities, and software uncertainties stemming
from erroneous logic or configuration. Such failures as well as
wireless channel dynamics can degrade network performance,
potentially creating network partitions. Existing troubleshooting
tools either only diagnose a few problems or suffer from high
overhead due to periodic transmission of control packets. In this
paper, we propose Feluda1, a system that exploits provenance, i.e.,
forwarding path of data packets, for automatic localization of
problematic nodes and packets. Unlike existing methods, Feluda
extracts necessary network performance metrics from packet
headers and stores them into node flash storage, thereby reducing
out-of-band packet transmissions. Once problematic nodes and
corresponding packets are identified at the base station (BS),
Feluda provides efficient querying mechanisms to retrieve packet
headers of interest from specific nodes. Packet header analysis
reveals the root cause of the problem. We implement Feluda using
Java and ContikiOS on the BS and sensor nodes, respectively.
Testbed experiments and COOJA simulations demonstrate the
effectiveness of Feluda compared to the state-of-the-art.

I. INTRODUCTION

With limited sensor hardware capabilities and software
uncertainties stemming from erroneous logic or configuration,
sensors are prone to failures such as crashes, reboots, or
unresponsive radios [1]. An automated troubleshooter helps
network administrators understand and diagnose problems.
Troubleshooting wireless sensor networks (WSNs) strives to:
(i) enhance visibility into the network with fine-grained di-
agnosis, and (ii) minimize associated energy consumption.
Today’s diagnosis applications, however, cannot effectively
balance these conflicting objectives. Many troubleshooting
applications [2], [3] periodically collect system metrics (e.g.,
battery power, number of neighbors, number of dropped pack-
ets) from sensor nodes, and provide fine-grained diagnosis
at the base station (BS). These approaches, however, are
energy-inefficient for large-scale sensor networks due to the
overhead associated with pro-active information collection.
Their diagnosis accuracy may deteriorate as the transmission
of metrics itself can fail over the unreliable network. In
contrast, methods based on local diagnosis [4], [5] have every
sensor monitor its local state and neighboring nodes. While
these incur lower energy overhead, they are unable to provide
network administrators with the desired visibility into the
network and cannot be easily extended to diagnose a wide
range of network failures.

The question we seek to address in this work is: can we
achieve fine-grained but energy-efficient diagnosis of network
failures? To address this question, we design Feluda, a tool that

1Feluda is a popular fictional detective in Bengali literature who is known
for his analytical abilities and observation skills.

exploits packet headers and provenance [6], [7] to troubleshoot
“elusive” network failures. The design of Feluda is inspired
by a recent finding for IP networks: a single packet’s history
can provide evidence to diagnose network failures [8]. In a
multi-hop sensor network, provenance of a packet includes
knowledge of the originator and forwarding path of the packet.
The header of a packet, observed at different forwarding nodes,
contains information (e.g., parent node, link quality, routing
cost, flags indicating imminent congestion) that can explain the
reason behind network failures. The Feluda BS tracks packets
that indicate symptoms (e.g., lost/delayed/duplicate packets)
and analyzes provenance embedded into the packets to localize
the failure. Feluda running on the sensors efficiently stores
sent/received packet headers into flash memory and sends
headers of interest to the BS on demand. By requiring only a
few sensor nodes (operating in the vicinity of network failures)
to transmit a small number of packet headers, Feluda gives
packet-level visibility at a low energy cost.

Feluda is a stand-alone module, independent of the data
collection application running on sensor nodes. Feluda ex-
ploits a standard sniffer interface to collect packet header
information, unlike existing solutions [2], [3] which collect
information through instrumentation of the application and
networking stack. It is known that writing a byte to flash
is 20× more energy-efficient than transmitting [9]. Feluda
consolidates headers of retransmitted data and corresponding
ACK packets into a single entry that is written to flash, thereby
reducing the number of flash memory accesses. To provide
faster insertions and querying over a large number of entries,
we use energy-efficient MaxHeap indexing [9] built on a file
system [10] with a small memory footprint. Finally, we design
a protocol to send/respond to queries for specific packets to
the neighboring nodes of a suspect node. This avoids using the
sensor data collection protocol because the protocol itself can
be plagued with configuration errors or other failures.

We implement the Feluda sensor node module using Con-
tikiOS [11] and the BS application using Java. We consider
failures such as node down, soft reset, and congestion. We
observe that a node with incorrect configuration can cause
routing changes, packet loss, or network partitions. For ex-
ample, a node mistakenly configured as a BS may partition
a network. Through testbed experiments and simulations, we
demonstrate that Feluda effectively diagnoses these failures
with lower energy consumption than the state-of-the-art.

To summarize, this paper makes the following contri-
butions: (1) We design Feluda, the first (to the best of
our knowledge) sensor network troubleshooting system that
demonstrates how provenance and packet headers can be used
to diagnose a wide range of network failures with reduced



energy consumption. (2) We present a BS-side algorithm which
monitors data packets over a sliding window and correlates
their provenance to detect and localize network failures. (3)
We devise a query propagation protocol (independent of sensor
data collection) to transmit queries for specific packets from
the BS to a particular neighborhood. This ensures uninter-
rupted transmission of query and response messages in the
presence of network failures. (4) We identify a wide range of
configuration errors that can lead to mild (e.g., route changes)
to severe (e.g., network partition) network failures. (5) We
implement Feluda for sensor nodes to use a MaxHeap [9]
index to ensure energy-efficient querying and storage of packet
header information. (6) We evaluate Feluda via COOJA [12]
simulations and a real-world testbed of 25 TelosB motes. The
results demonstrate that Feluda effectively diagnoses network
failures with 24-57% lower energy consumption compared to
the state-of-the-art.

II. RELATED WORK

Sympathy [2] is one of the earliest tools to debug failures
in wireless sensor networks. Sympathy requires each node to
actively transmit control packets (with network connectivity
and flow information) towards the BS. The Sympathy BS
application checks if insufficient data has been received from
a node and determines the root cause of packet loss using
an empirically constructed decision tree. VN2 [3] is a recent
diagnosis tool, which periodically collects several metrics from
sensor nodes. The VN2 BS then attributes symptoms to one or
more root causes. By analyzing historical information with a
Non-negative Matrix Factorization model, it trains a matrix of
network exceptions where each row represents potential root
causes of network exceptions. AD [13] also collects system
metrics and discovers silent failures by analyzing correlation
graphs of the metrics. These approaches, however, are energy-
inefficient for large-scale sensor networks due to the overhead
associated with their pro-active information collection strategy.

To reduce the overhead of active information collection,
a number of approaches [14], [15] use in-network packet
tagging to deduce the forwarding path of packets and detect
path changes in the network. By building a probabilistic
inference model representing dependencies among nodes [14]
or querying nodes involved in path changes [15], they diagnose
a limited set of problems, namely node or link failures. While
Feluda takes a similar approach (using provenance to localize
failures), it exploits packet headers to diagnose a wider range
of network failures and offers enhanced visibility into the
network. LiveNet [16] and Dustminer [17] are two methods
that also avoid pro-active information collection and offer good
visibility. LiveNet, however, uses external sniffer devices to
snoop packets forwarded by sensor nodes and analyzes them
at the BS to understand network dynamics. Dustminer records
network and kernel-level events into local flash by instrument-
ing corresponding handler routines and uses a frequent pattern
mining algorithm over these records to diagnose failures. In
both approaches, all information logged into flash is transferred
to the BS as a batch. In contrast, Feluda only requires a few
sensor nodes to transmit a small amount of logged information
to the BS, only in cases of failures.

In contrast to BS-based approaches, methods based on local
diagnosis [4], [5] have every sensor monitor its local state and

neighbors. Neighbors cooperate to diagnose exceptions. While
these methods incur low energy overhead, they cannot provide
administrators visibility into the network and also cannot be
easily extended to diagnose a wide range of failures. Source
level debuggers [18], [19], [20] debug programming errors
in network protocols and are orthogonal to our approach.
Netsight [8] is a recent IP network troubleshooting platform
that inspired us to exploit packet histories to diagnose network
failures. Like many existing IP network debugging tools, direct
realization of Netsight is impossible for resource-constrained
sensor networks.

III. SYSTEM MODEL AND CHALLENGES

In this section, we discuss our system model and types
of network failures, and illustrate the role of provenance and
packet headers in localizing failures.

A. Network Architecture

We consider the archetype WSN applications where all
nodes forward data to a BS in a multi-hop fashion. Within
a particular time window, independent observations obtained
at the BS from different sensors are concerned with the
same event. The data forwarding process is enabled by best-
effort data collection protocols such as CTP [21] or Contiki
Collect [22]. Data is typically forwarded along a minimum cost
tree rooted at the BS. The routing cost is expressed in terms of
the number of expected transmissions (ETX). Routing beacons
are broadcast periodically in a neighborhood to keep the ETX
estimates up-to-date.

B. Network Failures

We identify three types of node faults that affect network
performance: (1) the resource-constrained hardware, (2) soft-
ware bugs, and (3) configuration errors. When the battery of
a node becomes low or one of its hardware modules fails,
the node becomes unresponsive and disconnected from the
network. Incorrect initialization of the radio software mod-
ule [1] or faults in the radio stack [18] may cause the same
problem. Another common software bug is when some tasks
are starved due to a long-running task, resulting in overflow
of the task queue and continuous software reset [23]. When a
node goes down or resets, data packets from the node itself and
its descendants may experience loss, delay or route changes,
thereby disrupting network operation.

Symptoms:

Lost packets Duplicate packets Delayed packets

Causes:

Node down Node reboot Congestion Link changes

Metrics:

No ACK or
Routing beacon

Sequence no.
Routing cost

Flag (Queue
overflow)

Link quality
RSSI

Fig. 1: Metrics for root cause identification
Data collection applications have configuration parameters

such as “sink”/“root”, maximum data length, and transmission
power. Data dissemination protocols are used to send config-
uration updates from the BS to sensor nodes [24]. Incorrect
parameters may cause network problems. When a node is



incorrectly configured as a root node, it no longer forwards
data from its descendants to the actual BS and thus creates
a network partition. Changing transmission power may lead
to topological changes in the network. An incorrect maximum
data length may prevent a node from transmitting data leading
to packet loss. Apart from these errors, environmental changes
and unreliable wireless channels may cause the MAC layer to
drop packets after the maximum retries. The top level nodes
with many descendants are also likely to experience congestion
and may drop packets due to lack of buffer space.

A BS only observes a handful of abnormal events or symp-
toms of a failure, such as high inter-packet delay, packet loss,
or reception of duplicate packets. Fig. 1 relates possible root
causes of network failures with their corresponding symptoms.
For example, with throughput degradation, symptoms include
lost packets, duplicate packets and high inter-packet delay.
These symptoms are caused by a number of network failures,
e.g., packets can be lost due to node failure, link failure or
congestion in the network. Our goal is to find root causes of
frequently observed symptoms.
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Fig. 2: Application of provenance to localize suspect nodes

C. Packet Headers and Provenance

In typical data collection applications, three types of pack-
ets are exchanged among sensor nodes: data, ACKs, and
routing beacons (ADVs). The packet headers contain useful
information or metrics about network interaction among a set
of neighboring nodes. For example, the header information
in a data packet received at a node includes (but is not
limited to) sequence number, sender, routing cost, and flags
indicating potential congestion. Fig. 1 shows some packet
header information (metrics) that can be useful to diagnose
problems. The headers of a packet observed at different nodes
along the forwarding path represent the complete history of
the packet throughout the network. Although the collection
and analysis of packet histories was proposed to troubleshoot
traditional wired networks [8], direct realization in resource-
constrained sensor networks is challenging. If packet headers
are transmitted periodically, the transmission energy would
be prohibitive. Fortunately, provenance helps us tackle this
problem.

In a multi-hop network, provenance of a packet includes
knowledge of the originator and path. We can leverage energy-
efficient methods to embed and transmit provenance into
data packets [7]. The BS uses provenance to locate nodes
potentially responsible for network failures. Once a node is
identified, we can collect and analyze packet headers from

its neighborhood to diagnose failures. This tackles the issue of
energy consumption by transmitting only a few packet headers
on-demand, while gaining visibility into the network at the
granularity of a packet.

D. Motivating Examples

To better understand how provenance and packet headers
can be used to localize and diagnose failures, we conduct a se-
ries of testbed experiments with 25 TelosB motes. We consider
a 5×5 grid network where each node sends a packet every
2.5 seconds. Every node stores the header of each received
or transmitted data/ACK/routing packet into local flash. Each
data packet is uniquely identifiable using a sequence number
provided by the data collection protocol. Every forwarder node
embeds its ID into data packets as provenance. We use a Java-
based BS application to receive data packets through the serial
port, collect provenance information, and detect symptoms
such as duplicate, delayed, or lost packets.

Fig. 2 illustrates two cases for duplicate and lost packets at
the BS. Fig. 2(a) shows that two packets have been received
from node 2 with the same sequence number but different
provenance: {2,7,13,18,24} and {2,7,12,18,24}. This indicates
potential link changes from node 7. We investigate the se-
quence of packet headers stored at node 7 and find that 7 did
not receive a number of ACKs from 13 which in turn, changed
the link quality estimate from node 7 to 13. Eventually, node
7 chose another node 12 as its best next hop. Fig. 2(b) depicts
a case where the packet with sequence number 2 from node
4 is lost. However, a packet with the same sequence number
from another source node 3 (representing the same event as the
packet number 2 from node 4) is received with provenance:
{3,8,14,19}. If we correlate this provenance information with
that ({4,8,14,19}) of the last successfully received packet from
4, we suspect the link between 4 and 8 is a problematic one.
The corresponding packet headers stored at node 4 reveal that
packet number 2 was dropped after the maximum retries. These
results motivate us to exploit provenance to localize suspect
nodes/links, and store and analyze packet headers to diagnose
network failures with fine-grained visibility.

E. Challenges

Managing provenance, storing packet headers into flash and
querying them face non-trivial challenges:
1. Provenance analysis: We need to correlate provenance
across different events at the BS to localize suspect nodes. This
requires populating and matching a number of graphs each
consisting of all nodes present in the network. The process
must scale as the network size increases.
2. Flash memory management: Flash memory has a con-
straint that a part of the memory must be erased before
overwriting contents [10]. Erasing should be performed only
when necessary; otherwise, excessive erasing may cause the
flash to wear out. An efficient indexing mechanism is also
required to quickly scan through stored records. A general-
purpose sensor database system [9] is thus implemented over
a special file system. It is, however, an overkill to use this
generic system solely for storing packet headers as it uses
significant code (ROM) and main memory (RAM).
3. Query-response mechanism: Once a suspect node is
identified at the BS, we need to send a query message to the



neighborhood of the suspect asking for header information of
specific packets. Since the data collection protocol maintains
routing paths towards the BS, a separate best-effort mechanism
is required to propagate the query from the BS to the desig-
nated nodes. For sending query responses to the BS, a node
cannot rely on the data collection protocol since its parent node
can be faulty due to configuration errors.
4. Energy cost: Though writing a byte to flash is 20× more
energy-efficient than transmitting [9], we should still keep the
number of read/written bytes (or, accesses) as low as possible.

IV. FELUDA DESIGN

Feluda adopts two design philosophies: (i) localizing a
failure is key to finding the true cause of failure [2], and
(ii) packet history provides evidence to diagnose network
problems [8]. Feluda conducts scalable provenance analysis
at the BS to localize problems. By enabling sensor nodes to
efficiently store packet headers and requiring only a few to
transmit a small number of packet headers, Feluda maintains
packet-level visibility at a low energy cost. Fig. 3 shows the
components of Feluda for the BS application and sensor nodes.
We provide details of these components in the subsequent
sections.

Provenance
Embedment

Packet Header
Collector

Query
Processor

Header
Storage

Sensor Node

Provenance Aggregator

Symptoms Detector

Failure Localization
(Analyzing provenance)

Querier

Root Cause Detector

Debugging Apps
(Topology viewer, SQL

query interface)

Base Station

Data Provenance

Fig. 3: Architecture of Feluda

A. Base Station Application Components

Each data packet has a unique sequence number set by
its originator. Since sensor networking applications have very
low data rates, a limited number of bits (e.g., 16) is suffi-
cient for sequence numbers. Packets originating from different
nodes but having the same sequence number are assumed to
represent the same physical event. Packet p(n)

s from node n
with sequence number s is considered to represent event es.
Since data from different nodes can take different paths and
experience variable delays to reach the BS, the application
buffers packets corresponding to the last few (e.g., 10) events
before processing them.

1) Provenance Aggregator: We extract provenance data
from a packet using a decoding method [7] compatible with the
encoding method used to embed provenance during forward-
ing. We construct provenance of a packet, p(n)

s as a graph,
G

(n)
s . Provenance of data packets originating from different

nodes but pertaining to the same event is merged into a larger
graph, Gs = ∪mG

(m)
s . Fig. 4(a) shows a merged graph for a

3×3 grid network where the gray colored nodes 3, 7, and 9
send packets to the BS. In this particular event, e50, packets
p
(3)
50 , p(7)

50 , and p(9)
50 have provenance 3→ 2→ 1, 7→ 5→ 1,

and 9→ 5→ 1. We will use this network as a running example
when describing Feluda modules.

2) Symptom Detector: The symptom detector maintains a
sliding window of events. It saves the packets received in the
window and keeps 4 bitmaps per originator to track symptoms,
i.e., packets that are lost, delayed, duplicated, or have experi-
enced link changes on their way to the BS. Unless otherwise
stated, the window is advanced by one upon processing each
event. Assume that the event being processed is es and the size
of the window is w. The bitmap for an originator n maintains
records for packets with sequence numbers s − w + 1 to s:
p
(n)
s−w+1, p

(n)
s−w · · · p

(n)
s . If a packet p(n)

i , i ≤ s, satisfies any
of the following conditions, the i-th bit is set to true:

delayed : timestamp(p(n)
i )−min

m
timestamp(p

(m)
i ) > δth

duplicate : p(n)
i was received before

link changes : G(n)
i 6= G(n)

lost : p(n)
i is not received

Here, a packet, p(n)
i is considered delayed if it arrives δth

units after the arrival of the first packet denoting event i. G(n)

indicates the provenance of the last packet that is received from
node n in the previous window of events ([es−2w+1, es−w])
without any symptoms.

If the cardinality (number of bits set) of a bitmap reaches
a given threshold, an alarm is raised to notify the failure lo-
calization module of a potential problem. The sliding window
is then advanced by w. A large window size lengthens failure
detection time, and small threshold values may prematurely
flag problems. Network administrators choose the sliding win-
dow size and thresholds for different symptoms depending on
the network conditions and debugging requirements. Fig. 4(c)
shows the lost and link changes bitmaps for three originator
nodes in our example network. The window has a size of 10
and comprises events e51 to e60. Node 5 goes down after
event e55 and the packets originating from nodes 7 and 9
(using 5 as the next hop) start experiencing symptoms. The
lost bitmap for originators 7 and 9 shows that packets 56 and
57 are lost. Eventually, nodes 7 and 9 find new parents. This
change is reflected in Fig. 4(b), which shows a provenance
graph constructed during event e58. The link changes bitmaps
for originators 7 and 9 also record that packets 58 to 60
experienced link changes with respect to the last window. If
the threshold for the combined lost packets and link changes
symptoms is set to 0.5, the fault localization module will
receive an alarm for the window [e51, e60]. This indicates that
a failure is detected when at least 50% of packets in a window
experience symptoms.

3) Fault Localization: The fault localization module han-
dles the following cases: (1) Duplicate packet: If the prove-
nances of duplicate packets are the same, the last node
before the BS becomes suspect. Otherwise, the provenances
of duplicate packets are compared to identify nodes that are
absent in the provenance of at least one packet; (2) Delayed
packet: If a packet p(n)

i is delayed, all the nodes that are
present in the provenance of p(n)

i but absent in the provenance
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Window: Start position = 51, End position = 60

Sender Bitmap for link changes

3 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 1 1 1

9 0 0 0 0 0 0 0 1 1 1

Sender Bitmap for lost packets

3 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 1 1 0 0 0
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(c) Symptom detection




1 2 3 4 5 6 7 8 9
1 0 0 0 0 1 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0
5 1 0 0 0 0 0 1 0 1
6 0 0 0 0 0 0 0 0 0
7 0 0 0 0 1 0 0 0 0
8 0 0 0 0 0 0 0 0 0
9 0 0 0 0 1 0 0 0 0




(d) Suspect node localization
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Fig. 4: Feluda operating in an example 3 × 3 grid wireless sensor network (gray nodes are data generators)

of all other packets pertaining to the event ei are considered
suspects; and (3) Lost packets or packets with link changes:
These two cases are combined since a lost packet can be treated
as a packet with missing links. For either of these symptoms
observed in an event ei, we construct an adjacency matrix of
the combined provenance graph for this event, Adj(Gi), which
is a 0-1 matrix. Graph G(n) records the provenance of the last
successfully received packet in the previous window from node
n. We merge these provenances from all originator nodes into a
graph G = ∪mG

(m) and construct the corresponding Adj(G).
The non-zero entries of the matrix ¬Adj(Gi)∧Adj(G) reveal
all the links that disappeared from the previously seen stable
routing tree G. The nodes adjacent to these links are considered
suspects if they are absent in Gi.

At the end of the window, several nodes are marked as
suspect. The ID of the highest marked suspect node and the
first packet denoting a symptom (called the testimonial packet)
are dispatched to the querier module for root cause detection.
Fig. 4(d) shows the outcome of ¬Adj(G58)∧Adj(G) for our
example, indicating that links 7 → 5, 9 → 5, and 5 → 1
disappeared. Out of the nodes adjacent to these links, node 5
is missing from G58 and hence is considered suspect. Node 5
is the highest marked suspect node at the end of the window,
and packets number 56 from both nodes 3 and 7 are considered
testimonials.

4) Querier: The querier module queries the neighbors of
the suspect node for the header information of testimonial
packets. The query, however, cannot be sent using the data
collection protocol, as it does not maintain unicast routing
paths to all nodes. The data dissemination protocol [24]
provides an alternative but incurs high transmission overhead
since it floods packets throughout the network. Fortunately,
the provenance graph of the latest event gives us currently
active paths (i.e., query paths) from the neighbors of the
suspect to the BS. By exploiting this information, we design a
custom protocol (discussed in Sec. IV-B3) to propagate query
messages from the BS to the desired set of nodes. The protocol
requires the querier to embed at least one of the query paths
and its hop count into the query packet. We use Bloom filters to
encode the node IDs on a query path in a bit-efficient manner.
The protocol is also used to send replies.

Fig. 5(a) shows the format of a query packet. In addition
to the Bloom filter, the packet includes the type of message
(query or response), the observed symptom type (e.g., link
changes), a query ID, the suspect node ID, the number of
testimonial packets and their originator and sequence number.
In our example scenario, the query includes 5 as a suspect node

msgType symptom queryId
suspectId hops count

bloomFilter

originator packetId
· · ·

originator packetId

4 bytes

(a) Query message format
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(b) Query propagation

Fig. 5: Query message format and propagation in Feluda

and encodes 1, 4, and 7 (present on the query path 7→ 4→ 1)
into the Bloom filter. The packets with sequence number 56
originating from nodes 9 and 7 are testimonial packets.

5) Root Cause Detector: The root cause detector module
analyzes responses received from the neighbors of the sus-
pect node. The response message corresponding to a query
contains the query ID and header information of testimonial
packets. While headers of testimonial packets provide ample
information to identify the root cause of the problem, we allow
sensor nodes to include a few additional headers (at most three
in our current implementation) in the responses. These are
packets that have the same originator as a testimonial packet
but have sequence number one less or more than that of the
testimonial packet. This can give a holistic view of network
dynamics before, during, and after the failure. We model the
header responses specific to a query using a multi-graph which
allows multiple edges between two vertices. The source and
destination fields (see Table I for packet header description) of
all the received packet headers form the set of vertices. Each
packet header also generates an edge labeled with that packet
header between respective source and destination vertices.

The multi-graph representation of query response allows
network administrators to analyze packet headers from dif-
ferent perspectives. For example, by traversing the graph
according to a particular packet sequence number, the in-
teraction among the neighboring nodes can be observed at
the time of reception of that packet. Iterating over the edges
incident to a suspect node, the sequence of events leading
to a network failure becomes evident. Referring back to our
example, Fig. 4(e) shows packet headers received via response
messages from nodes 7 and 9 and the corresponding multi-
graph representation. The edges labeled with sequence number
55 and incident to suspect node 5 reveal that even after
maximum retries, both nodes 9 and 7 did not receive ACKs
from node 5 for packet number 55. As a result, packet 55 was
dropped at both nodes 9 and 7 which also find their routing cost
increased. While transmitting the packet with sequence number
56, node 7 switches to node 4. Node 9, however, still tries to



TABLE I: Description of a log entry which collates information from the packet headers of different network protocols

Attribute Attribute source Description Role in diagnosis process
Originator Data packet The node ID that originally generates this packet • The 〈originator, sequence number, source, destination〉 tuple

uniquely identifies a data packet and also a log entry
• The 〈local sequence number, source, destination〉 tuple uniquely
identifies an ACK packet
• By mapping two tuples, ACK header information can be combined
with the corresponding data packet header into a single log entry
• The sequence number also helps determine if an originator has
recently rebooted

Sequence num-
ber

Data packet This is a data collection protocol sequence number
set by the originator

Source Data/ACK/ADV packet The node ID that sends this packet locally
Destination Data/ACK packet The node ID to which this packet is forwarded

locally
Local sequence
number

Data/ACK packet This is a MAC protocol sequence number set by
the local source

ETX Data/ACK packet The routing cost estimate of the source towards
the BS via destination node

Aids in determining the reason of routing path (i.e., link) changes

Parent’s ETX ACK/ADV packet Parent’s routing cost estimate towards the BS Useful to check if the parent is a root, or has lost its path or rebooted
recently

Hop count Data packet The number of hops traversed by this packet Useful to determine if this packet has experienced a routing loop
Flag ACK Indicates if the corresponding data packet was

received by the sender of this ACK and gives the
reason if the data packet was dropped

Aids in determining the reason of lost packets and congestion

LQI Data/ACK packet Link quality indicator for a received packet Speaks for any environmental changes (e.g., increased noise) in the network
RSSI Data/ACK packet Signal strength indicator for a received packet Useful to detect an erroneous transmission power setting of the sender
Num of TX Data packet Indicates MAC layer retransmissions This along with flags explains any significant changes in routing cost
Packet length Data packet Indicates the length of data packet Identifies transmission failure due to packet size exceeding maximum value

transmit packet 56 through node 5 and fails to get any ACK
from node 5. After a number of retries, node 9 finds a better
path through node 6 and forwards packet 56. To summarize, all
the neighbors detected node 5 as unresponsive, which confirms
that node 5 is down. We also develop a debugging application
for the BS to allow the network administrator to issue a query
to a specific node about a specific packet and visualize the
responses via multi-graph. Please refer to [25] for more details.

B. Sensor Node Components

1) Provenance Embedding: If every node embeds its ID
into the provenance field of the data packet being forwarded,
the length of the provenance increases as the packet traverses
the network. Using a fixed bit budget, we use an energy-
efficient Rabin fingerprint provenance encoding scheme [7].
As a node receives a packet, it concatenates its own ID to
the existing value in the provenance field and updates the
fingerprint. The corresponding decoding scheme is used at the
BS to extract provenance.

2) Packet Header Collection: There are three types of
packets exchanged in the network: data packets, ACK packets,
and routing advertisements (ADVs). Packet headers contain
valuable information about the status of the sender. Table I
gives a description of the information collected from these
packet headers. This information constitutes a log entry. An
entry is 16 bytes, and can be uniquely identified by the tuple
〈originator, source, destination, sequence number〉. Every
node maintains a small in-memory list of log entries.

We consolidate header information of an incoming (out-
going) ACK packet into the log entry of the corresponding
outgoing (incoming) data packet. If a packet is retransmitted,
relevant fields (e.g., number of transmissions, ETX) of the log
entry specific to that packet are also updated. In case of a
routing ADV, we collect headers from incoming ADVs, which
provide the ETX of the senders towards the BS. The most
recent in-memory log entries that have destination equal to
the sender of an incoming ADV packet save the advertised
ETX.

The in-memory list of log entries consolidates header
information of different types of packets into a single entry,

thereby reducing space requirements and number of accesses
of flash storage. The oldest log entry in the in-memory list
is stored into the flash memory until either a configurable
amount of time expires, or the list becomes full. Note that
storing and retrieving entries into and from flash memory
should be energy-efficient and quick. At the same time, care
should be taken so that erasures and re-writes are distributed
evenly across the entire flash memory. While we can use a
sensor node database system such as Antelope [9] to manage
log entries, we find that its features are unnecessary for our
purposes and they take extra space in both RAM and ROM.
Hence, we only borrow Antelope’s indexing mechanism for
energy-efficient storage and querying.

We use a MaxHeap [9] index due to its wear-leveling
performance and reduced energy usage. The MaxHeap uses
a binary maximum heap data structure, where a heap node
maintains a reference to a bucket of log entries. We index
the sequence number field of the log entry. The memory
requirement of the MaxHeap index is O(n+4k) bytes, where
n is the number of nodes in the heap and k is the number of
keys in each node.

3) Query Processor: We design a query propagation proto-
col (see Algorithm 1) to forward a query message from the BS
to the neighborhood of a suspect node. The format of the query
packet is shown in Fig. 5(a). The query propagation protocol
relies on the following four fields of a query packet: query ID,
the suspect node ID, the Bloom filter marked with node IDs
present on the path from a neighboring node to the BS, and hop
count. While other fields are self-explanatory, hop count needs
more explanation. As the query packet is propagated, the hop
count is decremented. When the hop count becomes 0, packet
propagation stops. In our design, the value of hop count is set
to number of node IDs encoded in the Bloom filter plus one.
Since the Bloom filter contains path information to reach only
one neighbor of the suspect node, the addition of one allows
propagation of the packet two hops away from that neighbor.
This increases the chance of the packet being received by other
neighbors of the suspect node [25].

Fig. 5(b) shows the propagation of a query packet in our
example network. The packet indicates that the suspect node
is 5, the Bloom filter encodes node IDs 7, 4, and 1, and



the hop count 4. The BS broadcasts the query packet first.
Nodes 2 and 4 receive the packet and node 4 rebroadcasts,
while node 2 does not since it is not present in the Bloom
filter. Node 4 also marks 1 as its upstream node. When node
1 receives the broadcast from node 4, it treats this an ACK
from node 4. Eventually, node 7 receives the packet from
node 4, and rebroadcasts after marking node 4 as its upstream
node. When node 8 receives the packet from 4, it does not
rebroadcast since the hop count in this case is 3 and node 8 is
not present in the Bloom filter. Node 8, however, rebroadcasts
the packet when it receives it from 7, since the hop count is
2 this time. In this way, node 9 receives the packet from 8
and rebroadcasts since the hop count is still 1. Nodes 8 and
9 also indicate 7 and 8 as their upstream nodes, respectively.
The query propagation stops at node 6 since the hop count
becomes 0. The propagation path is shown using thick edges
in the figure. When nodes 7 and 9 find desired log entries,
they each prepare a response message and forward it to the
BS through the upstream nodes.

V. IMPLEMENTATION AND EVALUATION

We implement the Feluda sensor node module and BS
application using C and Java, respectively, and conduct sim-
ulations and testbed experiments to evaluate performance.
We port our implementation to the ContikiOS. In order to
store log entries into flash memory, we adapt the MaxHeap
implementation provided by the database system Antelope [9].
Our implementation of storage and query modules uses 4.7 KB
of ROM, whereas Antelope uses 17.3 KB [9]. The breakdown
of code size for different Feluda modules is given in [25].
We use the Contiki Collect protocol [22] to send data from
sensor nodes to the BS, and expose an intercept interface [21]
to embed provenance into data packets. We implement our
query propagation protocol using two primitives (broadcast
and reliable unicast) provided by the Contiki RIME [22] stack.

A. Simulations

We conduct simulations using COOJA and emulate Tmote
sky motes. The sink mote interacts with the BS application via
a serial interface. We compare Feluda to the most recent related
work, VN2 [3], which uses periodic control packets to transmit
node and link metrics (forwarding path, routing table, link
quality) from every node to the BS. To make the comparison
fair, we use the same provenance embedding scheme used by
Feluda to encode the forwarding path into the VN2 control
packets.

In our simulations, 30% of the nodes generate data items
every 10 s. The data collected at the BS during a period
pertains to the same event. We use 10 as the sliding window
size for Feluda and 0.5 as the threshold to detect a failure.
We vary the periodicity of control packets used by VN2 from
60 s to 180 s. To introduce network failures, we consider a
number of faults which are injected in the 10th minute of each
experiment. Each simulation is 20 minutes long. The results are
averaged over 10 runs. We consider the following performance
metrics: Average Energy Consumption: The average amount of
energy consumed per node due to transmission, reception, and
reading/writing flash memory (if any); and Failure Diagnosis
Time: The time taken to diagnose a network failure. To measure
total energy consumption, we use the values of voltage and

Algorithm 1 Query propagation protocol running at node n
Input: The query packet, q received at node n
Initialization: lastQ← φ, wasAcked← F , upstreamNode← 0

1: if (upstreamNode 6= q.sender) ∧ (q.id = lastQ.id) ∧
(q.hops = lastQ.hops− 1) then

2: wasAcked← T
3: end if
4: if (q.id < lastQ.id) ∨ (q.hops = 0) then
5: return
6: end if
7: q.hops← q.hops− 1
8: if q.hops > 1 ∧ ¬q.BloomFilter.contains(n) then
9: return

10: end if
11: lastQ← q
12: upstreamNode← q.sender
13: if q.hops > 0 then
14: Start a timer to rebroadcast lastQ until wasAcked becomes

true
15: end if
16: if q.hops ≤ 2 ∧ q.suspect 6= n then
17: Search and retrieve log entries to make response
18: reliableUnicastTo(upstreamNode, response)
19: end if

current consumption specific to Tmote sky [9], [26]. We collect
per node energy consumption data every 30 s.

1) Grid Network Topology: We vary the grid dimensions
from 3×3 to 9×9, keeping the nodes spaced 20 meters apart
and the BS in the upper left corner of the grid. We set the
period of packet transmissions to 180 s for VN2. We start
with an experiment in which an arbitrary forwarder node goes
down. Fig. 6 shows the average energy consumed by each
node running Feluda and VN2 for different network sizes.
As the number of nodes increases, Feluda consumes much
less energy than VN2. The reason is that every node running
VN2 periodically generates two control packets (routing table
information and protocol-specific counters) that travel a large
number of hops. While traveling, the control packets may
collide with other control or data packets, resulting in extra
retransmissions. In contrast, Feluda does not use periodic
transmission of out-of-band control packets. The only over-
head stems from logging packet headers and query/response
packet transmission. Please refer to [25] for the breakdown
of average energy consumption in the 9×9 grid network. Due
to flash memory reading/writing, Feluda consumes only 1∼2
mJ energy over the entire experiment, which is negligible
compared to transmission/reception energy. In a 9×9 grid,
Feluda consumes 57% less energy than VN2 on the average.
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Fig. 7: Energy usage in 7×7
grid network (node reset)

We simulate four more failure types in a 9 × 9 grid
network: congestion, incorrectly set node transmission power,



TABLE II: Energy usage in a 9×9
grid network for various failures

Failure type Energy (mJ)
Feluda VN2

Congestion 285.24 631.75
Erroneous TX power 266.91 619.49
Packet length error 273.11 627.15

TABLE III: ETX
around the rebooted
node

Tool ETX
Feluda 147
VN2 (3 min) 27
VN2 (2 min) 32
VN2 (1 min) 112

data packet size exceeding the configured maximum value, and
a forwarder node erroneously configured as a root. In order to
introduce congestion in the network, we set the packet queue
size of the data collection protocol to a small value (two) to
induce packet drop. Feluda diagnoses congestion via the ACK
flag in the packet header, as the flag indicates the reason for
dropping a packet. We exploit the RSSI and length fields of
packet headers to diagnose the cases where the transmission
power of a node is changed to a high value causing link
changes, and where the maximum packet length is configured
to a small value causing transmission failure. Table II shows
that Feluda reduces energy usage by at least 54.85% compared
to VN2 in all these cases. Feluda diagnoses the erroneous root
problem by checking headers of the routing ADVs (containing
ETX of 0) from the false root. VN2 is unable to diagnose
this problem, since it relies on the data collection protocol
to transmit control packets, which are not forwarded toward
the BS by the false root. By using a threshold of 0.5, Feluda
effectively diagnoses these problems (and natural topological
changes) within 55 s, whereas VN2 can take 3 minutes in the
worst case.

2) Visibility Analysis: We conduct another experiment in a
7×7 grid network, where an arbitrary forwarder node reboots
and immediately comes back up. In this case, descendants
of this rebooted node experience packet loss and eventually
change their parents. Once the rebooted node comes back, it
starts broadcasting a routing ADV packet containing its initial
ETX estimate towards the BS. The ETX value in this case
remains high since the node has just started. It eventually
converges to an accurate value after exchanging several rounds
of routing ADVs with neighboring nodes. Hence, immediate
reports from the neighboring nodes containing routing ADVs
from the rebooted node can help diagnose the root cause of
packet loss and link changes observed at the BS. Table III
shows the ETX values reported by a neighbor of the rebooted
node for Feluda and VN2 with different periodicity of control
packet transmissions. Since Feluda collects information from
the header of the routing ADV packet, it can report the correct
ETX value broadcast by the faulty node just after its reset.
In contrast, VN2 with 3-min periodicity reports an incorrect
ETX value of 27. This affects the diagnosis accuracy. Clearly,
VN2 accuracy can be increased by increasing the reporting
frequency, but the energy consumption of VN2 increases.
Fig. 7 shows average energy consumption for Feluda and
VN2 with different periodicity. In this 7×7 grid network,
Feluda consumes 73% lower energy compared to VN2 with
a frequency of one minute.

3) Varying Node Distance: To understand the impact of
link quality on energy usage, we consider a 5×5 grid with
varying distance among nodes (10-40 m). We calculate energy
usage and packet delivery rate (PDR) of Feluda and VN2. PDR

indicates the percentage of packets delivered successfully to
the BS. Fig. 8(a) shows that energy usage for both Feluda and
VN2 increases as the distance among nodes increases. The
reason is that the link qualities degrade as the distance in-
creases, thereby causing more retransmissions in the network.
Feluda consumes 32-48% less energy than VN2 when node
distance exceeds 20 m. Fig. 8(b) shows that PDR for both
data and control packets in VN2 decreases as the node distance
increases. On top of poor link quality, collision between data
and periodic control packets reduces the PDR. Note that energy
usage for VN2 would have been higher if the data and control
packets were not lost in the network and transmitted all the
way towards BS. In contrast, Feluda does not use periodic
control packets and maintains higher PDR at a lower energy
cost.

4) Linear Topology: We consider a linear topology which
is widely used to monitor the health of infrastructure such
as bridges and tall buildings. In our simulations, we vary
the number of nodes in the linear topology from 10 to 25
and allow 30% of the nodes to generate data. Fig. 9 shows
the energy consumption and PDR for Feluda and VN2 with
varying numbers of nodes. As the number of nodes (i.e.,
hops) increases, packets from distant nodes traverse longer
paths, causing intermediate nodes to transmit and receive larger
numbers of packets. Energy consumption for both Feluda and
VN2 increases. Feluda reduces energy consumption by 28-31%
compared to VN2. We find that packet reception rate decreases
with increasing number of hops in the network as shown in
Fig.9(b). The situation is worse for VN2 since both data and
control packets suffer from loss due to queue overflow, thereby
causing poor application performance and diagnosis accuracy.
For example, the packet reception rate for data and control
packets in VN2 becomes 64% and 47% respectively in a linear
network of 25 nodes. In such networks with large hop counts,
the energy gain with Feluda could have been higher if the data
and control packets transmitted by VN2 had reached the BS.

B. Testbed

We construct a 6 m × 6 m topology of 25 battery-
powered TelosB motes deployed in a 5×5 grid (details are
given in [25]). Our motes have 10 kB RAM and 1 MB flash
storage. We select transmission power level 2 to ensure multi-
hop communication. The BS mote is placed in the corner of
the testbed and connected to a laptop running the Feluda BS
application via a serial interface.

In our experiments, 30% of the motes actively generate data
every 10 s. We set the sliding window size to 10 and failure
detection threshold to 0.5 for Feluda. We consider two different
periods of control packet transmissions for VN2: 1 min and 3
min. We use the same fault (node down) introduction strategy,
performance metrics, and energy model as in Sec. V-A. Each
experiment is 20 minutes long. During the experiment, every
node records the number of bytes read from/written to flash,
transmitted, and received into a local file every 30 s. These
files are retrieved from all nodes at the end of the experiment
to compute energy consumption.

Fig. 10 shows the average energy consumption per node for
Feluda and VN2. VN2 periodic control packets incur energy
cost. In contrast, Feluda stores packet headers into local flash
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Fig. 10: Testbed results

memory and uses query/response packets only with potential
network failures. The energy cost for flash read and write is
negligible (3-5 mJ). Feluda reduces average energy usage per
node by 24% over VN2 when it collects system metrics every 3
minutes. The energy reduction offered by Feluda becomes 48%
when VN2 operates with 1 minute periodicity. These results
validate the gain that we achieved in the COOJA simulations.
Please refer to [25] for testbed experiments that demonstrate
the effectiveness of Feluda in diagnosing topological changes
caused by environmental conditions.

VI. CONCLUSIONS AND DISCUSSION

In this paper, we propose Feluda for exploiting packet
headers and provenance to troubleshoot elusive network fail-
ures. The Feluda BS application tracks abnormal symptoms
(e.g., lost, delayed, or duplicate packets) and analyzes data
provenance to localize failures. The Feluda code running on
sensors allows them to efficiently store packet headers into
flash and send headers of interest to the BS on demand. By
requiring only a few nodes (in the vicinity of failures) to
transmit a few packet headers, Feluda maintains packet-level
visibility at a low energy cost. We implemented the Feluda
BS application using Java and the sensor node module on
ContikiOS. We evaluate Feluda through simulations and a
testbed of 25 TelosB motes. Feluda identifies failures such as
node down, soft reset, and congestion. We find that incorrectly
configured nodes can induce routing changes, packet loss, and
network partitions. Simulation and testbed results show that
Feluda effectively diagnoses these failures with 24-57% lower
energy cost than the state-of-the-art.

Feluda’s centralized failure detection and on-demand
querying methods keep the sensor nodes simple. Data collec-
tion applications configure the parameters of routing protocols
running on sensor nodes. The query/response protocol within
Feluda, however, runs independently of the data collection
application and does not require run-time modification to the
configuration of sensor nodes. Only the BS component of
Feluda has configuration parameters. The query/response pro-
tocol is executed only when the Feluda BS application requires
information about a specific packet (or node) to diagnose a
detected failure. If the BS application can diagnose problems
from node ID, sequence number, and provenance information
embedded into packets, there is no overhead incurred by the
query/response protocol. There is energy cost associated with
storing packet headers into flash storage, but that is negligible
as observed in the results. The energy reduction achieved by
Feluda mainly stems from use of local logging and on-demand
querying. Though advanced provenance embedding techniques
such as PPF [7] reduce energy cost, our experiments consider
the same method to embed node IDs for both Feluda and VN2
and demonstrate significant gains for Feluda.

With clustered failures (where a number of nodes fail
simultaneously), Feluda can localize failures and determine the
root cause as long as sufficient evidence is available. As future
work, we plan to experiment with complex failures observed
during long-term deployment of sensor networks and evaluate
Feluda and state-of-the-art diagnostic protocols on large public
testbeds.
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