
An Energy-Efficient Approach for Provenance
Transmission in Wireless Sensor Networks

S. M. Iftekharul Alam
Purdue University

alams@purdue.edu

Sonia Fahmy
Purdue University

fahmy@cs.purdue.edu

Abstract—Assessing the trustworthiness of sensor data and
transmitters of this data is critical for quality assurance. Trust
evaluation frameworks utilize data provenance along with the
sensed data values to compute the trustworthiness of each
data item. However, in a sizeable multi-hop sensor network,
provenance information requires a large and variable number
of bits in each packet, resulting in high energy dissipation due
to the extended period of radio communication, and making
trust systems unusable. We propose energy-efficient provenance
encoding and construction schemes, which we refer to as Prob-
abilistic Provenance Flow (PPF). To the best of our knowledge,
ours is the first work to make the Probabilistic Packet Marking
(PPM) approach for IP traceback feasible for sensor networks.
We design two bit-efficient provenance encoding schemes along
with a complementary vanilla scheme. Depending on the network
size and bit budget, we select the best method using mathe-
matical approximations and numerical analysis. Our TOSSIM
simulations demonstrate that the encoding schemes of PPF have
identical performance with a low bit budget (∼ 32-bit), requiring
33% fewer packets and 30% less energy than PPM variants to
construct provenance. With a two-fold increase in bit budget,
PPF with the selected encoding scheme reduces the energy
consumption by 60%. 1

Index Terms—provenance; trust framework; probabilistic
packet marking; energy-efficiency; sensor networks

I. INTRODUCTION

New micro sensors have enabled wireless sensor networks

(WSNs) to gather real-time data from the physical world [1],

[2]. Planet-wide sensor networks [3], [4], sensor networks

for large-scale urban environments [5], and physical infras-

tructure systems [6] indicate potential deployments of multi-

hop networks consisting of hundreds of sensor nodes. In

such networks, data produced by the sensors are collected at

the base station and made available to decision makers for

further analysis. As the quality of decision making is criti-

cally dependent on the quality of transmitted information [5],

trustworthiness of information and information-transmitting

nodes is important [7]. In a multi-hop network, provenance

includes knowledge of the originator and processing path of

data since its generation. While a few provenance-based trust

evaluation frameworks have been proposed [8], [9], they do not

investigate energy dissipation due to provenance transmission.

Provenance of a data item can be represented as a tree which

is embedded as meta-data with the item, and updated along

the path used to forward the item to the base station [9].

In this case, every intermediate node carries provenance of

1This work has been sponsored in part by NSF grant CNS-0964294.

length proportional to the hop count between that node and the

originator of the data item. In a network with a large diameter

(hop count), this increased meta-data length results in an ex-

tended period of radio communication and energy dissipation

at every intermediate node. We consider a real deployment

of a 46-hop network [10] in our simulations, and observe

that aggregated energy dissipation of the network increases by

27% when a traditional trust framework is employed. Although

large networks can be hierarchically organized [11], they still

require a significant number of hops [12], with non-negligible

energy usage for provenance transmission.

Provenance encoding and construction is similar in nature to

the well-known IP traceback problem [13], [14]. IP traceback

aims to determine the forwarding paths of spoofed packets

in traditional wired networks. Among the many proposed

solutions to this problem, Probabilistic Packet Marking (PPM)

can be most easily adapted to WSNs [15]. In our previous

work [16], we showed that direct application of PPM to

WSNs is infeasible since it embeds a single node identifier

in each packet, and hence requires a large number of packets

to construct the forwarding path. Instead, we proposed a

new approach, Probabilistic Provenance Flow (PPF), where a

connected subgraph of the forwarding path is probabilistically

incorporated into a packet.

In this paper, we extend PPF by designing and analyzing

three new bit-efficient provenance encoding schemes that

ensure faster convergence of provenance construction in an ar-

bitrarily large multi-hop network. We investigate the selection

of encoding scheme and its parameters given a fixed bit budget

for provenance encoding. Our simulation results show that PPF

with the selected encoding scheme can consume up to 60%

less energy than the traditional approach, which significantly

increases the network life-time.

The remainder of this paper is organized as follows. We

formulate the problem of energy-efficient provenance trans-

mission in Section II. Section III discusses related work.

Section IV explains three different encoding schemes under

PPF. We discuss the corresponding approaches to decode and

construct provenance in Section V. In Section VI, we examine

the selection of parameters for one of the encoding methods.

We analyze the bit requirements for embedding provenance us-

ing all encoding schemes in Section VII. Section VIII presents

TOSSIM simulation results. Finally, Section IX concludes the

paper.



II. PROBLEM FORMULATION

A. Network Model

We consider a multi-hop WSN where changes in topology

due to failure or mobility can occur, but are infrequent. We

make the following assumptions regarding the network and

traffic:

(1) A Base Station (BS) acts as a central command authority

and the root of a routing tree. It has no resource constraints

and cannot be compromised by an attacker.

(2) Sensor nodes monitor their surroundings and periodi-

cally report to the base station or their designated cluster head

(if any).

(3) Multiple sensors are used to monitor an event. Within a

particular time window, independent observations obtained at

cluster heads (if any) or the base station from different sensors

are concerned with the same event.

(4) A provenance-based trust management method such

as [8], [9] is used in the application layer to evaluate and

manage trust in an adaptive manner. More details can be found

in [16].

B. Problem Statement

We consider a network of N nodes, where the maximum

length (depth) of any forwarding path (tree) is L. Assume

that the maximum number of bits that can be used to embed

provenance information in a single packet is B. Based on this

bit budget, there is an integer m, 1 < m ≤ L such that at

most m consecutive node identities (that is, m−1 consecutive

edges) can be embedded into a single packet. We must perform

the following three operations:

(1) Provenance Embedding: In a forwarding tree G =
(V,E) rooted at the base station, each node ni ∈ V makes an

independent decision whether to embed its identity into the

packet, starting a connected sub-graph, with probability pi.

We need to design a provenance embedding method to carry

a partial path P =< ni1 , ni2 , · · ·nim > into a single packet

where nij ∈ V, 1 ≤ j ≤ m and (nik , nik+1
) ∈ E, 1 ≤ k ≤

m−1. This problem is a simple extension of the edge sampling

approach in IP traceback [13].

(2) Provenance Construction: At the base station, we

must construct the entire provenance tree G = (V,E) by

exploiting partial path information collected from a number

of received packets, with an upper bound on the number of

packets required to construct the provenance.

(3) Provenance Evolution: After topological changes, e.g.,

due to failures or mobility, we must bound the time that it

takes to reflect the changes in the constructed provenance.

III. RELATED WORK

A few provenance-based trust frameworks have been pro-

posed to date [8], [9]. These frameworks do not consider

energy-efficiency in WSNs. The problem of provenance trans-

mission is related to the IP traceback problem that determines

the forwarding path of spoofed packets [17]. IP traceback

methods include hop-by-hop tracing [18], [19], out-of-band

ICMP traceback [20], and in-band probabilistic packet mark-

ing [13], [14]. Hop-by-hop tracing is not well-suited to WSNs

due to its large storage requirement. Hot-spot based traceback

methods designed for mobile ad-hoc networks [21], [22] store

packet information at the nodes, and traceback is performed

hop-by-hop to determine the hot-spot where the attacker is

located. In our case, provenance information is continuously

required at the base station to compute trust scores of descen-

dant nodes. Hot-spot based methods would incur unnecessary

delay in trust score calculation. Out-of-band ICMP traceback

requires out-of-band communication and increased bandwidth

which limit its usability in resource-constrained WSNs.

In this work, we adapt Probabilistic Packet Marking (PPM)

since it does not require additional storage or out-of-band

communication. PPM assumes static routes which may not

hold in our case. Additionally, PPM requires a significant

number of packets to construct the forwarding path. Network

coding variants of PPM [23], [24] require fewer packets to

construct the forwarding path. Network coding approaches,

however, have a high computational complexity and increase

the length of the packet, as marking coefficients are transmitted

with the packet. Cheng et al. [25] determine the optimal

marking probability for each node to reduce the number of

packets required to construct the forwarding path.

IV. PROBABILISTIC PROVENANCE EMBEDDING

In this section, we present three provenance embedding

schemes as part of our Probabilistic Provenance Flow (PPF)

approach. All three methods incorporate node identifiers into

a packet probabilistically and only differ in how they encode

these identifiers.

A. Juxtaposition of Ranks

In the rank method, instead of embedding the node ID

directly into a packet, rank(ID) (defined in Definition 1

below) of the node is embedded, since every node ID is

uniquely identifiable by its rank, and the rank would need

fewer bits than the identity.

Definition 1. Consider U = {ID1, ID2, · · · IDN} as the

set of N node IDs. There is a permutation of U , σ(U) =
{IDa1

, IDa2
, · · · IDaN

}, such that, IDaj
< IDaj+1

, for

1 ≤ j ≤ N − 1. Rank of any node ID, IDi ∈ U , denoted

as rank(IDi), is the position of IDi in σ(U).

Assume that the packet meta-data has space to hold identi-

ties of up to m nodes. We use a counter of log2 m bits to track

the number of already embedded ranks in the packet. Initially,

the buffer and counter contain zeroes. Every node ni decides

to start a connected sub-graph with probability pi. Once it

decides to do so, it overwrites the previous information by

doing the following: it zeroes out the entire provenance field

and then embeds its rank at the beginning of the buffer and

sets the counter to one. If a node decides not to overwrite, it

checks for empty buffer space using the counter field. If there

is space, it adds its rank into the first available slot in the

buffer and increments the counter. Fig. 1 shows an example

of this method where the buffer space can hold at most three

node identities in a single packet.



Decision: Overwrite Not Overwrite Overwrite Not Overwrite

5 19 19 20

Ranks Binary counter

0 1 1 0 0 1 1 05 6

Not Overwrite

5 6 1 17

7 19 205 6

Fig. 1. Provenance encoding using juxtaposition of ranks (numbers inscribed
in the circles indicate rank of nodes).

B. Prime Multiplication

Our second encoding scheme, the prime method, is based

on prime multiplication. In a reasonably large network, this

method can embed more node IDs within same number of

bits (on the average), compared to the rank method. To the

best of our knowledge, this method has not been used in any

prior work.

TABLE I
BIT REQUIREMENTS FOR MULTIPLICATION OF m NODE IDS, PICKED

RANDOMLY FROM THE FIRST f PRIME NUMBERS.

f
m = 3 m = 4 m = 6

Avg Max Avg Max Avg Max

500 30.80 36 40.76 47 59.82 69

1000 34.25 39 45.35 52 67.02 76

2000 37.82 42 49.84 56 73.64 83

5000 42.33 47 55.83 62 82.45 93

Definition 2. Let Pn be the largest prime number that is

less than or equal to the positive integer n. We define the

set of usable IDs, QP,s where P is a prime number and s is

a positive integer:

QP,s = {n ∈ N | 2 ≤ n ≤ P and 0 ≤ n− Pn ≤ s}

Definition 3. For any positive integer n ∈ QP,s, for some P

and s, we define two functions:

• prime(n) = Pn (the largest prime number that is less

than or equal to n).

• offset(n) = n− Pn.

The prime method is motivated by the idea of using prime

numbers as node IDs and encoding a set of IDs through their

multiplication which can be uniquely factorized. However,

prime multiplication incurs computational and spatial overhead

when the participating prime numbers become larger. As

shown in Table I, the average number of bits required to

multiply m prime numbers increases with the increasing size

of the domain of these numbers. This shows the infeasibility

of using prime numbers directly as node IDs. Thus, we define

QP,s (Definition 2) to ensure that node IDs will not differ

by more than s from their nearest prime numbers where s is

referred as the spreading factor. Then, we encode a sequence

of node IDs by multiplying their nearest prime numbers and

summing up the corresponding offset values (Definition 3).

Before describing the details of encoding process, we describe

the assignment of node IDs using set QP,s.

1) Node ID Assignment: For a network of N nodes, we

pick a set QP,s = {q1, q2, · · · qz} with the smallest z such

that z ≥ N . An in-place algorithm is used to produce a

random permutation of QP,s, σ(QP,s) = {qa1
, qa2

, · · · qaz
}

and members of σ(QP,s) are assigned to all N nodes se-

quentially. For example, in an 8-node network, we can pick

IDs for the nodes from a random permutation of Q11,7 =
{2, 3, 4, 5, 6, 7, 8, 9, 10, 11}.

For a given number of nodes (N ), the bit requirements for

prime multiplication increase the most when s = 0, which

makes QP,s nothing but a set of prime numbers that are less

than or equal to P ( = N th prime number). With an increasing

value of s, the set QP,s can contain numbers upper-bound

by relatively smaller value of P (≪ N th prime number). By

tuning s, the largest element (P ) of QP,s can be made close to

the total number of nodes (N ). This brings about an interesting

trade-off: reduction of the number of bits required for prime

multiplication versus increase in the number of bits required

for summation of offsets. We will investigate this trade-off in

Section VI.

2) Encoding Process: To store provenance information, we

divide the provenance buffer into two parts: product and offset.

Every node ni has an ID, say IDi, that is a member of QP,s

for some P and s. As with the rank method, once a node ni

decides to start a connected sub-graph, it clears the provenance

buffer. It then inserts prime(IDi) into the product part and

offset(IDi) into the offset part (Definition 3). If a node nj

decides not to overwrite, it retrieves the values stored in the

product and offset parts. It then multiplies the value of the

product with prime(IDj), adds offset(IDj) to the offset, and

stores the newly calculated values into the respective parts.

Fig. 2 shows an example with m = 2.

5

Decision: Overwrite Not Overwrite Overwrite Not Overwrite

4 18

Prime multiplication Offset

Not Overwrite

25

0+1+25x3x230+15x305 117 1+117x29

Not Overwrite

1+1+217x29x7

30 9

Fig. 2. Provenance encoding using prime multiplication (numbers inscribed
in the circles indicate ID of nodes).

We no longer need a counter field to track the number of

node identities encoded in the provenance buffer because there

is always a unique prime factorization of the product part

which gives the number of participating nodes.

C. Rabin Fingerprints

The prime method can typically accommodate more node

identities (m) than the rank method, but prime multiplication

results increase in size as N and m increase. In order to

embed more node IDs into a single packet without requiring

additional bits and excessive computational complexity, we

investigate Rabin fingerprints [26].

A Rabin fingerprint calculates a near-perfect and space-

efficient unique representation of a sequence of bits. For

a sequence of bits n1, n2, · · ·nm, of length m, the Rabin

fingerprint is given by the following expression, where α and

M are constant integers:

RF (n1, n2, · · ·nm) =(n1α
m−1 + n2α

m−2 + · · ·+ nm)

mod M



The fingerprint of the concatenation of two sequences X

and Y can be computed as follows:

RF (X||Y ) = RF (RF (X)||Y ) = RF (RF (X)×αl)+RF (Y )

where, || represents concatenation and l is the length of Y .

1) Encoding Fingerprints: The partial path traversed by a

packet can be considered as a bit sequence of IDs of the nodes

on that partial path. We aim at transmitting the fingerprint of

that bit sequence sequence instead of transmitting the actual

sequence. Every node uses two constant integers α and M to

compute its fingerprint. As the packet traverses the path, we

could easily compute the contribution of every node to the

fingerprint and add it to the contributions of its predecessor

nodes on that path. For example, if the packet traverses the

partial path < n1, n2, · · ·nm >, node ni, 1 ≤ i ≤ m has

a contribution of IDiα
b(m−i+1) to the fingerprint associated

with that path. Here, b is the number of bits required to

represent a single ID. However, the incremental sum of these

contributions requires a large and variable number of bits

in the packet which is undesirable. Hence, we exploit the

concatenation property of Rabin fingerprints, which allows

any node nk to compute the fingerprint of node IDs from

IDn1
to IDnk

by concatenating its own ID (IDnk
) to the

fingerprint value of previous nodes IDn1
to IDnk−1

. The

following equation makes this claim clear:

RF (IDk,IDk−1, · · · ID1)

= RF (IDk||RF (IDk−1, IDk−2, · · · ID1)) (1)

Thus, every node on a path can update the fingerprint without

requiring any extra bits as the fingerprint value is always less

than the divisor M .

To store provenance information, we divide the provenance

buffer into three fields: fingerprint, intermediate node, and

length. As in other PPF methods, every node ni decides to start

a connected sub-graph with probability pi. Once it decides

to do so, it clears the buffer and inserts IDi and 1 into the

fingerprint and length fields, respectively. If a node nj decides

not to overwrite, it retrieves the values stored in the fingerprint

and length fields. If the length is less than m, it updates the

current fingerprint value (say X) by computing IDj ||X and

increments the current value of the length field by one. If the

newly computed length is less than or equal to m, IDj is

stored in the intermediate node field that will aid in decoding

the provenance as discussed later.

2) Partitioning Fingerprints: Since we need to exploit pre-

vious knowledge about node ordering to retrieve provenance

information from the fingerprint (as we will discuss in the

next section), transmitting large partial provenance information

using fingerprints may not always be advantageous. In WSNs,

nodes are vulnerable and error-prone and the routing path

may change due to the lossy nature of the wireless medium.

This may cause inconsistency between the current and the

previously stored ordering among nodes, making the entire

fingerprint-based provenance information useless. To mitigate

this problem, we divide the fingerprint field into r(r > 1)
parts around the (r − 1) intermediate nodes so that changes

in ordering in one part do not affect other parts and changes

Decision: Overwrite Not Overwrite Not OverwriteOverwrite

RF(5)

5 7 9 10

Fingerprint
Intermediate

Lengthnode

5 1 RF(7, 6, 5) 7 3 RF(9) 9 1 RF(10, 9) 10 2

(a) Embedding provenance with non-partitioned fingerprint

Decision: Overwrite Not Overwrite OverwriteNot Overwrite

RF(5)

RF(7, 6, 5)

RF(7, 6, 5)

RF(10)

5 7 9 10

7 3

5RF(7, 8, 9)

1

7

Fingerprint

Intermediate
Lengthnode

5

10

1

(b) Embedding provenance with m = 5 and r = 2

Fig. 3. Provenance encoding using Rabin fingerprints (numbers inscribed in
the circles indicate ID of nodes).

in ordering can be reflected.

Each part contains fingerprints of at most ⌈m+r−1
r

⌉ node

IDs where the length field indicates the total number of par-

ticipating node IDs. For example, assume we wish to embed

information about a partial path < n1, n2, · · ·nm > into a

single packet with m = 7 and r = 2. As the packet traverses

the network, node n4 becomes the intermediate node and the

first part of the fingerprint contains RF (ID4, ID3, ID2, ID1)
and the second part contains RF (ID4, ID5, ID6, ID7).

Both parts of the fingerprint are calculated according to

equation 1 and the length field indicates the combined length

of the both parts. Note that, a non-partitioned fingerprint is

a special case where the intermediate node corresponds to

the lone fingerprint. Fig. 3(a) depicts an example of the non-

partitioned case and Fig. 3(b) depicts the partitioning approach

with m = 5 and r = 2. Note that in adjacent fingerprints, the

order in which the fingerprints are calculated is opposite. This

ensures checking the integrity of the partitioned fingerprints

at no additional cost.

V. DECODING AND CONSTRUCTING PROVENANCE

When a packet is received at the base station, the provenance

buffer is examined to retrieve the embedded partial provenance

(or path) information. With the rank embedding approach, we

can easily extract the embedded identities from the provenance

buffer using the length field as the rank of each node ID uses

a fixed number of bits. However, with both the prime and

fingerprint embedding method, we assume that information

about ordering among nodes is known beforehand using a

previously constructed provenance graph, Gpre = (Vpre, Epre)
(as discussed in Section V-C). Here, Vpre is the set of node

IDs and Epre is the set of edges among those nodes indicating

provenance flow.

A. Decoding Process for Prime Method

We apply a standard prime factorization algorithm over the

product part of the provenance buffer to retrieve the set of

nearest prime numbers (say, X = {X1, X2, · · ·Xm}). Then,

we perform a DFS (Depth-First-Search) over Gpre to find all

the possible paths consisting of m node IDs whose nearest

prime numbers form any permutation of X . We need to modify

the DFS to compare the nearest prime number of a particular



node ID with the members of set X while visiting that node

and track the offset of the ID when a match is found. With

this modification, DFS will take O(m(|Vpre| + |Epre|)) time

and produce all possible sets of node IDs whose nearest prime

numbers form a permutation of X . Since every ID does not

differ from its nearest prime number by more than s, we

can find at most sm such sets. For each such set, we will

sum up the offset values and calculate its difference from

the offset value retrieved from the received packet. If the

difference is zero, we record the matched set as the retrieved

provenance. Otherwise, we conclude that topological changes

may have occurred in the network and the previously stored

provenance graph may not be up-to-date. Further processing

is necessary to determine the provenance, such as checking

other combinations of partial paths by considering nodes that

are 1 or 2-hop away from the nodes on the recorded path,

or triggering the rank ID embedding approach to recover the

order. These extensions will be the subject of our future work.

B. Decoding Process for Fingerprint Method

Upon reception of a packet, we retrieve the r fingerprint(s),

associated intermediate node ID(s), and the length field in-

dicating the number of participating node IDs. For every

intermediate node, IDi, 1 ≤ i ≤ r − 1, we perform a DFS

over Gpre = (Vpre, Epre) with following modifications:

• Set IDi as the root for DFS.

• Search all the nodes within ⌈m+r−1
r

⌉-hops away from the

node IDi and compute the Rabin fingerprint using the

concatenation property. Computing the fingerprint takes

constant number of shift and XOR operations provided

that a pre-computed hash table (of size < 4 kB) contains

frequently used values.

• After computing every fingerprint of length ⌈m+r−1
r

⌉,

we compare them to the retrieved fingerprints RFi and

RFi+1. If a match is found, we record the matched

path originating from the node IDi; otherwise, further

processing is necessary to determine the exact provenance

which we will consider in our future work.

Typically, for every intermediate node, we are searching a

smaller portion of the graph Gpre using DFS. In the worst

case, we may search the entire graph which can be performed

in O(|Vpre|+ |Epre|) time.

False Positive Rate for Fingerprints: Assume that we have

at most x = ⌈m+r−1
r

⌉ node IDs per partition where m is the

total number of node IDs embedded per packet. Since decod-

ing each pair of partitions is independent of others, it suffices

to analyze the false positive probability of fingerprinting a path

of x node IDs originating from a particular intermediate node

ID. Assume that there are n such paths in the provenance

graph. Then, the false positive probability ≤ n2x.b
2k

, where k is

the number of bits used for fingerprinting and b is the length

of the bit representation of one node ID.

If the maximum fan-out of the network is f , then n is upper-

bound by fx−1 which gives,

False positive probability ≤
f2(x−1)x.b

2k
(2)

=
b(m+ r − 1)f

2(m−1)
r

r.2k
. (3)

C. Construction and Evolution of Provenance

With our identity embedding methods, provenance construc-

tion is straightforward once we have decoded partial path in-

formation from the received packet. After collecting sufficient

packets with embedded provenance (i.e., when we have at

least one ID from each node), we combine the partial paths to

produce the complete provenance graph, G = (V,E). Here, V

is the set of nodes and for some vi ∈ V, vj ∈ V , (vi, vj) ∈ E

iff (IDi, IDj) belongs to some partial provenance encoded

in a received packet. However, decoding using the prime and

fingerprint approaches needs prior knowledge of the order of

nodes. This can be obtained by applying the rank method first.

After a configurable period of time (generally greater than

provenance convergence time) during which the provenance

is constructed using the rank method, the prime or fingerprint

embedding method can be employed.

In order to keep node order information up-to-date, nodes

utilize the rank approach every tembedding seconds. Thus, any

topological changes are reflected in the provenance. Based on

the frequency of mobility or failures in the network, tembedding

can be adjusted. However, a small value of tembedding will

reduce the benefits of applying the bit-efficient prime and

fingerprint methods. We are currently considering a reactive

approach to trigger the rank approach only when necessary.

D. Complexity Analysis

Decoding using the rank method is straightforward and

takes only O(m) time, where m is the maximum number of

nodes embedded per packet.

In case of the prime method, we use the General Number

Field Sieve (GNFS) algorithm for prime factorization. The

asymptotic running time for this algorithm for a b-bit number

is O(exp(( 64b9 )
1
3 (log b)

2
3 )).

In an N -node network, node IDs require at most ⌈log2 N⌉
bits with the appropriate choice of s and m. Thus, mul-

tiplication of m node IDs requires at most m⌈log2 N⌉
bits which makes the complexity of prime factorization

O(exp(( 64m⌈log2 N⌉
9 )

1
3 (log(m⌈log2 N⌉))

2
3 )).

Then, we need to perform DFS which takes O(m(|V | +
|E|)) and sm comparisons which take O(sm) time. We know

that s can be approximated as N
π(N) ∼ lnN (as discussed in

the next section). Thus, the time required to decode provenance

from a single packet becomes

O(exp((
64m⌈log2 N⌉

9
)

1
3 (log(m⌈log2 N⌉))

2
3 )+mN2+(lnN)m)

which is exponential in terms of m lnN .

In case of the fingerprint method, we need to search

the provenance graph and update the fingerprint using con-

catenation while visiting a node on that graph. This takes

O(|V |+ |E|) time which is O(N2) in the worst case.



TABLE II
PRIME GAPS BELOW THE NUMBER n.

n
Prime Gap

Observed mean (µ) Observed stdev gapavg
µ

gapavg

500 5.29 3.11 5.12 1.03

1000 5.96 3.55 5.82 1.02

2000 6.61 4.50 6.52 1.01

5000 7.48 5.30 7.44 1.01

Regarding the construction of entire provenance in an N -

node network, we represent the provenance graph using an

adjacency matrix. The total number of edges of the graph

can be at most O(N2). Since edge insertion requires constant

time, the worst case complexity for constructing the entire

provenance is O(N2). We need O(N2) space to hold the

provenance graph apart from the space required by the trust

framework.

VI. SPREADING FACTOR

The prime method requires two parameters s and P that

define the set of node IDs, QP,s.

A. Approximating the Spreading Factor

For a given number of nodes, N , we want to determine the

spreading factor, s that minimizes the highest value of QP,s.

This value of s depends on the prime gap.

Definition 4. A prime gap is the difference between two

successive prime numbers, pk and p(k+1), where pk is the

kth prime number. Thus, a prime gap of length n is a run of

n− 1 consecutive composite numbers between two successive

primes.

We use the Prime Number Theorem to approximate the

average length of prime gaps. The theorem gives an asymptotic

form for the prime counting function π(n), which counts the

number of primes less than some integer n. According to this

theorem (proved independently by Hadamard (1896) and de

la Valle Poussin (1896)),

π(n) ∼

∞
∑

k=0

k!n

(lnn)k+1

∼
n

lnn
+

n

(lnn)2
+

2n

(lnn)3
+ · · · (4)

It has been shown that summation of the first three terms in

equation 4 is a better estimate for π(n) (Derbyshire 2004,

pp. 116-117). Now, we can approximate the average length of

prime gaps below n as

gapavg(N) ≈
n

π(n)
∼

1
1

lnn
+ 1

(lnn)2 + 2
(lnn)3

.

Table II shows the theoretical mean along with empirical

mean and standard deviation of prime gaps for different

values of n. The last column of this table gives the ratio

between empirical and theoretical mean which justifies the

approximation above. Assume that Pn denotes the nth prime

number. By choosing a spreading factor, s, that approximates

to gapavg(N) for some N , we can obtain a set of numbers

TABLE IV
AVERAGE CASE BIT REQUIREMENTS FOR VARYING NUMBER OF NODES

AND PER-PACKET NODE IDS WITH s∗ .

N
m = 3 m = 4 m = 5

s∗ avg s∗ avg s∗ avg

500 5 27.82 7 36.16 6 44.35

1000 5 31.25 7 40.53 6 49.9

2000 10 34.5 7 45.14 6 55.81

5000 10 38.99 7 51.11 11 62.4

upper-bound by some prime number Pπ(N)+1 ≥ N . We

denote this set as QPπ(N)+1,gapavg(N). Due to the high variation

in prime gaps with respect to gapavg(N) the cardinality of

this set becomes less than N . Assume that using the same

spreading factor (s = gapavg(N)), we find a set of numbers,

QPπ(N′),s
such that |QPπ(N′),s

| is the smallest number greater

than or equal to N . Similarly, by choosing some values larger

than gapavg(N) for spreading factor s, we can have a set of

numbers QPπ(N′′),s
, where |QPπ(N′′),s

| is the smallest number

greater than or equal to N . Clearly, Pπ(N ′) > Pπ(N ′′), which

makes the latter set more favorable in terms of bit requirements

(as observed in Table I). We use the following optimistic

choice:

s ≥ gapavg(N) ≈
N

π(N)
≈

1
1

lnN
+ 1

(lnN)2 + 2
(lnN)3

. (5)

B. Choice of Spreading Factor

For a network of size N , we first calculate gapavg(N) and

by setting s = ⌊gapavg(N)⌋, we pick a set QPπ(N′),s
such

that |QPπ(N′),s
| is the smallest number greater than or equal

to N . Considering the requirements for prime multiplication

and summation of offset, we estimate the worst case bit

requirements per packet as:

BP
worst(s,m) = log2(

m−1
∏

i=0

(Pπ(N ′) − i)) + log2(m× s),

where m is the number of node IDs embedded per packet.

Then we increase s by one and determine the corresponding

set of node IDs. After calculating the worst case bit require-

ments for the new set, we compare the newly calculated value

with the current one. If the newly calculated set outperforms

the current one in terms of worst case bit requirements, we

set the new set to be the current one. We continue until the

newly calculated set requires more bits than the current one.

Table III shows the comparison among the required number

of bits for different values of s with varying numbers of nodes

and number of per-packet node IDs. For a particular number

of nodes and per-packet node IDs, the last column gives the

best choice for s (s∗).

VII. BIT BUDGET

A fixed budget of bits (Bbudget) is available for embedding

provenance of at most m nodes within the meta-data of a

packet. We give the value of m for our three encoding methods

in this section.



TABLE III
WORST CASE BIT REQUIREMENTS FOR VARYING NUMBER OF NODES, PER-PACKET NODE IDS, AND CHOICE OF s.

m N gapavg
s = ⌊gapavg⌋ s = ⌊gapavg⌋ + 1 s = ⌊gapavg⌋ + 2 s = ⌊gapavg⌋ + 3 s = ⌊gapavg⌋ + 4

s∗
Pmax Bits Pmax Bits Pmax Bits Pmax Bits Pmax Bits

3 500 5 613 32 587 33 563 33 547 33 521 33 5

3 1000 5 1307 36 1229 36 1163 36 1109 36 1063 36 5

3 2000 6 2683 40 2477 39 2377 39 2269 39 2213 39 10

3 5000 7 6779 44 6367 43 6079 43 5857 43 5669 44 10

4 500 5 613 43 587 42 563 42 547 43 521 43 7

4 1000 5 1307 47 1229 47 1163 46 1109 47 1063 47 7

4 2000 6 2683 51 2477 51 2377 51 2269 51 2213 51 7

4 5000 7 6779 56 6367 57 6079 57 5857 57 5669 56 7

5 500 5 613 52 587 51 563 52 547 52 521 52 6

5 1000 5 1307 57 1229 57 1163 57 1109 57 1063 57 6

5 2000 6 2683 62 2477 63 2377 63 2269 62 2213 62 6

5 5000 7 6779 70 6367 70 6079 69 5857 69 5669 69 11

TABLE V
CHOOSING (r,m) FOR DIFFERENT BIT BUDGETS IN A 5000-NODE

NETWORK WITH b = 13 AND ǫ = 5.

r
Bbudget = 32 Bbudget = 64 Bbudget = 128
m x m x m x

1 2 2 9 9 25 25

2 n.a. n.a. 7 4 21 11

3 n.a. n.a. n.a. n.a. 16 6

4 n.a. n.a. n.a. n.a. 9 3

A. Bit Usage for Rank Method

In an N -node network, bit requirements for the rank method

are BR(m) = m× log2 N + log2 m, where, the first term on

the right hand side indicates the required number of bits to

embed m ranks, and the second term accounts for the counter

that tracks the number of embedded ranks. Thus, we choose

the largest m such that BR(m) ≤ Bbudget.

B. Bit Usage for Prime Method

In an N -node network, we can pessimistically pick a value

of m such that BP
worst(m, s∗) ≤ Bbudget. This does not guar-

antee the best usage of available bits since prime multiplication

of m node IDs does not always need a fixed number of bits (as

in the case of rank approach) and BP
worst(m, s∗) can hold more

than m node IDs in many cases. Hence, we consider average

case bit requirements before choosing an m for a particular

bit budget. The average bit requirements per packet are

BP
avg(s,m) =

m

π(N ′)

(

log2 π(N ′)−1
∑

i=2

(i ∗ [π(2i)− π(2i−1)])

+ log2 π(N
′) ∗ [π(N ′)− π(2log2 π(N ′)−1)]

)

+ log2(m× s).

Table IV shows the average number of bits calculated for

different numbers of nodes and per-packet node IDs with their

corresponding s∗. We choose an m∗ such that BP
avg(s

∗,m∗−
1) ≤ Bbudget ≤ BP

avg(s
∗,m∗). For example, in a 1000-node

network with 40 bits available for provenance embedding, we

choose m∗ to be 4 since BP
avg(5, 3) ≤ 40 ≤ BP

avg(7, 4)
(Table IV). This choice provides the opportunity to embed

more node IDs per packet on the average.
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Fig. 4. Average bit requirements for per packet provenance in networks of
different sizes. (Stacked data along a single column is given in relative values
that need to be added to get the absolute values of each textured bar.)

C. Bit Usage for Fingerprint Method

In an N -node network, the bit requirements for embedding

m IDs per packet can be expressed as

BF (r,m) =

{

b+ log2 m+ k, r = 1,

(r − 1)b+ log2 m+ rk, r > 1,
(6)

where r is the number of partitions in the provenance buffer,

k is the number of bits required for each fingerprint and b

is the number of bits required to represent one node ID. We

need to choose an m and r such that BF (r,m) ≤ Bbudget.

Here, r = 1 denotes the non-partitioned case, where the entire

provenance buffer can be regarded as a single partition.

Assuming a false positive probability of 2−ǫ, ǫ ≥ 0, from

equation 2,

k = 2(x− 1) log2 f + log2 b+ log2 x+ ǫ (7)

where m = (rx− r + 1).

First, we consider the case when r = 1, which leads to

x = m. Then, combining (6) and (7) we have,

2(m− 1) log2 f + 2 log2 m ≤ Bbudget − b− log2 b− ǫ. (8)

Similarly, considering r > 1, we have

r(2(x− 1) log2 f + log2 x+ b+ log2 b+ ǫ) +

log2(rx− r + 1) ≤ Bbudget + b. (9)

We determine the maximum value of m for different values

of r ≥ 1 using the above two equations. System designers are

left to choose the appropriate pair of (r,m) based on the rate of
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Fig. 5. Comparison among different encoding schemes of PPF and PPM variants.

link failure or changes, and the average fan-out of the network.

In Table V, we consider a 5000-node network with average

fan-out f = 4, b = 13 bits, and ǫ = 5 to show the possible

choices for (r,m) where x indicates maximum number of

node IDs contained in each partition. Note that fanout should

be restricted so that excessive energy consumption at the

junction node does not partition the network [27]. We also

compare the theoretically calculated average bit requirements

of the fingerprint method with the two other encoding schemes

in Fig. 4. Clearly, the fingerprint method requires fewer bits

than the other methods, as the value of N and m increase.

VIII. TOSSIM RESULTS

We conduct simulations using TOSSIM [28] for networks

with hop counts ranging from 2 to 30, and number of nodes

ranging from 3 to 500. For energy analysis, we use POWER-

TOSSIMZ [29] which uses the micaz energy model. We do

not consider energy consumption related to CPU computations

since TOSSIM cannot capture the active CPU time [29].

However, all nodes other than the base station only perform

encoding operations which have low computational complexity

and are likely to draw insignificant level of CPU power. A base

station with no resource constraints can perform the decoding

operations, e.g., prime factorization, for a moderate number of

nodes in reasonable time. All experiments are performed using

a transmission rate of 250 kbps, the default transmission rate

of the micaz mote, where every data-generating sensor sends

data towards the base station every 2 s. The probability for

embedding a node ID is p = 1
25 . All results are averaged over

1000 runs, and we find the standard deviation to be extremely

small.

We consider a 500-node network to compare the perfor-

mance of the encoding schemes of PPF with two variants of

probabilistic packet marking: PPM [13], [14] and PPM with

Network Coding [23], [24], as they are the closest to our

approach (though they were designed for wired IP networks).

We place the same constraint on usable bits (32 bits) for

provenance embedding per packet on all schemes.

Fig. 5(a) shows the number of packets required to construct

provenance for increasing numbers of hops from a single

source to the base station. The results reveal that all three

schemes of PPF have identical performance in this case since

they can embed only 3 node IDs on average per packet

using 32 bits. However, they require at least 33% fewer

packets than both PPM variants. The original PPM scheme

requires a large number of packets since it embeds a single

node ID per packet. Network coding-based PPM (PPM+NC)

embeds a linear combination of 3 node IDs in a packet.

However, in order to construct a forwarding path of length d

hops, PPM+NC converges upon reception of d unique linear

combinations of node IDs, whereas PPF only requires d + 1
different node IDs.

We perform the same experiment in a 5000-node network

with a 64-bit budget in Fig. 5(b). Since TOSSIM does not

scale to 5000 nodes, we randomly assign node IDs from a

set of 5000 numbers and take the average over experimental

results of several TOSSIM runs. We find that the prime

method requires fewer packets than the rank method, while the

fingerprint method outperforms both in this case. The reason

is that with a 64-bit budget, the fingerprint method (r = 2)

embeds 7 node IDs per packet with a low false positive rate

(< 0.001), whereas the prime and rank methods embed 5

and 4 node IDs on average, respectively. Fig. 5(c) compares

the aggregate energy consumption for the two PPM variants

and the two PPF methods that require the lowest number of

packets for the two bit budgets (i.e., prime method with 32-bit

budget and fingerprint method with 64-bit budget). PPF with

32-bit budget consumes at least 30% less energy than the PPM

variants. PPF with 64-bit budget reduces energy consumption

by more than 60% compared to its 32-bit counterpart.
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Fig. 6. Provenance and associated decoding error with varying rate of link
changes.

To observe the effect of partitioning fingerprints, we study

the decoding error of the fingerprint method with respect to the

rate of link changes. Here, decoding error denotes percentage

of node IDs that cannot be decoded due to link changes or false

positive rates, where rate of link changes indicates the average

number of link changes per unit time. We artificially introduce

link failures and associated path changes which are randomly

distributed over a time window of 200 s along a 30-hop path.

Fig. 6(a) shows that as link changes increase, the fingerprint

method with two partitions (r = 2) has a decoding error lower



than the non-partitioned case because of its low sensitivity

to topological changes. However, the fingerprint method with

r = 3 suffers from a false positive rate of about 0.16 with 64-

bit budget in this particular experiment, and performs worse

than the r = 2 case in the presence of low rate of link

changes (when decoding error due to link changes is small).

With a high rate of link changes, the case of r = 3 shows

a small improvement over the r = 2 case, but a relatively

higher false positive rate in a dense network will nullify that

improvement (as indicated in Table V). Fig. 6(b) shows the

effect of the decoding error in constructing provenance where

the fingerprint method with r = 2 converges with a fewer

number of packets even in the presence of a high rate of link

changes and suffers from a negligible false positive rate.
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We also integrate PPF with a provenance-based trust frame-

work to iteratively compute trust scores. Fig. 7 shows that the

trust score calculated using PPF evolves correctly as soon as

the entire provenance is constructed at the base station. PPF

accuracy in trust score calculation is similar to the traditional

approach that includes every node ID on the forwarding path

in the provenance.

IX. CONCLUSIONS

We have presented an energy-efficient provenance trans-

mission and construction approach for large-scale multi-hop

wireless sensor networks, based on the idea of probabilistic

incorporation of node identities. We adapt the probabilistic

packet marking (PPM) approach for IP traceback, and propose

three provenance encoding methods with a space constraint

on the size of provenance data in each packet. We analyze

the suitability of the methods based on the network size and

bit budget via mathematical approximations and numerical

methods. In contrast to PPM, our proposed approach requires

fewer packets to construct network-wide provenance, and

significantly reduces the aggregate energy consumption of the

network. PPF integration with a provenance-based trust frame-

work on the TinyOS emulator TOSSIM reveals no degradation

in accuracy of trust scores. In our future work, we plan to

design a reactive approach to accurately reflect topological

changes and sensor duty cycling. We will also study how well

a complete trust framework can detect and react to different

attacks and failure scenarios.
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