Downscaling Network Scenarios with Denial of
Service (DoS) Attacks

Wei-Min Yao, Sonia Fahmy
Department of Computer Science
Purdue University
E-mail: {wmyao,fahmy} @cs.purdue.edu

Abstract— A major challenge that researchers face in studying
Denial of service (DoS) attacks is the size of the network to be
investigated. A typical DoS attack usually takes place over a
large portion of the Internet and involves a considerable number
of hosts. This can be intractable for testbed experimentation,
and even simulation. Therefore, it is important to simplify
a network scenario with DoS attacks before applying it to
a simulation/testbed platform. Several approaches have been
proposed in the literature to downscale a network scenario, while
preserving certain critical properties. In this paper, we investigate
via simulations the applicability of packet-level downscaling ap-
proaches to DoS scenarios. We select two representative methods:
SHRINK and TranSim. Our experiments identify the operational
range of the two downscaling approaches, and propose guidelines
for researches to select the most suitable downscaling approach
for their own research.

I. INTRODUCTION

Denial of Service (DoS) attacks continue to be routinely
observed in today’s Internet. The goal of a DoS attack is to
disrupt or disable network activities such as web browsing or
online banking, without necessarily compromising or control-
ling the target host or network. This makes the attacks easier
to conduct and harder to defend against, compared to other
malicious behavior. A massive Distributed DoS (DDoS) attack
on critical Internet resources or vital services can result in loss
of Internet connectivity or substantial financial damages. As
discussed in [1], an Internet blackout for one week can cause
over 1% damage to the GDP of a developed country, i.e., up
to 4.5 billion dollars. Thus, the potential threat of DoS attacks
should not be ignored.

Over the past decade, several researchers have been in-
vestigating the DoS problem, yet there is still no complete
solution [2]. There are several reasons why DoS attacks are
hard to defend against. For one, attack packets are hard to
distinguish from legitimate packets and, for another, there are
new attacks emerging every day. Another major challenge
in analyzing a DoS attack or developing a DoS defense
mechanism is that we do not have an accurate and reliable
platform on which to conduct large-scale DoS experiments. A
typical DoS attack usually takes place in a large segment of
Internet and involves a considerable number of hosts. Since
it is undesirable to perform DoS experiments directly on
the Internet, most researchers choose to use simulation or
emulation. Unfortunately, it is not practical to build a very
large-scale simulation or emulation experiment that can reflect
all the details of the Internet. Consequently, we must first

simplify an experimental scenario before we can study it using
simulation or emulation. An algorithm that can downscale a
DoS experimental scenario while still preserving important
attack characteristics is required to make the simulation or
emulation of DoS attacks practical.

Several approaches have been proposed to downscale a
network scenario. We can categorize them into two groups:
topology-level approaches such as [3], [4], and packet-level
approaches such as [5], [6]. Due to the complexity of accu-
rately downscaling a large network such as the Internet, each
of these approaches has limitations. We observe, however, that
not all network characteristics have to be preserved in a DoS
experiment [7]. For example, delay jitter is not important for
an FTP flow, and hence a downscaling approach can still be
applicable, even when some performance properties are not
preserved.

In this paper, we conduct simulation experiments to investi-
gate the applicability of packet-level downscaling approaches
to DoS scenarios. We select two representative methods that
use different reduction techniques: SHRiINK [5] and Tran-
Sim [6]. Our objective is to define the operational range
of these downscaling methods, especially when applied to
network scenarios with DoS attacks. Our findings can provide
guidelines for researches to select the most suitable downscal-
ing approach for their own DoS research.

The remainder of this paper is organized as follows. In
Section II, we discuss the related work. In Section III, we
discuss our research methodology and the two downscaling
approaches chosen in this paper. We present our experimental
scenarios and results in Section IV. Finally, we conclude and
discuss future work in Section V.

II. RELATED WORK

Previous techniques that aim to accelerate network sim-
ulations can be categorized into two groups: topology-level
approaches and packet-level approaches. Topology-level ap-
proaches address the downscaling problem at a more abstract
level. For example, they sample or partition the Internet
graph, such as in [3], [4], or utilize flow modeling, such
as [8], [9]. The computational savings of these approaches
can be significant since either the size of network topology is
reduced or the traffic is represented by flow models. However,
although the graph properties of a network topology or the
long term flow properties are preserved by these approaches,

they are not well-suited for all network simulations since the
simulation results are not sufficiently accurate for packet-level
analysis [10].

Packet-level approaches such as [5], [6] aim to reduce
simulation events by creating a replica of the original network
scenario with fewer packets. The simulation then can be
performed on the smaller replica with lower computational
overhead. Unlike topology-level approaches, one can still
perform packet-level analysis on the results gathered from the
smaller replica. These approaches may also be applicable when
performing network emulation with real hardware, e.g., using
the DETER [11] or Emulab [12] testbeds.

We select two example packet-level downscaling mecha-
nisms to investigate in this paper: SHRINK and TranSim.
Pan et al. [5] have proposed an approach for scalable perfor-
mance prediction and efficient simulation of large networks
in their Small-scale Hi-fidelity Reproduction of Network Ki-
netics (SHRiNK) work. Using SHRiNK, one can construct
a downscaled network replica by sampling flows, reducing
link speeds, and downscaling buffer sizes and Active Queue
Management (AQM) parameters. The downscaled network
can be used to predict performance measures in the original
network. Two downscaling approaches based on flow sampling
are described in the SHRiINK work. The first approach aims
to reduce hardware requirements at the cost of expanding the
experiment time (Section II in [5]), while the latter approach
reduces the simulation time at the cost of accuracy (Section III
in [5]). We study the second SHRiNK approach in this paper.

Instead of trying to reduce packet events by sampling
traffic flows, Kim et al. have proposed a method called
TranSim [6] to accelerate large-scale simulation of IP networks
with TCP/UDP traffic. By applying TranSim to a simulation
network, one can create an alternate network that generates
a smaller number of packet events. The authors argue that
by maintaining the bandwidth-delay product invariant in both
networks, network dynamics (such as queue sizes) and TCP
dynamics (such as congestion windows) remain unchanged in
the process of network transformation.

Another noteworthy approach is DSCALE. Papadopoulos et
al. [13] have proposed two methods to downscale a network
topology that is shared by TCP flows and controlled by various
AQM schemes. The first method, referred to as downscale
using delays (DSCALEd), removes all uncongested links in
the network topology and adds appropriate fixed delays to
all packets. Since only the congested links contribute sizable
queuing delays for flows, it is safe to remove all uncongested
links. This method can be applied to any network without
losing fidelity. However, it is not always easy to identify
uncongested links in a network [14], and there is no guarantee
on how many links can be pruned. The second method,
called downscale using sampling (DSCALEs), further reduces
the traffic intensity by sampling the traffic in the network.
This method, however, is only applicable to flows that arrive
according to a Poisson process. Petit ez al. [10] also investigate
methods similar to DSCALE, and point out that downscaling
methods are highly sensitive to network traffic, topology
size, and performance measures. This is consistent with our
findings.

Other work has also considered the downscaling problem
in specific contexts. For example, Weaver et al. [15] focus on
worm attacks. Carl et al. [16] study how to preserve routing
paths among Autonomous Systems (ASes) while reducing the
number of ASes through Gaussian elimination.

III. METHODOLOGY

The feasibility of a downscaling method depends on the traf-
fic and performance measures of the simulation scenario [10].
Our simulation experiments are designed to examine the ap-
plicability of packet-level downscaling methods when applied
to network scenarios with DoS attacks

A. Selection of Downscaling Methods

Packet-level downscaling approaches aim to provide mech-
anisms for researchers to accelerate their simulation or emu-
lation experiments. The goal of these approaches is to reduce
traffic (and hence experiment time or resource requirements),
while preserving queue dynamics in the network. For example,
consider two traffic flows F; and F; traversing the same link.
If, at any given time, 30% of the packets on the link belong
to F; and 70% belong F,, then, ideally, we would expect
the same proportion of packets on the corresponding link
in the downscaled network. Although this example goal of
maintaining the same proportion of packets on any link is
straightforward, it is non-trivial to achieve, especially with
closed-loop TCP traffic.

Downscaling approaches can be classified into two groups
according how they accomplish this. Methods in the first
group assume that a session consists of many smaller flows
with similar properties. As a result, a network session can
be proportionally reduced by sampling the flows within the
session, and reducing the resources these flows consume.
In contrast, methods in the second group focus on a single
network flow, and slow-down the network to reduce packet
events. We select SHRiNK (Section III of [5]) to represent
the former group and TranSim [6] to represent the latter.

Although SHRiNK is not intended to apply to the range of
scenarios in our simulations, its basic flow sampling approach
can be applied in conjunction with TranSim-style reduction
of uncooperative flows (UDP traffic and DoS attack traffic).
The SHRiINK approach we use (section III of [5]) also suffers
from limitations with DropTail queues [5]. We find, however,
that the basic SHRiINK flow sampling method is sometimes
effective despite its assumptions.

It is important to note that DSCALE [13] is a more recent
work from some of the authors of SHRiINK, but we did not
utilize it in our experiments. This is because DSCALE (in
particular, DSCALEd) requires identification of uncongested
links, which can be non-trivial without performing a simula-
tion or experiment on the original (large) network. Therefore,
we elected to focus on packet-level methods that do not alter
the network topology.

B. Selection of Traffic

There are two types of traffic in our simulations: DoS
attacks and legitimate (i.e., non-attack) traffic.

DoS attacks are generally classified as either flooding at-
tacks or semantic attacks [17]. The major difference between
flooding and semantic attacks is the number of attack packets.
A flooding DoS attack will send a large number of packets
into the network, while a semantic attack only sends a few
carefully-crafted packets to the victim.

Since our goal in this paper is to evaluate network scenario
downscaling mechanisms, we do not consider resources on end
systems (e.g., CPU and memory) in the simulation scenario.
As a result, we only focus on flooding attacks that target the
bandwidth resource in the network. We select three interesting
attack variants: UDP bandwidth floods, ICMP floods [17], and
TCP pulsing attacks [18].

Legitimate traffic is impacted by the DoS attacks in the
experiments. We select three different network applications
to represent the legitimate traffic in DoS experiments. The
applications are selected according to the following two re-
quirements. First, we want applications with different QoS
requirements. Second, according to [6], since the length of
TCP flows has a significant impact on downscaling mecha-
nisms, we must include applications that can generate both
long and short-lived TCP flows. Third, we need both open-
loop and closed-loop traffic [10]. Therefore, we select a VoIP
application for media traffic, an FTP application for long-lived
TCP flows, and a Web (HTTP) application for short-lived TCP
flows.

C. Performance Metrics

Ideally, we should preserve all performance metrics such as
packet delay and jitter in the downscaled network scenario.
However, to achieve this goal, we would have to preserve
most packets, since many network protocols or applications
are clocked by packets. If some packets are omitted, the
protocols or applications will exhibit a different behavior, and
we will unavoidably lose fidelity from the original scenario.
Fortunately, not all performance metrics are required in order
to judge the influence of DoS attacks on a specific network
application.

According to [7] and [19], network applications can be
categorized into several groups, where each group has different
Quality of Service (QoS) requirements. For example, in the
case of interactive applications such as Web and telnet, the
primary QoS requirement is that a response is served within
user-acceptable delay. In terms of network parameters, we only
need to focus on the request/response delay and duration of a
transaction.

There are only five traffic parameters that we need to
consider to compute the QoS requirements of different applica-
tions: one way delay, request/response delay, packet loss ratio,
transaction duration, and jitter. Based on the QoS requirements
of a legitimate application, we use the following method to
compare the performance of downscaling mechanisms applied
on a specific DoS scenario.

Given a specific set of network applications that we will
observe in a network scenario S, there are N traffic parameters
x; (i =1 to N) that can be used to define the QoS requirements
of these applications. For example, if the application is a

file transfer application, then x; is the request/response delay,
xp is the flow duration, etc. Let y; be the corresponding
traffic parameters in the downscaled scenario S’ (possibly after
scaling by o or 1/o according to the downscaling method,
as discussed in Section IV). We define the normalized error
for x; as E; = |x; — y;|/x;. This metric is similar in spirit
to the QoS_degrade measure in [7]. We define the weighted
normalized error as):fil % x E;. Note that we are using equal
weights of % for all errors in this formula (and in the paper),
though different weights w; are also possible.

IV. SIMULATION RESULTS

In this section, we give the configuration of our simulation
experiments and discuss our findings. All the simulations are
performed on a FreeBSD machine with 2 GHz CPU and
512 MB RAM using the ns-2 (Version 2.31) [20] network
simulator.

We have performed two sets of simulation experiments
using the same network topology (Fig. 1), but with different
queue sizes. All queues in Fig. 1 are DropTail. In the first set
of simulations (labeled “Experiment I”’), all queue sizes are
set to 100 packets, according to the experiment setup in [6].
We select 10000 packets as the queue size in our second set
of simulations (labeled “Experiment II”’) according to section
IIT of [5].

In each simulation scenario, a single legitimate traffic
session travels from R1 to R4, and one DoS attack flow
traverses the R2 to R3 link. We use a downscale parameter
a (0 < a<1) where o indicates the degree of downscaling
compared to the original network (1 means no downscaling;
0.5 means 50% downscaling; and so on).

Note that the network topology in Fig. 1 only includes
the minimum links required. As discussed in [13], [10], we
can eliminate uncongested links (while still preserving the
Round Trip Time (RTT) for TCP flows), since they will not
introduce sizable queuing delays and dependencies among
flows. We find that our simple topology is a good first step
for studying DoS attacks. Using such a simple topology
helps in interpreting the results and identifying the causes
of inaccuracies. Each of the simulation scenarios is repeated
30 times with different random seeds, and the results are
averaged.

Flow 1 Legitimate Flows

DoS Attack

Fig. 1. The network configuration used in all simulations.

A. Simulation Parameters

There are two types of traffic in each simulation scenario: a
DoS attack flow and a legitimate traffic session. To apply the
flow sampling downscaling mechanism of SHRiNK, we need

to define a legitimate traffic session as a group of flows with
same traffic properties. A legitimate session is composed of
several flows with a specified flow arrival rate. DoS traffic in
our simulations utilizes the UDP protocol with constant packet
sending rate. Following the transformation for uncooperative
flows described in [6], we reduce the traffic intensity of DoS
flows by reducing the packet sending rate. Therefore, we only
use a single DoS attack flow per session.

Recall that in Section III, we selected three different net-
work applications, VoIP, HTTP, and FTP, as representative
legitimate applications. Our setups for HTTP and FTP are
inspired by [5]. In our simulations, we use the ns-2 built-
in module PagePool/WebTraf to generate HTTP flows, where
there is exactly one page (and one object per page) in a flow.
The number of packets in each HTTP flow is Pareto-distributed
with an average size of 12 packets and a shape parameter equal
to 1.2. The FTP traffic is also generated with the same module
and each flow contains 500 packets. We use TCP Reno since
this was the TCP flavor used in [6] and [5]. The VoIP traffic
uses the ns-2 constant bit rate (CBR) agent on top of the UDP
protocol. Each VoIP flow is unidirectional, with a packet size
of 48 bytes, and the packet inter-arrival time is 0.02 seconds.
The duration of a VoIP flow is 20 seconds.

Within each legitimate session, flows arrive according to a
Poisson process with a rate of A flows per second. We choose
a value of A which creates sufficient load, but causes no packet
drop without a DoS attack. Due to the relatively small queue
size in “Experiment I,” A is set to 50, 25, and 50 flows per
second for FTP, HTTP, and VoIP flows respectively. Scenarios
in “Experiment II” have flows arrive in a cluster (i.e., are
almost synchronized), as discussed in Section III of [5]. To
maintain some randomness in our simulation runs, A is set
to 10,000 flows per second instead of infinity. The number of
flows is set to 500.

The three DoS attacks are all implemented using the ns-2
CBR agent on top of UDP protocol. The attack rate of UDP
bandwidth floods and TCP pulsing attacks is 10 Mbps, with a
packet size equal to 500 bytes. The attack rate for the ICMP
flooding attack is 7.68 Mbps (20K packets per second) with a
packet size equal to 48 bytes.

Each legitimate session starts at time 0 and lasts for ¢
seconds. The UDP and ICMP flooding attacks start after
1/4th of ¢ and last for half of t. The TCP pulsing attack is
triggered throughout the legitimate traffic duration. However,
it is only active for 1/6th of 7. The DoS attack is in the same
direction as VoIP traffic in VoIP experiments; for HTTP and
FTP experiments, the DoS attack is in the same direction
as the response, not the request, since the response is more
substantial.

B. Implementation of Downscaling Methods

To evaluate the performance of both SHRiNK and TranSim,
we follow the description of the two methods in [5] (Section
IIT) and [6], and apply them to each network scenario. The
downscaling parameter is referred to as o. To apply SHRiINK
to a network scenario, we perform the following changes in the
downscaled scenario: (1) The number of flows in a legitimate

session is multiplied by the factor . (2) The arrival rate for
flows in a legitimate session is reduced by the factor . (3)
All link capacities are reduced by the factor «. (4) The size
of all queues is reduced by the factor «.

For TranSim experiments, the following changes are per-
formed: (1) The propagation delay of all links is expanded
by the factor 1/a. (2) All link capacities are reduced by the
factor . (3) The number of packets in an FTP or HTTP flow
is reduced by the factor «, in order to reduce packet events
using the traffic generation modules we used. (4) The packet
arrival rate in a VoIP flow is reduced by the factor a.

Finally, for both SHRiNK and TranSim, the attack rate for
DoS attacks is reduced by the factor a.

C. Results

In addition to the five QoS-related traffic parameters men-
tioned in Section III, we consider the total number of packets
in the network, since this represents the savings given by the
downscaling mechanism.

Due to space limitations, Tables I, II, and III only list the
relevant normalized error values for each simulation scenario
in both sets of experiments. The normalized error is computed
for each metric, and then as a weighted sum as described
in Section III-C. There are six network parameters listed in
the tables. The first (total packets) and the second (dropped
packets) represent the total number of sent and dropped
legitimate packets. In a downscaled network scenario (with
downscale parameter o), both of these should be reduced to
o multiplied by their original values. The third parameter
(duration) represents the average duration for a flow in the
legitimate session. Ideally, this should remain the same in the
downscaled network. The fourth to sixth parameters represent
the one way delay, request/response delay, and delay jitter
of packets in a legitimate session. For TranSim, since the
propagation delays in the network are increased by the factor
1/a, the values in the downscaled network are expected to
increase by the same factor. With SHRiNK, the propagation
delays remain the same, so ideally the delays should be
preserved. We do not compute the request/response delay for
VoIP flows since the VoIP flows are unidirectional. For all the
normalized error values in the three tables, the closer they are
to zero, the better.

In Table I, both the legitimate traffic and DoS attack are
open-loop UDP flows. Ideally, all traffic parameters should
be preserved in the downscaled scenarios. However, we find
that jitter is not preserved in Experiment I with both methods.
TranSim performs well in Experiment I, but not in Exper-
iment II because it does not alter the buffer size in the
downscaled scenario. This can lead to errors when the queue
size is large and the packet end-to-end delay is dominated
by queuing delays. While TranSim proportionally adjusts the
propagation delays, the average queue size (and hence queuing
delay) remains unchanged in both the original scenario and the
downscaled scenario. As a result, when there are large queuing
delays as in Experiment II, the end-to-end delay is not adjusted
to preserve the bandwidth-delay product.

Examining the number of packets in Table II, we find that
the normalized errors are high with TranSim. This indicates

VoIP Experiment 1 Experiment 11
DoS Downscaling Dropped | One Way Jitter*® Weighted Dropped | One Way Jitter*® Weighted
Attack Method (o) Packets* Delay* Normalized Packets* Delay* Normalized
Error Error
UDP TranSim (0.5) 0.27% 0.01% 4.32% 1.53% 1.13% 16.16% 62.33% 26.54%
Bandwidth | TranSim (0.1) 0.32% 0.21% 29.31% 9.95% 21.83% 52.36% 620.14% 231.44%
Flood SHRINK (0.5) 3.66% 0.08% 31.83% 11.86% 1.07% 0.23% 14.42% 5.24%
Attack SHRINK (0.1) 0.88% 1.06% 88.08% 30.01% 1.03% 0.11% 80.97% 27.37%
ICMP TranSim (0.5) 0.05% 0.05% 37.64% 12.58% 1.13% 21.24% 97.85% 40.07%
Flood TranSim (0.1) 0.76% 0.12% 360.75% 120.54% 4.61% 61.91% 500.66% 189.06%
Attack SHRINK (0.5) 0.53% 0.05% 109.77% 36.78% 0.27% 0.18% 0.98% 0.48%
SHRINK (0.1) 0.91% 0.80% 295.11% 98.94% 1.29% 0.00% 3.67% 1.66%
TCP TranSim (0.5) 1.45% 0.01% 48.61% 16.69% 15.50% 13.04% 53.62% 27.39%
Pulsing TranSim (0.1) 7.15% 0.05% 392.13% 133.11% 47.42% 9.95% 28.67% 28.68%
Attack SHRINK (0.5) 2.26% 0.21% 15.43% 5.96% 0.16% 0.02% 0.63% 0.27%
SHRINK (0.1) 2.23% 1.92% 38.89% 14.35% 0.11% 0.06% 2.18% 0.78%
TABLE I

NORMALIZED ERRORS WITH VOIP. * INDICATES TRAFFIC PARAMETERS USED TO COMPUTE WEIGHTED NORMALIZED ERROR.

HTTP Experiment [Experiment I
DoS Downscaling Total Flow One Way | Request/ Weighted Total Flow One Way | Request/ Weighted
Attack Method (o) Packets Duration* Delay Response | Normalized Packets Duration* Delay Response | Normalized
Delay Error Delay Error
UDP TranSim (0.5) 30.75% 18.54% 3.60% 51.91% 35.23% 23.16% 53.57% 15.70% 15.58% 34.58%
Bandwidth | TranSim (0.1) | 325.06% 5.96% 7.85% 84.20% 45.08% 316.15% | 471.19% 41.13% 36.16% 253.68%
Flood SHRINK (0.5) 14.50% 6.39% 3.31% 4.33% 5.36% 19.52% 1.25% 0.26% 0.19% 0.72%
Attack SHRINK (0.1) 3.93% 2.30% 16.36% 8.08% 5.19% 2.27% 3.36% 2.04% 2.32% 2.84%
ICMP TranSim (0.5) 26.37% 52.03% 0.07% 9.97% 31.00% 21.61% 47.12% 0.41% 19.35% 33.24%
Flood TranSim (0.1) | 282.08% | 656.32% 1.93% 1.69% 329.00% 311.54% | 488.04% 25.17% 34.29% 261.17%
Attack SHRINK (0.5) 18.88% 5.13% 2.02% 5.27% 5.20% 19.67% 7.22% 5.02% 5.11% 6.17%
SHRINK (0.1) 3.49% 133.65% 17.94% 94.49% 114.07% 1.84% 1.38% 0.55% 2.29% 1.83%
TCP TranSim (0.5) 25.15% 35.10% 0.14% 19.86% 27.48% 25.13% 49.61% 18.72% 21.60% 35.60%
Pulsing TranSim (0.1) | 230.82% 348.18% 3.63% 35.34% 191.76% 328.17% 654.10% 23.57% 18.44% 336.27%
Attack SHRiNK (0.5) | 21.07% 4.15% 2.63% 0.77% 2.46% 19.77% 1.10% 0.19% 0.39% 0.74%
SHRINK (0.1) 1.38% 59.34% 23.72% 46.24% 52.79% 2.98% 3.27% 1.38% 0.82% 2.05%
TABLE I

NORMALIZED ERRORS WITH HTTP. * INDICATES TRAFFIC PARAMETERS USED TO COMPUTE WEIGHTED NORMALIZED ERROR.

FTP Experiment [Experiment II
DoS Downscaling Total Flow One Way | Request/ Weighted Total Flow One Way | Request/ Weighted
Attack Method (o) Packets | Duration* Delay Response | Normalized Packets | Duration* Delay Response | Normalized
Delay* Error Delay* Error
UDP TranSim (0.5) 3.95% 1.81% 3.76% 18.07% 9.94% 3.07% 8.44% 18.71% 33.45% 20.95%
Bandwidth | TranSim (0.1) 8.16% 27.30% 11.94% 69.63% 48.47% 22.64% 4.20% 37.83% 61.95% 33.08%
Flood SHRINK (0.5) 1.36% 0.38% 0.15% 22.23% 11.31% 0.05% 7.12% 13.48% 13.73% 10.42%
Attack SHRINK (0.1) | 2.03% 0.81% 3.07% 43.66% 22.23% 0.09% 0.04% 7.33% 6.70% 3.37%
ICMP TranSim (0.5) 2.16% 2.62% 0.57% 43.12% 22.87% 3.02% 1.96% 28.95% 29.02% 15.49%
Flood TranSim (0.1) | 11.73% 1.46% 2.45% 73.01% 37.23% 20.03% 8.03% 50.88% 58.21% 33.12%
Attack SHRINK (0.5) | 0.64% 0.59% 0.86% 7.11% 3.85% 0.00% 0.58% 1.20% 1.06% 0.82%
SHRINK (0.1) 3.15% 4.26% 9.03% 41.84% 23.05% 0.03% 1.50% 3.26% 3.42% 2.46%
TCP TranSim (0.5) 2.40% 3.66% 2.96% 48.03% 25.85% 0.89% 0.16% 6.60% 7.25% 3.71%
Pulsing TranSim (0.1) | 19.21% 2.58% 11.63% 78.95% 40.77% 15.27% 13.50% 55.35% 57.22% 35.36%
Attack SHRiNK (0.5) | 0.25% 0.66% 0.09% 1.68% 1.17% 0.09% 0.20% 0.30% 0.53% 0.37%
SHRINK (0.1) | 2.07% 4.26% 3.67% 27.31% 15.79% 0.18% 2.07% 5.10% 2.90% 2.48%
TABLE III

NORMALIZED ERRORS WITH FTP. * INDICATES TRAFFIC PARAMETERS USED TO COMPUTE WEIGHTED NORMALIZED ERROR.

that our TranSim implementation which reduces the total
number of packets in a flow fails to proportionally reduce the
number of packets in the downscaled scenario. This is also
the cause for the high normalized error on dropped packets
and flow duration. The reason for this phenomenon is that
only the size of the response from server to client is reduced.
The packets in the TCP three-way handshake and at least one
packet of the web request (not including the TCP handshake)
from client to server remained the same. These packets are
necessary unless the behavior of TCP or network application
is changed. This inaccuracy is significant if there are only a
few packets in a flow. This is not an issue for flow sampling-
based downscaling mechanisms such as SHRiNK. As a result,

we suggest applying flow sampling-based mechanisms for
scenarios with short-lived TCP flows.

Table III shows that SHRINK performs better in Experi-
ment II, and both methods work similarly in Experiment I.
In Experiment II, although the bandwidth-delay product is
preserved by TranSim, the packet drop changes as shown in
Table IV. The intuition behind TranSim is to proportionally
reduce TCP throughput by increasing the propagation de-
lay and reducing the link bandwidth (which increase RTT).
However, TCP throughput is also a function of packet drop
events [21]. Packet drops are higher with TranSim than with
SHRiNK with & = 0.1 in our simulations. These results are
consistent with [10] which shows that FTP is more sensitive

Method Experiment I | Experiment IT
Original 11.03% 1.54%
TranSim (0.5) 11.07% 2.07%
TranSim (0.1) 17.12% 3.10%
SHRINK (0.5) 10.57% 1.50%
SHRINK (0.1) 12.73% 1.85%
TABLE IV
PACKET DROP PERCENTAGE FOR SCENARIO WITH UDP FLOODING ATTACK
AND FTP.

to downscaling than HTTP, since TCP spends more time in
the congestion avoidance phase than in slow start with FTP.

From the results, SHRiNK generally outperforms our Tran-
Sim implementation, especially in Experiment II (clustered
flows). This indicates that when TCP flows within a session are
synchronized [22], SHRINK sampling works well. However,
SHRiNK is not always applicable since its degree of down-
scaling is constrained by the buffer size or number of flows in
a legitimate traffic session, as discussed in [6]. Additionally,
although fine-grained metrics [10] used in our experiments are
not well-preserved by TranSim, coarse-grained metrics can be
preserved, as shown in [6].

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have conducted a simulation study to inves-
tigate the applicability of packet-level downscaling approaches
to DoS scenarios. The simulations were designed to represent
simple DoS scenarios with three different types of legitimate
traffic and three types of DoS attacks. We select two represen-
tative packet-level downscaling approaches: SHRiNK [5] for
sampling flows in a legitimate session and reducing link and
buffer capacities, and TranSim [6] for reducing packet events
(which we implement by reducing packets in a flow) and
reducing link capacity while increasing propagation delay. We
use a performance metric that captures the QoS requirement
for each type of legitimate traffic. Although SHRiINK is not
intended to apply to the general traffic and queues in all our
simulations, its basic flow sampling approach was applicable
in conjunction with TranSim-style reduction of uncooperative
flows.

From our simulation results, we can draw the following
conclusions: (1) The performance of downscaling mechanisms
is sensitive to the type and requirements of legitimate traffic,
and overall traffic load, and (2) For short-lived TCP flows
and scenarios with significant queuing delay and packet drop,
downscaling approaches based on sampling flows and reducing
both capacity and buffer size (such as SHRiNK) appear to
give a better approximation than our implementation of the
TranSim approach that reduces packets in a flow.

Although packet-level downscaling approaches have the
same goal — reducing the amount of traffic while preserving
queue dynamics — their applicability varies based on the char-
acteristics of the scenario to downscale. Our simulation results
represent a first step towards defining the operational range
of packet-level downscaling approaches for DoS scenarios.
According to our findings, each method suffers from particular
limitations, which indicates the possibility of designing a

downscaling mechanism by leveraging different aspects of
each method. This will be the subject of our future work.

REFERENCES

[1] T. Dubendorfer, A. Wagner, and B. Plattner, “An economic damage
model for large-scale internet attacks,” in Enabling Technologies: In-
frastructure for Collaborative Enterprises, June 2004, pp. 223-228.

[2] J. Mirkovic, S. Dietrich, D. Dittrich, and P. Reiher, Internet Denial of
Service: Attack and Defense Mechanisms. Prentice Hall, 2005.

[3] V. Krishnamurthy, M. Faloutsos, M. Chrobak, L. Lao, J.-H. Cui, and
A. Percus, “Reducing large internet topologies for faster simulations,”
in Proc. of IFIP Networking, 2005.

[4] K. Yocum, E. Eade, J. Degesys, D., Becker, J. Chase, and A. Vahdat,
“Toward scaling network emulation using topology partitioning,” in
Proc. of MASCOTS (Modeling, Analysis and Simulation of Computer
Telecommunications Systems), 2003.

[5] R. Pan, B. Prabhakar, K. Psounis, and D. Wischik, “SHRiNK: a method
for enabling scaleable performance prediction and efficient network
simulation,” IEEE/ACM Transactions on Networking, vol. 13, no. 5, pp.
975-988, October 2005.

[6] H. Kim, H. Lim, and J. C. Hou, “Accelerating simulation of large-
scale IP networks: A network invariant preserving approach,” in Proc.
of INFOCOM, 2006.

[7] J. Mirkovic, A. Hussain, B. Wilson, S. Fahmy, P. Reiher, R. Thomas,
W.-M. Yao, and S. Schwab, “Towards user-centric metrics for denial-of-
service measurement,” in Proceedings of the Workshop on Experimental
Computer Science, 2007.

[8] B. Liu, Y. Guo, J. Kurose, D. Towsley, and W. Gong, “Fluid simulation
of large scale networks: Issues and tradeoffs,” in Proc. of the Interna-
tional Conference on Parallel and Distributed Processing Techniques
and Applications. Las Vegas, Nevada, 1999.

[9]1 D. M. Nicol and G. Yan, “Discrete event fluid modeling of background
tep traffic,” ACM Transactions on Modeling and Computer Simulation,
2004.

[10] B. Petit, M. Ammar, and R. Fujimoto, “Scenario-specific topolgy reduc-
tion in network simulations,” in Proc. of International Symposium on
Performance Evaluation of Computer and Telecommunicaiton Systems
(SPECTS), 2005.

[11] “Deter.” [Online]. Available: http://www.isi.edu/deter/

[12] “Emulab.” [Online]. Available: http://www.emulab.net/

[13] F. Papadopoulos, K. Psounis, and R. Govindan, “Performance preserving
topological downscaling of Internet-like networks,” IEEE Journal on
Selected Areas in Communications, vol. 24, no. 12, pp. 2313-2326,
December 2006.

[14] F. Papadopoulos and K. Psounis, “Efficient identification of uncongested
Internet links for topology downscaling,” SIGCOMM Comput. Commun.
Rev., vol. 37, no. 5, pp. 39-52, October 2007.

[15] N. Weaver, I. Hamadeh, G. Kesidis, and V. Paxson, “Preliminary results
using scale-down to explore worm dynamics,” in Proc. of the 2004 ACM
workshop on Rapid malcode, 2004.

[16] G. Carl, S. Phoha, G. Kesidis, and B. B. Madan, “Path preserving scale
down for validation of internet inter-domain routing protocols,” in Winter
Simulation Conference, 2006, pp. 2210-2218.

[17] J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and ddos
defense mechanisms,” SIGCOMM Computer Communications Review,
2004.

[18] A. Kuzmanovic and E. W. Knightly, “Low-rate TCP-targeted denial of
service attacks: The shrew vs. the mice and elephants,” in Proc. of ACM
SIGCOMM, 2003.

[19] Nortel Networks, “QoS performance requirements for UMTS, the 3rd
generation partnership project (3GPP),” http://www.3gpp.org.

[20] “Ns-2.” [Online]. Available: http://www.isi.edu/nsnam/ns/

[21] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
throughput: a simple model and its empirical validation,” SIGCOMM
Comput. Commun. Rev., vol. 28, no. 4, pp. 303-314, 1998.

[22] H. Sawashima, Y. Hori, and H. Sunahara, “Characteristics of UDP packet
loss: Effect of TCP traffic,” in Proceedings of INET, 1997.

