
A Round Trip Time and Time-out Aware Traffic Conditioner for Differentiated
Services Networks

Ahsan Habib, Bharat Bhargava, Sonia Fahmy
CERIAS and Department of Computer Sciences

Purdue University, West Lafayette, IN 47907-1398, USA
E-mail:

�
habib, bb, fahmy � @cs.purdue.edu

Abstract— TCP connection throughput is inversely propor-
tional to the connection Round Trip Time (RTT). To mitigate TCP
bias to short RTT connections, a differentiated services traffic
conditioner can ensure connections with long RTTs do not starve
when connections with short RTTs get all extra resources after
achieving the target rates. Current proposals for RTT-aware con-
ditioners work well for a small number of connections when most
TCP connections are in the congestion avoidance phase. If there
is a large number of TCP connections, however, connections time-
out and go to slow start. We show that current RTT-aware condi-
tioners over-protect long RTT flows and starve short RTT flows in
this case. We design and evaluate a conditioner based on RTT as
well as the Retransmission Time-out (RTO). The proposed RTT-
RTO aware traffic conditioner works well for realistic situations
with a large number of connections. Simulation results in a vari-
ety of situations confirm that the conditioner mitigates RTT bias.

Keywords: Traffic Conditioner, RTT, RTO, Quality of Service,
Differentiated Services, Assured Forwarding.

I. INTRODUCTION

The differentiated services (diff-serv) architecture [1] is a
scalable approach for Quality of Service (QoS) in IP networks.
The diff-serv model uses traffic conditioners at the edges of an
administrative domain. The conditioner operations are based
on bi-lateral Service Level Agreements (SLAs) between adja-
cent domains. A traffic conditioner may contain meters, mark-
ers, droppers, and shapers [1]. The conditioner may alter the
temporal characteristics of a traffic stream to bring it into com-
pliance with a traffic profile specified by the network admin-
istrator. The meter measures and sorts the classified packets
into precedence levels. Marking, shaping, or dropping is done
based on the measurement results.

In the core of the network, Per Hop Behaviors (PHBs)
achieve service differentiation. Assured forwarding (AF) [2]
PHBs use an active queue management technique such as Ran-
dom Early Detection [3] for IN and OUT of profile (RIO) pack-
ets [4]. AF provides four classes (queues) of delivery for IP
packets and three levels of drop precedence (which we call
DP0, DP1, and DP2) per class. The Differentiated Services
Code Point (DSCP), contained in the IP header, is set to mark
the drop precedence. When congestion occurs, packets marked
with higher drop precedence must be dropped first.

–This research is sponsored in part by the National Science Foundation
grants CCR-001712 and CCR-001788, CERIAS, an IBM SUR grant, the Pur-
due Research Foundation, and the Schlumberger Foundation technical merit
award. Thanks to Nabil Seddigh and Peter Pieda for their valuable comments.

TCP connection throughput is inversely proportional to the
connection Round Trip Time (RTT). Traffic conditioners that
mitigate this unfairness by being RTT-aware were first pro-
posed in [5]. These conditioners avoid RTT bias of TCP con-
nections through marking packets with high drop priority in-
versely proportional to the square of their RTTs according to
the steady state TCP behavior. Such conditioners work well
when the number of flows is small. We show in this paper that,
for a large number of flows, short RTT flows time out in this
case because only long RTT flows are protected by the con-
ditioner after satisfying the target rate. Excess bandwidth is
mostly given to long RTT flows. To remedy this unfairness in-
troduced by an RTT-aware conditioner, we propose two strate-
gies. The first strategy is to combine the RTT-aware conditioner
with techniques that protect a TCP flow when its congestion
window is small. The second method is to re-design the RTT-
aware conditioner to consider time-outs as well as RTTs to ap-
proximate throughput. Both strategies are analyzed for data
intensive applications and delay sensitive applications with re-
alistic traffic models.

We note that our method for incorporating RTT-awareness
into the conditioner does not grant all available resources to
long-RTT connections while short-RTT connections starve.
The RTT-awareness only mitigates unfairness in distributing
excess bandwidth. When a network is under-provisioned, the
RTT-aware conditioner does not consider RTTs.

The rest of this paper is organized as follows. Section II sum-
marizes previous work on diff-serv assured forwarding and in-
telligent traffic conditioners. Section III explains our proposal
for overcoming unfairness problems in RTT-aware traffic con-
ditioners. Section IV contains all the details of our simulation
setup. Section V presents the simulation results. We conclude
with a summary and discussion of future work.

II. RELATED WORK

In one of the earliest differentiated services papers, Clark
and Fang show that sources with different target rates can ap-
proximately achieve their targets using RIO even with different
Round Trip Times (RTTs), whereas simple RED routers cannot
[4]. With RIO, if two flows have same target rate and different
RTTs, short RTT flows get most of the extra resources. Our
goal is to distribute the extra resources among all flows such
that short RTT flows do not steal all the extra bandwidth.

Ibanez and Nichols showed that target rates and TCP/UDP
interaction are key factors in determining throughput of flows

[6]. Seddigh, Nandy and Pieda showed that target rates and
TCP/UDP interaction are also critical for the distribution of
excess bandwidth in an over-provisioned network [7]. Fang,
Seddigh and Nandy proposed the Time Sliding Window Three
Color Marker (TSW3CM) [8], which we refer to as the stan-
dard conditioner throughout this paper.

Nandy et al extend the TSW marker to design RTT-aware
traffic conditioners [5]. The basic idea of this conditioner is to
adjust the packet drop rate in relation to the RTT. Hence, the
acquired bandwidth for the aggregate becomes less sensitive to
RTT. Their conditioner is based on the steady state TCP behav-
ior as reported by Matthis et al [9], i.e., bandwidth is inversely
proportional to RTT. Their model does not consider time-outs.
However, we observe time-out events when a large number of
flows is multiplexed onto a bottleneck. We discuss this further
in the next section.

Feroz et al propose a TCP-Friendly marker [10]. As TCP
applications over diff-serv are influenced by bursty packet loss
behavior, they use TCP characteristics to design their marker.
Their conditioner protects small-window flows from packet
losses by marking such traffic as IN. Detailed analysis on a
good window size threshold (below which a flow is marked as
IN) is provided in [11]. We incorporate the idea of protecting
small window flows into one of our RTT-aware traffic condi-
tioner proposals.

III. RTT-RTO AWARE CONDITIONER

In this section, we discuss the design of a fair RTT-aware
traffic conditioner. The RTT-aware traffic conditioner proposed
in [5] avoids the TCP short RTT bias through marking packets
with high drop priority inversely proportional to the square of
their RTTs. This is based upon the steady state TCP behav-
ior modeled in [9]. Equation (1) shows that, in this model,
bandwidth is inversely proportional to the RTT (����� is the
maximum segment size and � is the packet loss probability):���	� �����
����� � �����

The RTT-aware marking algorithm proposed in [5] works
well when the number of flows is small because equation (1)
accurately represents the fast retransmit and recovery behavior
when � is small. We have observed that for a large number of
flows, short RTT flows time out because only long RTT flows
are protected by the conditioner after satisfying the target rates.
Excess bandwidth is mostly given to long RTT flows.

To remedy this situation, we can use one of two strategies.
First, we can avoid the problem by combining the RTT-aware
conditioner with a technique that protects the TCP packets af-
ter time-outs. Feroz et al propose the small window protection
technique [10], which marks TCP packets with lowest drop pri-
ority when the congestion window of TCP is small. TCP grows
the congestion window exponentially until it reaches the slow
start threshold, ssthresh. The congestion window reduces to
1 or by half for time-outs or packet loss, respectively. Giving
low drop priority to flows with small congestion window sizes
helps these flows achieve high throughput.

Analysis and performance of Small Window (SW) based
conditioning is given in [10], [11]. With SW, a packet is marked
as ����� when the congestion window size of a particular flow
is ��� . In this paper, we show that SW protects short RTT
flows when an RTT-aware conditioner is used. This combina-
tion eliminates the unfairness of the basic RTT-aware condi-
tioner for a large number of flows. The RTT-aware marking
algorithm with SW is referred to as RTT-SW in this paper.

The second approach to eliminate unfairness is to use the
throughput approximation by Padhye et al [12] which considers
time-outs. Equation (2) shows this approximation, where � is
the number of packets acknowledged by a received ACK, and��

is the time-out length:��� � �
���"! #%$'&(*) ��"+-,-.0/ �1�3254 ! ($6&7 � � �1�) 498 � # � �:8;�
If we take �=< (# (one delayed ACK for two packets for every

three incoming packets), approximate
,-.0/ �1�3254 ! ($6&7 � to 1 (so

that BW will be less than or equal to the right side of the (3)),
and discard the higher order term of � , i.e.,

4;8 � ((if � is small,� (will be very small), we can simplify (2) to:�>�	� �
��?�@+A� �) ���"+ � �B49�
Designing an RTT-aware traffic conditioner using (3) is more

accurate than using (1). Consider two flows with achieved
bandwidths

�>�DC
and
�>� # . The objective is to obtain:���DC < �>� # �6EF�

Equations (3) and (4) give:
��?�GC?+ � � C) ��3C�+ � C <
��� # + � � #) �� # + � # �:H;�
Let I>< &KJ&ML . Equation (5) can then be written as:
��?� C + � � C) �� C + � C <
��?� # + � I + � C) �� # + I + � C�BN9�
Solving for I , this means that we should have:

I �PO
��?� C
��?� #RQ # �0S3�
And: I � �� C�� # �BT9�

Equations (7) and (8) show that the packet drop ratio be-
tween two flows depends on the square of ratio of RTT of the
two flows and the ratio of their time-outs. We combine the two
equations to obtain the following heuristic:

I # < O
��� C
��� #UQ # + �� C�� # �BV9�
We follow the same steps as in [5] to derive the marking

probabilities. If measured rate is beyond the target rate of a

1. If measuredRate <= targetRate
2. mark packets as DP0
3. Else
4. mark packets as DP0 with probability (1-� �)
5. If packet is not marked DP0
6. mark packets as DP1 with probability (1-q)
7. mark packets as DP2 with probability q
8. where p and q are:

9. ��� ���	��
������������
��������
����������
���� �	�!
����"�#�!�$��
���
10. %&� ' �	(*)+��,�,
����$�#�!��
�����-,.,0/ � ' �1(2)3�-,�4
������#�!��
������,�45/
Fig. 1. An RTT-RTO aware Traffic Conditioner with three drop precedences.

n2

n1
n3

n4

E1

C

Host Edge Router Core Router

Bottleneck Link

E3

E2

(a) Simple topology

C3

E4C2

C4
C1

Core RouterEdge RouterHost

40ms

5ms

20ms

10ms

10ms

10ms 20ms 10ms
5ms

10ms

n5

n6n2
E2

n4

E7

n7

n8

E5

E6

E1 E3
n1

n9
n3n0

(b) Multiple domain topology

Fig. 2. Simulation topologies to test performance. All links are 10 Mbps.

flow, the packet is marked as ��� � or � � 8 with probability687#9;:#<3=�7#>�?@9�AB7�CDAB9=�E;7�AF?@9�AB7687#9;:#<3=�7#>�?@9�AB7 . The ratio of ��� � and � � 8 is di-
rectly related to the packet drop probabilities at the core. There-
fore, equation (9) is used to mark packets as � � � and � � 8 .
The resulting algorithm, which we refer to as the RTT-RTO
algorithm, is shown in Figure 1. Note that for the flow with
minimum RTT and RTO, the packets are marked based on the
ratio of its own RTT and RTO. Otherwise, the right hand side
of (9) may become 1 and all packets of the flow with mini-
mum RTT will be marked as � � 8 , which will deteriorate the
performance of the flow.

IV. SIMULATION SETUP

We use the ns-2 simulator [13] for our experiments. For the
standard diff-serv implementation, we use software developed
at Nortel Networks [14]. We use the combination of TSW tag-
ger [4], a rate estimator, and the TSW3CM marker [8] to refer
as a standard conditioner.

The simple network topology shown in Figure 2(a) is used
to show problems with RTT-aware conditioners and how RTT-
RTO and RTT-SW can overcome these problems. We use the
multiple domain topology in Figure 2(b) with cross traffic to
illustrate more realistic scenarios. Each edge router is con-
nected to a host which sends aggregate flows to simulate differ-
ent users. The RED parameters

� , . / ABG ,
,IHKJ ABG , � 689L � used

are: for DP0
�
40, 55, 0.02 � ; for DP1

�
25, 40, 0.05 � ; and for

DP2
�
10, 25, 0.1 � as suggested in [5]. MON is set to 0.002 for all

REDs. TCP New Reno is used with a packet size of 1024 bytes
and a maximum window of 64 packets. We use 200 micro-
flows (where a micro-flow represents a single TCP connection)
per aggregate flow.

The metrics we use to evaluate performance are: Through-
put: Average (over simulation time) bytes received by the re-
ceiver application per second; Packet Drop Ratio: Ratio of to-
tal packets dropped at the core to the total packets sent; Packet

4

4.5

5

5.5

6

6.5

7

0 20 40 60 80 100 120 140 160 180 200

B
an

d
w

id
th

 (
M

b
p
s)

RTT (ms)

standard
Small Window

(a) Aggregate Flow 1

3.4
3.6
3.8

4
4.2
4.4
4.6
4.8

5
5.2

0 20 40 60 80 100 120 140 160 180 200

B
an

d
w

id
th

 (
M

b
p
s)

RTT (ms)

standard
Small Window

(b) Aggregate Flow 2

Fig. 3. Throughput of the standard conditioner with small window. RTT of
flow F1 (PDQ@R�P�S) is 20 ms and RTT of F2 (P.T1RUP.V) is shown on the x-axis.

Delay: Average delay to deliver a packet for delay sensitive
applications like Telnet; Response Time: This is the time be-
tween sending a request to a server and receiving the response
back from the server.

V. SIMULATION RESULTS

We first show the behavior of the small window protection
marking technique, and then focus on the RTT-RTO aware traf-
fic conditioner. We simulate FTP, Telnet and WWW applica-
tions in two topologies.

A. Small Window Protection

The objective of our first experiment is to study the perfor-
mance of the standard traffic conditioner and show that small
window (SW) protection improves performance. We vary the
RTTs in this experiment and investigate the effect on through-
put and packet drop ratio. We use the simple topology in Fig-
ure 2(a) where one aggregate flow, Flow 1, is created between
nodes
/ �

and
/ 4

with RTT 20 ms and another aggregate flow,
Flow 2, is created between nodes

/ 8
and
/ E

. The RTT of Flow
2 is varied from 4 to 200 ms. Each aggregate flow has a com-
mitted rate (CIR) of 2 Mbps and a peak rate (PIR) of 3 Mbps.

Figure 3 shows the bandwidth achieved with and without
small window protection in an over-provisioned network. With
SW, if the window size of a flow is less than a threshold k,
the flow packets are marked as DP0. We use � < 4 in all
our experiments in this paper. Summing up the value in both
parts of figure 3, we observe that the total achieved bandwidth
with SW is higher than the standard conditioner and is close to
the link capacity. Detailed results with different SW thresholds
and target rates are given in [11]. SW favors short RTT flows
(Flow 1). Long RTT flow bandwidth deteriorates because short
RTT flows get more protection. We have also observed that
the packet drop ratio decreases when the RTT of Flow 2 in-
creases, because for longer RTT, TCP can estimate the sending
rate more accurately.

B. RTT-Aware Traffic Conditioners
As previously mentioned, we have observed that a basic

RTT-aware conditioner (with both 2 and 3 Drop Precedences)
as in [5] is biased when a large number of flows is being multi-
plexed. Using the same experimental setup as the previous ex-
periment, we observe that Flow 2 (the longer RTT flow) obtains
most of the extra bandwidth after target rates have been satis-
fied for both aggregates. Figure 4 shows that Flow 1 achieves

2

3

4

5

6

7

8

0 20 40 60 80 100 120 140 160 180 200

B
an

dw
id

th
 (

M
bp

s)

RTT (ms) of F2

F1 RTT
F2 RTT
F1 R-O
F2 R-O

F1 RTT-SW
F2 RTT-SW

Fig. 4. Throughput comparison of basic RTT, RTT-RTO (R-O), and RTT-SW
based conditioners. RTT of F1 is 20 ms and RTTs of F2 is shown on the x-axis.

1
2
3
4
5
6
7
8
9

10

5 10 15 20 25 30

C
on

ge
st

io
n

W
in

do
w

 S
iz

e

Time (s)

Flow 1 Standard
Flow 1 Small Window

Fig. 5. TCP’s congestion window size with and without small window pro-
tection with RTT-based conditioners for a micro flow of aggregate flow, F1.

only 2.3 Mbps whereas Flow 2 gets 7.52 Mbps (at Flow 2
RTT=100 ms) with the basic RTT-aware conditioner.

We trace the reason for this behavior to the fact that Flow 2
gets priority over Flow 1 due to its longer RTT, after target rates
are satisfied. As a result, many micro flows in the aggregate
Flow 1 time-out, and Flow 1 cannot achieve more than its target
rate. Figure 5 shows that the congestion window (cwnd) of a
randomly selected micro flow in the Flow 1 aggregate remains
small due to timeouts. The figure also shows that incorporating
small window protection overcomes this problem.

Figure 4 illustrates that our proposed RTT-RTO (R-O) based
conditioner (as well as the incorporation of small window pro-
tection into the RTT-aware conditioner (RTT-SW)) mitigate
this RTT-based unfairness. This is because with a larger num-
ber of flows, the per micro flow bandwidth share is small and
thus the steady-state cwnd is reduced. When cwnd is small,
there is a higher probability of timeouts in the case of packet
drops. Protecting packets (via DP0 marking) when the window
is small reduces time-outs, especially back-to-back time-outs.
The micro flow also recovers from timeouts when RTO as well
as RTT is used to mark packets and fairness is improved.

C. Multiple Domain Topology

To examine more realistic scenarios, we use the multiple do-
main topology shown in figure 2(b) where flows traverse mul-
tiple differentiated services domains. We have created flows

� �
=
/ �

to
/ S

,
� 8

=
/ 8

to
/ T

,
� 4

=
/ 4

to
/ E

,
� E

=
/ � to
/ V

,
and

� H
=
/ H

to
/ N

. The first two aggregate flows traverse mul-
tiple domains while the remaining two act as cross traffic.

� �
and

� 8
have longer RTTs whereas

� 4
,

� E
, and

� H
have short

RTTs. Figure 6 shows that, with the basic RTT-aware condi-
tioner,

� �
and

� 8
obtain much higher bandwidth than flows

with short RTTs. We discard initial values to reduce transient
effects on the result. With the basic RTT-aware conditioner, the
excess bandwidth is distributed according to the RTT so that

TABLE I
PER TELNET PACKET DELAY (FIRST THREE COLUMNS) AND PER SESSION

DELAY FOR TELNET TRAFFIC. NUMBER OF TELNET SESSIONS = 100.

Conditioner Delay (s) Delay (s) Delay (s) Delay (s)
F1, F2, F4 F3, F5 overall / session

Standard 5.36 2.32 3.62 72.11
Basic RTT 5.23 2.18 3.48 69.19
RTT-RTO 5.32 1.98 3.19 68.68
RTT-SW 5.12 1.84 2.89 66.09

the longer RTT flows get higher share. We do not see this un-
fairness with the RTT-RTO conditioner or with RTT-SW. With
RTT-SW the short RTT flows get much higher bandwidth than
long RTT flows. The RTT-RTO based conditioner is fair be-
cause long RTT flows do not get higher bandwidth as with the
basic RTT-aware conditioner, but also short RTT flows do not
steal most of the resources as with RTT-SW. Flows

� �
,

� 8
,

and
� E

achieve almost same amount of bandwidth and flow
� 4

gets little higher, which is fair because this flow has a very
short RTT. If the network is extremely over-provisioned, the
performance difference is more pronounced. We have observed
that flow

� 4
obtains 67 times more bandwidth than what

� �
and

� 8
achieved with the standard conditioner, whereas with

RTT-RTO the flows achieve very similar bandwidths.

D. Telnet and WWW Traffic

We compare the performance of Telnet (delay-sensitive) and
WWW (response time sensitive) applications with the various
RTT-aware conditioner variations. For the Telnet experiment,
the metric used is the average packet delay for each Telnet
packet. The topology is the same as figure 2(b), but all links
capacities are set to 1 Mbps to induce congestion. We simulate
100 sessions each from node

� �
=
/ �

-
/ S

,
� 8

=
/ 8

-
/ T

,
� 4

=
/ 4

-/ E
,

� E
=
/ � - / V , and

� H
=
/ H

-
/ N

. Each session transfers less
than 10 to more than 30 TCP packets.

Table I shows the average packet delay for each Telnet
packet. We compare the standard, the basic RTT-aware con-
ditioner, the RTT-RTO conditioner and the RTT-aware condi-
tioner with small window protection (RTT-SW). The delays
are long because the network is congested. The standard con-
ditioner has the highest delay for long RTT flows. The RTT-
SW has the lowest delay for short RTT flows. This is because
with small window protection, short RTT flows get much bet-
ter service than the long RTT flows. With the RTT-RTO con-
ditioner, the delay for long RTT flows is lower than with the
standard and RTT-aware conditioners. In some cases, short
RTT flows have higher delay with the RTT-RTO conditioner,
which is consistent with the fairness objective of the condi-
tioner. Our experiments show that we can achieve better overall
performance with the RTT-RTO conditioner because the delay
of long RTT flows is reduced with RTT-RTO aware conditioner
and the overall Telnet packet delay for all flows is minimized.
The per Telnet session delay is low with RTT-RTO conditioner.

As web traffic constitutes most (60%-80%) of the Internet
traffic, we examine our traffic conditioners with the WWW
traffic model in ns-2 [13]. Details of the model are given in
[15]. The model uses HTTP 1.0 with TCP Reno. Servers are
attached to

/ E
,
/ S

and
/ T

of Figure 2 (b), while
/ �

,
/ 8

and

1

1.5

2

2.5

3

3.5

4

4.5

20 40 60 80 100 120 140 160 180 200

B
an

dw
id

th
 (M

bp
s)

Number of flows

F1 RTT
F2 RTT
F3 RTT
F4 RTT

(a) RTT-aware

1

1.5

2

2.5

3

3.5

4

4.5

20 40 60 80 100 120 140 160 180 200

B
an

dw
id

th
 (M

bp
s)

Number of Flows

F1 R-O
F2 R-O
F3 R-O
F4 R-O

(b) RTT-RTO

1

1.5

2

2.5

3

3.5

4

4.5

20 40 60 80 100 120 140 160 180 200

B
an

dw
id

th
 (M

bp
s)

Number of Flows

F1 RTT-SW
F2 RTT-SW
F3 RTT-SW
F4 RTT-SW

(c) RTT-SW

Fig. 6. Throughput of RTT-aware traffic conditioners in a multiple domain topology. F1, F2 are long RTT flows and F3 has very short RTT. F4 is in the middle.

TABLE II
RESPONSE TIME FOR WWW TRAFFIC. NUMBER OF SESSIONS = 50

Conditioner Avg response time Std Avg response time Std
(sec): first packet dev (sec): all packets dev

Standard 0.75 1.60 2.25 4.79
Basic RTT 0.71 1.52 2.16 4.62
RTT-RTO 0.77 1.64 1.69 3.61
RTT-SW 0.64 1.37 1.80 3.83

/ 4
are used as clients. Each client generates a request for 5

pages with a variable number of objects (e.g., images) per page.
We use the default ns-2 probability distribution parameters to
generate inter-session time, inter-page time, objects per page,
inter-object time, and object size (in kB).

Table II shows the average response time per WWW request
received by the client for 50 concurrent sessions. The network
setup is the same as with Telnet traffic. Two response times
are shown in the table: one is the time to get the first response
packet and another is to get all data. The table shows that the
RTT-RTO conditioner reduces total response time over all other
conditioners. The RTT-SW conditioner takes less time for the
first packet because of the small window protection at the time
of connection setup. For 100 concurrent sessions, RTT-RTO
conditioner takes the minimum time to get first response. The
response time does not differ significantly if the network is not
congested.

VI. CONCLUSIONS

In this paper, we have shown that using a basic RTT-aware
traffic conditioner can be unfair by giving all extra bandwidth
to long RTT flows when many micro-flows traverse through an
edge router. This behavior causes short RTT flows to starve
because they frequently time-out and go to slow start. To over-
come this unfairness, we present two schemes: one protects
flows with small windows, and the other re-designs the con-
ditioner using both RTT and RTO values. Both conditioners
are shown to perform well for both small and large numbers
of flows. The RTT-RTO conditioner is shown to improve FTP
throughput, reduce packet delay for Telnet and response time
for WWW traffic.

We note that when a packet is protected (it is re-marked to
green when it was yellow or red), the flow profile must still be
preserved by marking later packets yellow or red. This ensures
that the congestion situation of the network does not deteriorate
due to this flow protection.

RTT-aware conditioners require edge routers to determine
the RTT of aggregates passing through them. The RTT can be
measured by monitoring the flow sequence number in one di-
rection and observing the ACKs in the other direction. This ap-
proximation works because the conditioner compares approxi-
mate values to each other. It is possible to take a a single flow
as a representative of the aggregate. As an RTT-aware con-
ditioner also requires the minimum aggregate RTT, the edge
routers need to exchange this information. The retransmission
timeout can be approximated based on the RTT value using
the RTT variance. The efficient implementation of RTT-aware
conditioners is the subject of our ongoing work.

REFERENCES

[1] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An
architecture for Differentiated Services,” RFC 2475, December 1998.

[2] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski, “Assured Forward-
ing PHB group,” RFC 2597, June, 1999.

[3] S. Floyd and V. Jacobson, “Random Early Detection gateways for con-
gestion avoidance,” IEEE/ACM Transactions on Networking, vol. 1, 4,
pp. 397–413, 1993.

[4] D.D. Clark and W. Fang, “Explicit allocation of best effort packet deliv-
ery service,” IEEE/ACM Transactions on Networking, vol. 6, 4, 1998.

[5] B. Nandy, N. Seddigh, P. Pieda, and J. Ethridge, “Intelligent Traffic
Conditioners for Assured Forwarding based Differentiated Services net-
works,” IFIP High Performance Networking, Paris, June 2000.

[6] J. Ibanez and K. Nichols, “Preliminary simulation evaluation of an As-
sured Service,” Internet Draft, draft-ibanez-diffserv-assured-eval-00.txt,
August 1998.

[7] N. Seddigh, B. Nandy, and P. Pieda, “Bandwidth assurance issues for
TCP flows in a Differentiated Services network,” Globecom, 1999.

[8] W. Fang, N. Seddigh, and B. Nandy, “A Time Sliding Window Three
Colour Marker,” RFC 2859, June 2000.

[9] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic be-
havior of the TCP congestion aviodance algorithm,” ACM SIGCOMM
Computer Communication Review, vol. 27, No. 3, pp. 67–82, 1997.

[10] A. Feroz, S. Kalyanaraman, and A. Rao, “A TCP-Friendly traffic marker
for IP Differentiated Services,” Proc. of the IEEE/IFIP Eighth Interna-
tional Workshop on Quality of Service - IWQoS, 2000.

[11] A. Habib, S. Fahmy, and B. Bhargava, “Design and evaluation of an
adaptive traffic conditioner in differentiated serivces networks,” IEEE
ICCCN, Scottsdale, Arizona, USA, pp. 90–95, Oct 2001.

[12] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP through-
put: A simple model and its empirical validation,” SIGCOMM, 1998.

[13] S. McCanne and S. Floyd, “Network simulator ns-2,”
http://www.isi.edu/nsnam/ns/, 1997.

[14] F. Shallwani, J. Ethridge, P. Pieda, and M. Baines, “Diff-Serv implemen-
tation for ns,” http://www7.nortel.com:8080/CTL/#software, 2000.

[15] A. Feldmann, A. C. Gilbert, P. Huang, and W. Willinger, “Dynamics of
IP traffic: A study of the role of variability and the impact of control,”
ACM SIGCOMM ’99, pp. 301–313, 1999.

