
Measuring Denial Of Service

Jelena Mirkovic
University of Delaware
sunshine@cis.udel.edu

Peter Reiher
UCLA

reiher@cs.ucla.edu

Alefiya Hussain
SPARTA, Inc.

Alefiya.Hussain@sparta.com

Sonia Fahmy
Purdue University

fahmy@cs.purdue.edu

Stephen Schwab
SPARTA, Inc.

Stephen.Schwab@sparta.com

Roshan Thomas
SPARTA, Inc.

Roshan.Thomas@sparta.com

Calvin Ko
SPARTA, Inc.

Calvin.Ko@sparta.com

ABSTRACT
Denial-of-service (DoS) attacks significantly degrade service quality
experienced by legitimate users by introducing long delays, excessive
losses, and service interruptions. The main goal of DoS defenses is to
neutralize this effect, and to quickly and fully restore quality of vari-
ous services to levels acceptable by the users. To objectively evaluate
a variety of proposed defenses, we must be able to precisely measure
damage created by an attack, i.e., the denial of service itself, in con-
trolled testbed experiments. Current evaluation methodologies mea-
sure DoS damage superficially and partially by measuring a single
traffic parameter, such as duration, loss or throughput, and showing
divergence of this parameter during the attack from its baseline case.
These measures do not consider quality-of-service requirements of
different applications and how they map into specific thresholds for
various traffic parameters. They thus fail to measure the overall ser-
vice quality experienced by the end users.

We propose a series of DoS impact metrics that are derived from
traffic traces gathered at the source and the destination networks. We
segment a trace into higher-level user tasks, called transactions, that
require a certain service quality to satisfy users’ expectations. Each
transaction is classified into one of several proposed application cate-
gories, and we define quality-of-service (QoS) requirements for each
category via thresholds imposed on several traffic parameters. We
measure DoS impact as a percentage of transactions that have not
met their QoS requirements and aggregate this measure into several
metrics that expose the level of service denial and its variation over
time. We evaluate the proposed metrics on a series of experiments
with a wide range of background traffic. Our results show that our
metrics capture the DoS impact more precisely than partial measures
used in the past.

Categories and Subject Descriptors
C.4 [Performance of systems]: Measurement techniques

General Terms
Measurement, security, standardization

Keywords
Denial of service, metrics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
QoP’06, October 30, 2006, Alexandria, Virginia, USA.
Copyright 2006 ACM 1-59593-553-3/06/0010 ...$5.00.

1. INTRODUCTION
Network communication requires proper functioning of many di-

verse and distributed network elements: applications, protocols, op-
erating systems, end hosts’ resources, routers, network links, and
critical Internet services, such as Domain Name Service. Denial-of-
service (DoS) attacks can take down any of these targets, either by
exploiting some vulnerability or by overwhelming a critical resource,
to deny service to legitimate users. Because the Internet’s popularity
grows daily, DoS attacks cause great disturbance and have drawn a
lot of attention from security researchers who are working to design
effective defenses.

Accurately measuring denial-of-service impact is essential for eval-
uation of potential DoS defenses. A defense is only valuable if it
provably prevents or eliminates denial of service, making DoS attacks
transparent to Internet users. If we could measure which services
were denied by an attack with and without the defense, we could: (1)
understand and express the severity of various attacks (e.g., “attack
A denied all the services in the network, whereas attack B only de-
nied HTTP service to new users”), (2) characterize the effectiveness
of proposed defenses (e.g., “defense X eliminated 90% of DoS im-
pact after 1 minute”) and (3) compare defenses to understand their
price/performance tradeoff.

DoS attacks deny service to legitimate users because they either
deplete some scarce resource needed by legitimate traffic, or because
they exploit a vulnerability at the server, which slows down or dis-
ables processing of user requests. A user perceives large request-
response delay in interactive traffic, low-quality audio and image due
to packet loss in media and gaming traffic, and large duration of non-
interactive transactions, such as e-mail transfer. When evaluating the
effect of a DoS attack in a testbed or in a simulation, it is infeasi-
ble to ask human users to assess service quality, since this will not
provide consistent and accurate quantitative measures of DoS impact.
We thus need to define a comprehensive DoS impact metric that maps
all user-perceived service quality into network traffic parameters such
as packet loss, delay, etc., that can be measured objectively and in an
automated fashion. Historically, several measures have been used by
researchers: percentage of legitimate packets dropped, division of re-
sources between legitimate and attack traffic, throughput or goodput
of TCP connections, request/response delay and the overall transac-
tion duration. While many of these parameters will have a different
distribution during the attack, when compared with the baseline case,
there is a lack of understanding of how the parameter values map
into user-perceived service quality. For example, a 5-minute one-
way delay can be detrimental to interactive audio conversations (e.g.,
VoIP) [18] but only an unnoticeable glitch for e-mail transfer between
servers [16]. If a defense system reduces one-way delay to 1 second,
this restores service quality for Web users, who can tolerate up to 10
second request/response delays [6], but does not help game users who
need less than 150 ms delays for a good service [3].

Evidently, an accurate DoS metric must consider application-specific

quality-of-service (QoS) requirements and compare measured traffic
parameters with application-specific thresholds to map them into a
user-perceived service quality. This paper proposes such a metric that
speaks to the heart of the problem: did the legitimate clients receive
acceptable service or not, for each task they performed during an at-
tack. There are two possible approaches to compute application per-
formance metrics: we could instrument each application to compute
statistics such as average response time, transaction completion time,
loss, etc., or we can use real, uninstrumented application programs,
and then process experimental traffic traces to identify transactions,
measure required parameters and compute performance metrics in a
completely automated fashion. We select the second approach, since
it scales better to different new, off-the-shelf, or diverse application
types, and allows researchers to evaluate performance in traces cap-
tured by others.

We process a traffic trace captured during an experiment to iden-
tify transactions that represent higher-level tasks whose completion
is meaningful to a user, such as browsing one Web page, downloading
a file or having a VoIP conversation. For each transaction, we mea-
sure five parameters: (1) one-way delay, (2) request/response delay,
(3) packet loss, (4) overall transaction duration and (5) delay varia-
tion (jitter). Jointly, these parameters capture a variety of application
QoS requirements, as we will discuss in Section 2. A transaction is
then classified into an application category and measured parameters
are compared with category-specific thresholds to determine if the
transaction succeeded or failed. We calculate the percentage of failed
transactions (pft) in each application category as a measure of DoS
impact. We aggregate this measure into several metrics to expose
specifics of a DoS attack’s interaction with the legitimate traffic.

The main difficulty in applying the proposed DoS impact met-
ric lies in categorizing applications by their QoS requirements, and
specifying realistic, objective and measurable criteria for success (or
failure) for each application category. Ideally, a DoS impact metric
should match a legitimate user’s experience during an attack, so that
transactions marked as failed are those that a user would find of poor
quality, and similarly succeeded transactions are those that have an
acceptable quality. This can be extremely challenging because re-
search on QoS involving human subjects has noted that a user’s sub-
jective perception of acceptable or impaired service not only varies
greatly between users, but also varies for a given user depending on
his intent and expectations [6]. An additional obstacle lies in the fact
that only some subjective QoS perceptions have been paired with
measurable parameter values [18, 7, 3], and even for these there is
a large grey area of service quality that some users would label as
acceptable while others would not. Further, some applications can
hide a network-induced delay, delay variation or loss using variable
buffering (streaming media applications [18]) or extrapolation (online
games [9, 5]). For scalability reasons, we must decide to either con-
sider all applications of a certain kind (e.g., streaming audio) or none
of them, as capable of masking some specific range of delay, jitter or
loss.

We acknowledge that definition of application categories and uni-
versally acceptable QoS criteria will be a major undertaking, and will
require participation of a large research and commercial community.
However difficult, we believe that this effort is necessary for objec-
tive evaluation of DoS defenses and their fair comparison. In Section
2.1, we propose a set of application categories and their QoS criteria.
We largely borrow these from 3GPP’s specification of QoS require-
ments for Universal Mobile Telecommunications System, which de-
fines acceptable service quality for various applications. 3GPP is a
“collaboration agreement which brings together a number of telecom-
munications standards bodies” [1] from all over the world, in an ef-
fort to “produce globally applicable Technical Specifications ... for
a 3rd Generation Mobile System” [1]. Thus, the proposed set of
QoS specifications has the advantage of being already accepted by the

world’s large standards bodies. We significantly extend and formalize
the specifications from [16] using findings from recent QoS research,
with the goal of customizing them for trace-based measurement.

The proposed DoS impact metric requires trace capture at the legit-
imate senders and at the traffic destinations. As such, it is well-suited
to testbed experimentation where we can capture traffic at any point.
It may not be applicable to detect attacks or measure DoS impact in
real-world situations, depending on the availability of traces. With
minor extensions, it can also be used for DoS measurement in sim-
ulations. We discuss how to measure the required traffic parameters
in DoS experiments in Section 2.2, and how to aggregate these mea-
sures into various DoS impact metrics in Section 2.3. We illustrate
our metrics with small-scale experiments on the DETER testbed [4]
in Section 3; survey related work in Section 4; and discuss future
directions in Section 5.

2. DOS IMPACT METRIC
We propose a DoS impact metric that directly measures if a user’s

service was denied or not. This metric categorizes a set of high-
level user tasks called transactions into application categories based
on the application that generated the traffic. For each transaction,
we measure the following five parameters: (1) one-way delay, (2)
request/response delay, (3) packet loss, (4) overall transaction dura-
tion and (5) delay variation (jitter). Request/response delay captures
QoS degradation of interactive applications. One-way delay, packet
loss and jitter capture QoS degradation of media and game applica-
tions. Transaction duration captures degradation of non-interactive
tasks where a user can tolerate intermittent delay but expects a trans-
action to be completed within a certain time frame. Each transac-
tion’s parameters are compared to a set of thresholds specific to its
application category, and the transaction is marked as “successful” if
it meets all QoS criteria, or “failed” otherwise. The main DoS impact
measure we define is the percentage of failed transactions, pft, during
some experimental interval.

2.1 Application QoS Criteria
Table 1 lists the application categories we propose, mostly bor-

rowed from [16], and the corresponding QoS requirements. We note
the following differences from [16]: (1) Because many media appli-
cations can sustain higher jitter than 1 ms [16] using variable-size
buffers, we adopt a jitter threshold value of 50 ms as defined in [2].
(2) We differentiate between first-person shooter (FPS) and real time
strategy (RTS) games because research has shown that their QoS re-
quirements differ. We use [3] (FPS) and [17] (RTS) as sources for
specifying delay and loss bounds. (3) Research on human perception
of Web traffic delay has shown that people can tolerate higher laten-
cies for entire task completion if some data is served incrementally
[6]. We specify two types of delay requirements for interactive trans-
actions (e-mail, Web, FTP) where a user can utilize a partial response:
(a) any delay measured between receipt of any two data packets from
the server. For the first data packet, any delay is measured from the
end of a user’s request, and (b) whole delay measured from the end of
a user’s request until the entire response has been received. We also
specify an overall duration requirement for these transactions. We
use 60 s [6] as a Web-transaction duration threshold, and like [11],
we assume that an acceptable duration for e-mail and FTP should not
exceed three times the expected duration, given the amount of data
being transferred. (4) We add DNS and ICMP services, and specify
a 4 s whole delay requirement. This is the maximum tolerable de-
lay for interactive tasks [16]. (5) We use 4 hours for expected e-mail
(server-to-server) and Usenet transaction duration, instead of several
hours [16]. (6) We capture request/response delay at the transport
level, considering all data packets destined to a server between two re-
sponses as a request, and similarly, all data packets sent by the server
between two requests as a reply. This measure will miss the delay

that occurs if some request packets are dropped and retransmitted, but
this delay is noticed by a user and must be included in success cal-
culation. We capture this delay by calculating the maximum RTT for
each TCP-based transaction and use this as an additional parameter
for QoS calculation. (7) For TCP-based applications, we ignore loss
bounds specified in [16] because losses will either be handled through
TCP retransmissions or will lead to a high request/response delay or
RTT that exceeds the specified threshold. For UDP and ICMP trans-
actions, we map packet loss into delay by setting request/response
delay to a large, fixed value (= 2 times the delay threshold) if the req-
uest has been lost and will not be retransmitted. We keep loss bounds
for audio, video and FPS games.

Category One-way Req/resp Loss Dur. Jitter
delay delay

e-mail (srv/srv) whole, RTT < 4 h
Usenet whole, RTT < 4 h
Chat < 30 s
Web any, RTT < 4 s < 60s
FTP any, RTT < 10 s < 300%

FPS games < 150 ms < 3 %
RTS games < 500 ms

Telnet any, RTT < 250 ms
e-mail (usr/srv) any, RTT < 4 s < 300%

DNS whole < 4 s
ICMP whole < 4 s

media control media media
Audio, conv. < 150 ms whole, RTT < 4 s < 3% < 50 ms

Audio, messg. < 2 s whole, RTT < 4 s < 3% < 50 ms
Audio, stream < 10 s whole, RTT < 4 s < 1% < 50 ms
Videophone < 150 ms whole, RTT < 4 s < 3%

Video, stream < 10 s whole, RTT < 4 s < 1%

Table 1: Application categories and their QoS requirements

2.2 Measuring Traffic Parameters
We collect a traffic trace at each legitimate sender, and identify

user-initiated conversations by looking for SYN packets sent from
the user machine (for TCP traffic), UDP packets sent to a well-known
UDP service port (for UDP traffic) and ICMP request packets. We
also categorize conversations into application categories from Table
1, using destination port numbers for the mapping. In these conversa-
tions, we identify transactions as smaller user/server exchanges that
have some meaning to a user. We introduce the notion of a transaction
to accurately evaluate success or failure of lengthy conversations. For
example, if a user opens an FTP connection to a server and uses it to
transfer 100 files over an hour one by one, the failure of the last trans-
fer does not indicate the failure of the entire FTP session but instead
a failure rate of 1/100. If we instrumented different applications,
we could precisely identify transactions that produce some meaning-
ful output to a user. Instead, we opt for a trace-based approach and
attempt to identify transactions through traffic trace analysis. This
approach is imperfect, but, as discussed above, it results in a more
portable measurement strategy that can be applied to experiments that
use off-the-shelf applications. Table 2 shows how we identify trans-
actions in the trace data. A flow is defined as all traffic between two
IP addresses and port numbers. For interactive applications, an inac-
tive time (user think time) followed by a new user’s request denotes
a new transaction. A transaction is either a part of or the entire flow,
e.g., if a user opened a TCP connection to an FTP server, downloaded
one file and closed the connection, this would be recognized as one
transaction. Downloading 3 files in the same session, with think time
in-between would be recognized as 3 transactions. In case of me-
dia traffic, both the media stream (UDP flow) and the control stream
(TCP flow) are part of a single transaction.

We measure request/response delay and transaction duration us-
ing sender-collected traces, and we correlate sender/receiver traces
to measure one-way delay, loss and jitter. The correlation is done
by matching source IP, port and packet identification (if available) of
the packets at the sender with the packets at the receiver side, and

Application Transaction
e-mail (srv/srv), Usenet TCP flow

Chat, Web, FTP, Telnet, e-mail (usr/srv) TCP flow and inactive time > 4s
Games UDP flow and inactive time > 4s

DNS, ICMP One request/response exchange
Audio and video TCP flow (control channel) and a

corresponding UDP flow (media traffic)

Table 2: Transaction identification

10 ms

20 ms
40 ms

55 ms
70 ms

client

any=20 ms
any=15 ms whole=50 ms

100 ms

any=15 ms

re
qu

es
t

re
pl

y

server

Figure 1: Illustration of request/response identification

synchronizing sender and receiver clocks at the beginning of the ex-
periment. We use tcpdump to capture a traffic trace during the ex-
periment. Since tcpdump uses interrupt-based packet capture, it has
problems keeping up with high packet speeds [12] and may overesti-
mate packet loss during strong attacks. This problem can be handled
to a large extent if tcpdump is combined with device polling [12].

We identify requests and responses using the data flow between
senders and receivers. Let A be a client that initiates some conversa-
tion with a server B. A request is identified as all data packets sent
from A to B before any data packet from B. A reply is identified as
all data packets sent from B to A before any new request from A.
Figure 1 illustrates request and reply identification, and measurement
of any delay and whole delay values.

E-mail and Usenet applications have a delay bound of 4 hours and
will retry a failed transaction for a limited number of times. It would
be infeasible to run several-hour long experiments, so we need to ex-
trapolate transaction success for these applications using short exper-
iment data. DoS impact usually stabilizes shortly after the onset of
an attack or after the defense’s activation, unless the attack or the de-
fense exhibit time-varying behavior. We can thus use the pft value
measured for transactions that originate after the stabilization point
as a predictor of pft in a longer experiment. Let r be a total number
of retries within the 4-hour delay bound and let s be the stabilized
pft for e-mail (or Usenet) transactions during a short experiment. The
predicted pft for a long experiment is then: pftp = sr .

Finally, FTP and e-mail success criteria require comparing a trans-
action duration during an attack with its expected duration without
the attack. Since transaction duration depends on the volume of data
being transferred and network load, we cannot set an absolute dura-
tion threshold. If we have perfectly repeatable experiments, we could
measure the expected duration directly, running the experiment with-
out the attack. However, some traffic generators may have built-in
randomness that prevents repeatable experiments. In this case we
must estimate the expected transaction duration using information
about the throughput of transactions from the same application cate-
gory that complete prior to the attack. For example, consider a trans-
action T that has completed in tr seconds, sending B bytes of data,
and whose duration overlaps an attack. Let Th be the average through-
put of transactions generated by the same application as transaction
T, and completed prior to the attack’s start. We calculate the expected
duration of transaction T as te = B/Th. If tr > 3 · te (see Table 1),
the transaction will be labeled as failed.

2.3 Aggregating Results
Because many DoS attacks inflict damage only while they are ac-

tive, and the impact ceases when the attack is aborted, we suggest that
only transactions that overlap the attack be used for pft calculation.

We define a DoS-hist measure as the histogram of pft measures
across application categories. The DoS-hist measure is especially
useful for capturing the impact of attacks that target only one appli-
cation, e.g., TCP SYN attack at Web server port 80.

Sometimes it may be useful to aggregate DoS-hist measures into a
single number we call DoS-level, applying a different weight for each
application: DoS-level =

P
k pft(k) · wk, where k goes over all ap-

plication categories, and wk is a weight associated with a category k.
Note that DoS-level is highly dependent on the chosen set of appli-
cation weights. Unless there is a broad consensus on the appropriate
set of weights, using DoS-level for defense performance comparison
could lead to false conclusions, as weights can be chosen to bias the
results in favor of any defense.

While the proposed transaction success measure is binary, and there-
fore easy to grasp, for a deeper analysis it is useful to measure service
quality in a continuous manner, e.g., to understand if a failed trans-
action’s delay was just above the threshold or several times longer.
We compute QoS-degrade for each failed transaction by locating a
parameter that exceeded its QoS threshold and calculating the ratio of
their difference and the threshold. For example, if d is the measured
delay that exceeds the threshold value t, QoS-degrade=(d − t)/t. If
more than one parameter violates its threshold, we choose the largest
QoS-degrade. In experiments, we report the average of the QoS-
degrade measures for transactions in the same application category.
Intuitively, a value N of QoS-degrade means that the service of failed
transactions was N times worse than a user could tolerate.

For DoS defense evaluation, it is useful to calculate DoS impact
over time, to capture the timeliness of a defense’s response. Since
we can calculate transaction failure as it occurs, we capture the time-
varying nature of DoS impact in the following manner: (1) We split
attack duration into intervals of T seconds, (2) We calculate success
or failure for transactions overlapping the chosen interval, (3) We use
transaction success data to calculate pft per application category and
aggregate it into a desired measure, (4) A transaction that has failed
in one interval is not used for pft calculation in subsequent intervals.

3. EXPERIMENTS
We now illustrate our proposed DoS impact metrics in small-scale

experiments on the DETER testbed [4]. We use a simple network
topology, with a single legitimate client, an attacker and a server. The
server, attacker and client are connected to a router and the server’s
link bandwidth is 10 times smaller than the other links, creating a
bottleneck. DoS attacks usually engage numerous attack machines
and target networks with many legitimate clients and a rich topol-
ogy. While our tested scenario is much simpler than the real world
attacks, we deliberately chose such a low-complexity setting so we
could clearly expose, attribute and explain specifics of our DoS met-
rics. Our continuing research focuses on exploration of more realistic
attack scenarios.

We generate the following legitimate traffic between the client and
the server: (1) HTTP and FTP traffic with file sizes distributed ac-
cording to Pareto(100K, 2.5) and Pareto(100K, 1.92), and exponen-
tially distributed connection arrivals with 1 s mean, (2) Telnet traf-
fic with Pareto(50,1.18)-distributed duration and Pareto(10K,2.14)-
distributed traffic volume, and exponentially distributed connection
arrivals with 1 s mean, (3) DNS and ICMP traffic with exponentially
distributed request arrivals, with 1 s and 5 s means, respectively. We
wrote a customized telnet application that sends a small random num-
ber of characters per second and receives a similar-volume reply. We
generated the rest of the traffic using real applications: scp for FTP,
ping for ICMP, wget for HTTP and dig for DNS. The server machine
is running an Apache Web server, bind DNS server, Red Hat 9 op-
erating system and has a 733 MHz Pentium III CPU. All requests are
sent from the client to the server, but half of FTP file transfers are up-
loads, and the other half are downloads. Legitimate traffic is started

(a) DoS-hist measure for attack volume of 2.4 times the bottleneck link

(b) DoS-hist measure vs attack strength

Figure 2: DoS-hist measure for UDP flood, and DoS-level (blue
line) with equal weights

at the beginning of an experiment, and an attack is launched starting
at 50 s and ending at 110 s. In all experiments, pft without an attack
was zero for all application categories.

3.1 UDP flood
In the first experiment, we generated a UDP flood that overwhelmed

the bottleneck link. Figure 2(a) depicts the DoS-hist measure for the
attack, when the attack volume is 2.4 times the bottleneck link size.
For brevity, we show DoS-hist measures for various attack strengths
in Figure 2(b). The x-axis shows the attack strength in multiples of
the bottleneck link size, the column height denotes the average of 20
test runs and the error bars denote the standard deviation. We also
show the DoS-level measure using equal application weights with the
blue line. The telnet application fails earlier than the others due to
its low delay threshold (250 ms) that is easily violated even when
packet loss is small. FTP transactions also exhibit high failure rates,
mostly because a lengthy data transfer increases the chance of mul-
tiple packet loss, which lowers the throughput and increases transac-
tion duration beyond the specified threshold. DNS and ICMP transac-
tions generate small single-packet requests that have a good chance of
winning against small-rate attacks. These transactions fail mostly be-
cause they do not retransmit lost packets a sufficient number of times
(zero for ICMP, three for DNS). HTTP is the most competitive, be-
cause it generates short requests, retransmits them aggressively upon
loss, and has a generous (10 s) delay threshold. The large variabil-
ity of the pft measure for moderate attack rates can be attributed to a
“luck” effect when packets compete for limited bandwidth. Because
the attack rate is comparable to the legitimate traffic rate, in repeated
experiments packet arrivals at the bottleneck queue occur in differ-
ent order, resulting in a different probability of legitimate packet loss.
At high attack rates, the variability is reduced because the attack al-
ways wins. The worst pft of FTP and HTTP transactions is lower
than 100% because transactions started near the attack’s end, around
10 − 15% of all transactions in the given category, recover after the
attack ends and before violating their delay bounds.

Figure 3 shows the average QoS-degrade measure for the failed

(a) Duration distribution (b) Loss distribution (c) Throughput distribution

Figure 4: Duration, loss and throughput distribution for UDP flood

Figure 3: QoS-degrade measure for UDP flood

transactions in each application category. The measure grows with
the attack’s strength, and is most severe for telnet transactions that
experience more than 70 times the allowed delay.

To illustrate the inadequacy of single-parameter measures for DoS
impact used in many research papers, we show in Figures 4 (a)—(c)
the distributions of transaction duration, loss and throughput for the
no-attack (baseline) case, and for failed and succeeded transactions in
case of the highest attack rate. We show these distributions per appli-
cation category. Note that y-axis is in log scale, so zero values will
not be visible, e.g., baseline loss values for DNS, HTTP and ICMP are
zero and do not show in Figure 4 (b). In many cases, the markers for
failed and successful transactions or for baseline and failed transac-
tions overlap, indicating that a given measure cannot capture the DoS
impact. We have circled several such cases. In Figure 4 (a), point A
emphasizes a successful ICMP transaction with duration longer than
many failed transactions, illustrating the fact that transaction duration
alone is not a good predictor of QoS for ICMP transactions. Point B
shows that many telnet transactions in the baseline have longer du-
rations than telnet transactions during the attack that fail because the
request/response delay threshold has been exceeded. In Figure 4 (b),
point C highlights a successful HTTP transaction with larger loss than
many failed HTTP transactions that exceed their request/response de-
lay threshold. The baseline packet loss of FTP transactions overlaps
the packet loss of failed transactions during the attack. Both these
facts show that packet loss alone is not a good predictor of QoS. In
Figure 4 (c), point D emphasizes a successful FTP transaction with
lower throughput than some failed FTP transactions. The throughput
of telnet transactions during the attack is barely lower than the base-
line throughput. Thus, throughput alone is not a good QoS predictor.

3.2 TCP SYN flood
In the next experiment, we generated a SYN flood to the Web ser-

vice port. This flood should deny service only to HTTP transactions
that originate during the attack. We show the DoS-hist and DoS-level

measures in Figure 5 (a) vs. the attack strength measured in thou-
sands of packets per second. HTTP service is severely denied even
by small attacks. The maximum pft measure is around 90%, which is
the same as the ratio of HTTP transactions that start during the attack
to all HTTP transactions that overlap the attack. In addition, telnet
service is denied even by small attacks, and DNS, FTP and ICMP
degrade when stronger attacks are launched. These side effects oc-
cur because the attack packet rate interferes with the end host ability
to process packets at a high rate, resulting in intermittent packet loss
at the destination. FTP degrades severely when packet rates exceed
10 Kpps. A closer inspection of the packet trace showed that this oc-
curs because the FTP server slows down considerably and takes a long
time to generate replies, leading to violation of FTP’s request/reply
threshold. Since we are using SSH for FTP transfer (invoking scp
command), the bottleneck occurs at the CPU when high packet rates
cause too many interrupts that steal CPU cycles from SSH’s crypto-
graphic operations. To test this hypothesis, we reran our experiments
using vsftpd at the server and the client machine, and ran wget for
file download instead of scp. We kept all other settings identical.
The resulting DoS-hist and DoS-level measures are shown in Figure
5 (b). Since we have removed the heavy cryptographic requirement
on the CPU, it could process high packet rates more efficiently, which
resulted in zero DoS impact on FTP, DNS and ICMP. The only seri-
ously affected application was HTTP. Telnet’s service was also some-
what degraded because of its low request/response threshold, which
is easily violated even when packet loss is very low.

Figure 6 shows the QoS-degrade measure in experiments with SSH.
The service of non-HTTP transactions was not severely degraded, ex-
ceeding the thresholds by at most 100%. Meanwhile, HTTP transac-
tions exceed their threshold more than 4 times.

4. RELATED WORK
For brevity, we only provide a short overview of the work related to

DoS impact measurement. In the quality of service field, there is an
initiative to define a universally accepted set of QoS requirements for
applications. This initiative is led by the 3GPP partnership including
large standards bodies from all over the world [1]. While many of
the specified requirements apply to our work, we extend, modify and
formalize these requirements as explained in Section 2.1.

The Internet (and ATM) research communities have separated ap-
plications into several categories based on their sensitivity to delay,
loss and jitter [14]. The Internet’s integrated services framework
mapped these application types onto three service categories: the
guaranteed service, the controlled load service and the currently avail-
able best effort service [8]. These research efforts, however, focus on
providing guaranteed service to applications by the network, rather
than measuring if the service was denied during a DoS attack.

In [10], researchers measure the impact of a DoS attack on network
traffic. They study the distribution of several parameters: the through-
put of FTP applications, roundtrip times of FTP and Web flows, and

(a) With SSH

(b) With vsftp

Figure 5: DoS-hist and DoS-level measures for TCP SYN flood

latency of Web flows and the DNS lookup service. Our work con-
cerns specifying the acceptable-service thresholds for these and sev-
eral other parameters, and for a broader variety of services.

Recently, IRTF’s Transport Modeling Research Group (TMRG)
has been chartered to standardize evaluation of transport protocols by
developing a common testing methodology, including a benchmark
suite of tests [15]. TMRG’s drafts discuss the possibility of using
user-based QoS metrics for measuring congestion, but do not specify
such metrics in any detail.

5. CONCLUSIONS
Denial of service is a complex phenomenon that interacts with net-

work services, applications and end users in various ways. Precise
and objective measurement of DoS impact is necessary for testbed
DoS experimentation and for realistic evaluation of DoS defenses.

Figure 6: QoS-degrade measure for TCP SYN flood

We have proposed a multilevel QoS framework that can be used to
precisely capture the DoS impact on various network applications
by comparing several traffic parameters against application-specific
thresholds. We use this framework to devise a series of comprehen-
sive and intuitive DoS impact metrics.

While this paper is a major first step towards objective evaluation
of DoS defenses, much work remains to be done on refining the pro-
posed metrics and QoS requirements and applying them to different
experimental settings. Our future work will focus on applying our
metrics to evaluation of several DoS defenses on the DETER testbed,
testing them in experiments with a richer selection of background
traffic and realistic topologies and extending our metrics for DoS im-
pact measurement in simulations.

6. REFERENCES
[1] 3GPP. The 3rd Generation Partnership Project (3GPP).
[2] J. Ash, M. Dolly, C. Dvorak, A. Morton, P. Taraporte, and Y. E.

Mghazli. Y.1541-QOSM – Y.1541 QoS Model for Networks Using
Y.1541 QoS Classes. NSIS Working Group, Internet Draft, Work in
progress, May 2006.

[3] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu, and
M. Claypool. The Effects of Loss and Latency on User Performance in
Unreal Tournament 2003. In Proceedings of ACM Network and System
Support for Games Workshop (NetGames), September 2004.

[4] T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph, K. Sklower,
R. Ostrenga, and S. Schwab. Experiences with DETER: A Testbed for
Security Research. In 2nd IEEE Conference on Testbeds and Research
Infrastructure for the Development of Networks and Communities
(TridentCom 2006), March 2006.

[5] A. R. Bharambe, V. N. Padmanabhan, and S. Seshan. Supporting
Spectators in Online Multiplayer Games. In Proceedings of ACM
SIGCOMM Workshop on Hot Topic in Networks, November 2004.

[6] N. Bhatti, A. Bouch, and A. Kuchinsky. Quality Is in the Eye of the
Beholder: Meeting Users’ Requirements for Internet Quality of
Service. Technical Report HPL-2000-4, Hewlett Packard, 2000.

[7] A. Bouch and M. A. Sasse. Why Value is Everything: A User-Centered
Approach to Internet Quality of Service and Pricing. In Proceedings of
International Workshop on Quality of Service, June 2001.

[8] R. Braden, D. Clark, and S. Shenker. Integrated services in the Internet
Architecture: An Overview. RFC 1633, June 1994.
http://www.ietf.org/rfc/rfc1633.txt.

[9] R. F. Buccheit. Delay Compensation in Networked Computer Games.
M.S. project, Case Western Reserve University, 2004.

[10] K. C. Lan, A. Hussain, and D. Dutta. The Effect of Malicious Traffic
on the Network. In Passive and Active Measurement Workshop (PAM),
April 2003.

[11] B. N. Chun and D. E. Culler. User-Centric Performance Analysis of
Market-Based Cluster Batch schedulers. In Proceedings of the 2nd
IEEE International Symposium on Cluster Computing and the Grid,
May 2002.

[12] L. Deri. Improving passive packet capture:beyond device polling. In
Proceedings of SANE 2004, October 2004.

[13] The ATM Forum. The ATM Forum Traffic Management Specification
version 4.0.
ftp://ftp.atmforum.com/pub/approved-specs/af-tm-0056.000.ps, April
1996.

[14] M. W. Garrett. Service architecture for ATM: from applications to
scheduling. IEEE Network, 10(3):6–14, May/June 1996.

[15] IRTF TMRG group. The transport modeling research group’s web
page. http://www.icir.org/tmrg/.

[16] Nortel Networks. QoS Performance requirements for UMTS. The 3rd
Generation Partnership Project (3GPP).
http://www.3gpp.org/ftp/tsg sa/WG1 Serv/
TSGS1 03-HCourt/Docs/Docs/s1-99362.pdf.

[17] N. Sheldon, E. Girard, S. Borg, M. Claypool, and E. Agu. The Effect of
Latency on User Performance in Warcraft III. In Proceedings of ACM
Network and System Support for Games (NetGames), May 2003.

[18] L.A.R. Yamamoto and J.G. Beerends. Impact of Network Performance
Parameters on the End-to-End Perceived Speech Quality. In
Proceedings of EXPERT ATM Traffic Symposium, September 1997.

