
Prediction Models for Long-Term Internet Prefix Availability

Ravish Khosla, Sonia Fahmy, Y. Charlie Hu, Jennifer Neville1

Purdue University
Email: ravish03@yahoo.com,{fahmy, ychu, neville}@purdue.edu

Abstract

The Border Gateway Protocol (BGP) maintains inter-domain routing information by announcing and withdrawing IP

prefixes. These routing updates can cause prefixes to be unreachable for periods of time, reducing prefix availability

observed from different vantage points on the Internet. Theobserved prefix availability values may not meet the

standards promised by Service Level Agreements (SLAs).

In this paper, we develop a framework for predicting long-term availability of prefixes, given short-duration prefix

information from publicly available BGP routing databaseslike RouteViews, and prediction models constructed from

information about other Internet prefixes. We compare threeprediction models and find that machine learning-based

prediction methods outperform a baseline model that predicts the future availability of a prefix to be the same as its

past availability. Our results show that mean time to failure is the most important attribute for predicting availability.

We also quantify how prefix availability is related to prefix length and update frequency. Our prediction models

achieve 82% accuracy and 0.7 ranking quality when predicting for a future duration equal to the learning duration.

We can also predict for a longer future duration, with graceful performance reduction. Our models allow ISPs to

adjust BGP routing policies if predicted availability is low, and are generally useful for cloud computing systems,

content distribution networks, P2P, and VoIP applications.

Keywords: Prefix Availability, Border Gateway Protocol (BGP), Prediction, Machine Learning

1. Introduction

The Border Gateway Protocol (BGP), the de-facto Internet inter-domain routing protocol, propagates reachability

information by announcing paths to prefixes, which are aggregates of IP addresses. Autonomous Systems (ASes)

maintain paths to prefixes in their routing tables, and (conditionally) update this information when route update mes-

sages are received. These update messages can beannouncements, which announce an AS path to a prefix, orwith-

drawals, which indicate that no path is available to the prefix. Continuous prefix reachability over time is crucial for

the smooth operation of the Internet. This is captured usingthe metric ofavailability, defined as the time duration
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when the prefix is deemed reachable divided by the total time duration we are interested in. While typical system

availability metrics for telephone networks exceedfive 9s,i.e., 99.999%, computer networks are known to have lower

availability [1, 2, 3]. The five 9s availability value amounts to the system being down for about five minutes in a year’s

period and is usually too stringent a requirement for Internet prefixes.

Prefixes belonging to highly popular services such as CNN, Google, and YouTube need to be highly available, and

a disruption of more than a few minutes is generally unacceptable. Internet Service Providers (ISPs) such as AT&T

and Sprint usually provide availability guarantees on their backbone network through Service Level Agreements

(SLAs) [4, 5]. However, content providers are more interested in their website availability as observed from various

points in the Internet, and a routing path being advertised is critical to maintaining traffic flow to their data centers.

Attempts at defining policies so that SLAs can be extended to several ISPs [6] and at defining and estimating service

availability between two end points [7] in the Internet havehad limited success. Meanwhile, several reachability

problems have occurred, such as the YouTube prefix hijack which lasted about two hours [8], and several undersea

cable cuts, e.g., [9, 10], which caused significant disruptions and increase in web latencies to much of the Middle

East, Asia, and North Africa for a period of several weeks [11].

Measuring prefix availability is non-trivial without an extensive measurement infrastructure comprising many

vantage points. Additionally,data planemeasurements are inherently discontinuous, as they take reachability samples

at periodic time instants. The reachability estimate they compute increases in accuracy as the sampling interval is

made smaller, at the cost of increased burden on the prober and elevated network traffic. Moreover, the observations

need to be made over a long period of time to obtain a reasonable estimate. A shortfall in measured availability

requires areactiveapproach that corrects the problem after the fact. Our work takes apredictiveapproach to solve

theavailability prediction problem,i.e., predicting the advertised availability of prefixes, as observed from multiple

vantage points in the Internet.

Our framework predicts long-termcontrol planeavailability, i.e., the availability of the paths to prefixes as ad-

vertised by BGP. However, previous work has shown that the control plane-advertised paths may not always imply

that the paths are usable in thedata plane[12, 13, 14]. Wang et al. [14] studied the correlation between control

plane and data plane events and found that control plane changes mostly result in data plane performance degradation,

showing that the two planes are correlated. BGP routing dynamics have been used to predict data plane failures in

previous work [13, 15]. Zhang et al. [13] found that data plane failures can be predicted using routing updates with

about 80-90% accuracy for about 60-70% of the prefixes. Feamster et al. [15] predict end-to-end path failure using

the number of BGP messages observed during a 15 minute window. This indicates that the control plane does indeed

have a positive correlation with the data plane.

Transient events like routing convergence and forwarding loops result in temporary reachability loss in the data

plane, most of which last less than 300 seconds [13]. However, since we are concerned with the long term availability

metric considering at least a few days at a time, the percentage of time that the control plane and data plane paths

mismatch should be insignificant compared to the time over which our availability values are computed.
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Data plane reachability can exist even when control plane paths are withdrawn due to the presence of default

routes [12]. However, it is not possible to predict the existence of default routes, as they depend on intermediate ASes

between the source and the destination. There is no agreed upon method to detect the existence of default routes,

though some initial efforts have been made by the authors of [12] by controlling announcements and withdrawals of

certain prefixes allocated to their ASes. Our work considersonly control plane availability and hence actual prefix

availability could be higher in the data plane if default routes are present. As can be seen from the discussion above,

establishing the correlation between the two planes is by itself a challenging topic [12] and detailed study of this is

beyond the scope of this work.

In this work, we compute attributes during a short duration observation period of publicly available routing infor-

mation (e.g., from RouteViews [16]) and develop a prediction model based on information on other Internet prefixes.

Thus, our approach does not need additional measurement infrastructure apart from RouteViews [16], which has been

maintained by the University of Oregon for several years.

A predicted long-term advertised availability value whichfalls short of requirements could lead to changes in

BGP policies of the ISP regulating the advertisement of these prefixes to the rest of the Internet. For example, one

can increase the penalty threshold associated with route flap damping for the routes to a high availability requirement

prefix (like a business customer) to ensure higher availability [17]. Changing BGP attributes such as MED and

community, or aggregating prefixes, can increase the perceived prefix availability or aid traffic engineering [17]. We

will make our prediction tool publicly available through a web page so it can be used for monitoring the predicted

availability, e.g., of prefixes of an ISP.

Our work can optimize Hubble [18]– a system that studies black holes in the Internet by issuing traceroutes to

potentially problem prefixes, and then analyzing the results to identify data plane reachability problems. Currently,

Hubble uses BGP updates for a prefix as one of the potential indicators of problems, focusing on withdrawals and AS

path changes. We can enhance this technique by using the prefixes for which the predicted availability falls below

a threshold as the potentially problem prefixes. This will increase detection accuracy of black holes. Our work also

complements a data plane loss rate prediction system such asiPlane [19].

Applications of our work include Content Distribution Networks (CDNs), cloud computing applications, VoIP

applications, and P2P networks. CDNs and cloud computing applications can use the highest predicted availability

replica/server to redirect the clients to. VoIP implementations can use predicted availability of relay nodes along

with latency and loss rate estimates for better performance. Our work can also be applied to peer to peer networks,

where ensuring content availability is a primary concern amid extensive peer churn. One can modify the incentive

mechanisms of BitTorrent [20] by unchoking the BitTorrent peers which are parts of a highly available prefix, in

addition to considering their download rate and latency/loss rate estimates. Our system eliminates the need for storing

information about peers at clients that are not currently downloading from these peers but may do so in the future.

The key premise in this paper is that Internet prefix characteristics convey valuable information about prefix

availability. We argue that prediction models are viable even if prefixes whose availability is to be predicted and
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prefixes used for learning prediction models are unrelated (e.g., learning and predicted prefixes are not in the same

AS). This is because an important factor causing paths to prefixes from various vantage points to go up or down is

BGP path convergence, caused by BGP reaction to path failureor policy changes. This, combined with the fact that

operator reaction to path failures is relatively standard,and that AS policy changes, e.g., AS de-peering, typically

affect several prefixes at a time, supports this premise. We therefore use randomly selected prefixes from RouteViews

to learn models, and then predict availability of other prefixes. This theme is common in other disciplines, such as

medicine, where one uses known symptoms of patients with a diagnosed disease to try to diagnose patients with

an unknown condition. To the best of our knowledge, no other work has exploited the similarity of prefixes in the

Internet; a few studies, e.g., [13], applied predictive modeling in the context of BGP, but they only examined problem

ASes in the path to a particular prefix.

While we focus on predicting prefix availability using observed routing updates, our prediction framework can

be easily extended to predict other prefix properties of interest. We formulate hypotheses about how attributes of a

prefix such as prefix length and update frequency relate to itsavailability, and prove or refute them based on our data.

We show that past availability of a prefix is inadequate for accurately predicting future availability. Our availability

predictions from three models are compared to measured availability values from RouteViews.

This paper extends our previous work [21] as follows:

1. In addition to varying the ratio of the learning duration to the prediction duration as in [21], we vary the learning

duration itself. This is important because the availability distribution depends on the duration over which it is

computed, and hence this impacts prediction performance.

2. We consider an additional machine learning model, namelythe Näıve Bayes model, for availability prediction.

This is a popular model in the machine learning literature [22], known to be simpler than the bagged decision

trees considered in [21] but potentially less accurate. We find that the performance of this model is better or

worse than bagged decision trees, depending on the learningduration (Section 6.4). We also conduct a more

thorough investigation of the prediction models used in [21].

3. We study the distribution of the prefix attributes and show, using statistical tests, that the attributes indeed

demarcate availability classes (Section 5.3).

4. We predict availability of a large number of prefixes, thereby showing that the prediction models are scalable

(Section 7).

5. All results presented in this paper are for the time periodof January to October 2009, as opposed to [21], where

one month of data was considered at a time. This leads to higher diversity of the visible prefixes, since some

prefixes are only visible for short time periods. As availability is a long-term metric, this 10-month evaluation

of the prediction models is more realistic.

The remainder of this paper is organized as follows. Section2 summarizes related work. We define the problem

that we study in Section 3. Section 4 describes our datasets,and Section 5 describes our methodology and metrics. In
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Section 6, we compare results from three prediction models and study the effect of classification attributes and using

certain more predictable prefixes on prediction results. Section 7 describes our results of applying prediction models

to large sets of combinations. Section 8 concludes the paperand discusses future work.

2. Related Work

Rexfordet al. [23] find that highly popular prefixes have relatively stableBGP routes, and experience fewer and

shorter update events. Their results fit into our predictionframework, with the prefix popularity being a feature that

can be used to predict stability, specifically the number of update events associated with a prefix. Our work goes a step

further by predicting prefix availability, not just the events associated with a prefix, using easily computable attributes.

Prefix attributes like activity, update count, reachability from various monitors, prefix churn, and growth, have been

studied, e.g., in [24, 25, 26, 27], but the attributes are notused to classify prefixes or predict prefix features, which we

address in this paper.

Changet al.[28] cluster routing updates into events based on the announcing peers and similarity of AS paths using

descriptive modelingas the data mining technique. This technique is used for summarizing the data and improving

understanding of the data features. In contrast, we usepredictive modelingto predict prefix behavior, specifically

availability, given the observed values of prefix attributes.

Zhanget al. [13] predict the impact of routing changes on the data plane.They aim to predict reachability prob-

lems based on problematic ASes in AS paths in the routing updates observed for a prefix. Our work is orthogonal to

theirs in the sense that we consider control plane availability, utilizing four simple attributes computed from observing

RouteViews data, and we investigate three prediction models that may learn from other prefixes. Predictability of net-

work performance has been extensively studied, e.g., in [3,29, 2]. These studies focused on end-to-end loss, delay, and

throughput, measured by active probes, whereas we considerprefix availability indicated by routing update messages.

Recently, Hubble [18] and iPlane [19, 30] have been developed at University of Washington for detecting data plane

reachability problems and predicting data plane paths and their properties, respectively. Our work is complementary

to iPlane [19] and iPlane Nano [30], since we predict controlplane availability (or existence of routing paths) to a

prefix from multiple Internet vantage points, while iPlane samples data plane metrics like latency, bandwidth and loss

rates to end hosts in the prefix at a low frequency. These predictions, taken together, can increase knowledge about

prefixes and end hosts in the Internet, which can improve the performance of several applications like VoIP, P2P and

CDNs. In cases where no responsive hosts within a prefix can befound by iPlane, iPlane cannot make predictions, in

which case our availability predictions will be the only available ones for applications.

3. Problem Definition

We define theavailability prediction problemto be the prediction of the BGP-advertised availability of aprefix,

given its attributes computed by observing BGP updates (forexample, through RouteViews), and the availability and
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attribute information of other prefixes, collected for a short duration of time. Advertised availability is critical in

maintaining smooth traffic flow to these prefixes. Going back to our patient analogy, given the symptoms and known

diseases of some patients, one can use test results of a new patient to diagnose the new patient’s disease. Our “test

results” are the updates observed for a prefix for a limited period of time, which are used to predict its long-term

availability.

In this paper, we compute availability in thecontrol planeby marking the time of an announcement of a prefix as

the time when it goes up and a withdrawal as the time when it goes down and matching our predictions against this

computed availability. Spurious announcements and withdrawals are filtered as described in Section 4.

Rather than predicting continuous values of availability,we discretize availability, and predict the availability

classof a prefix for some time period in the future, based on information collected from the past that is used to train

prediction models. This is because, for diagnosis or detection purposes, our interest lies in predicting whether the

availability value is above or below an acceptable threshold (e.g., that advertised in SLA), and not the specific value

of the availability. Discretizing also gives us an added advantage of use of confusion matrix-based measures, e.g.,

false positives, to assess prediction performance. Using continuous availability values causes problems in defining

error measures because a miss in high availability values (e.g., 99% predicted as 94%) counts more than a miss

in lower values (e.g., a predicted 35% instead of 40%) because of attached importance to higher values. In this

paper, we validate our predictions by computing the “future” availability class and comparing it with the predicted

class. However, this is purely for validation of our prediction schemes – in a real deployment, we will not have the

availability classes of the future, just our predictions.

In this paper, we seek answers to the following questions forour framework:

1. How to discretize availability? How many classes and whatthreshold values should be used?

2. Given a set of prefixes with their associated attributes and availability classes, how accurately can one predict

the availability classes of other prefixes, and which prediction models work best?

3. How to extract and represent prefix attributes from RouteViews data? Which attributes of a prefix are most

important in predicting availability? For example, are more specific prefixes (ones with longer length) less

available than less specific ones? Do prefixes that generate more updates have lower availability?

4. How large should a set of prefixes be such that if we learn ourprediction model from this set, it will give

accurate results on unseen prefixes?

5. How long should one observe prefix attributes so that its availability can be accurately inferred?

4. Datasets

The routing tables (RIB files) and updates available from RouteViews [16] are in .bz2 format with typical sizes

of 0.8 GB per day of RIB files (sampled every 2 hours) and about 25 MB per day of update files (written every 15

minutes), which total about 25 GB per month of data. We preprocess the data using libbgpdump version 1.4.99.7 [31]
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to convert the files from the MRT format to text. We reduce the storage space required by removing unused fields. We

only keep the timestamp, peer IP, prefix, and the type of update (announcement or withdrawal), except when studying

additional attributes of Announcements in Section 6.5.1. After preprocessing and filtering table transfers (as described

below), we have about 14-18 GB of gzipped RIB and update files per month of data.

We utilize data from January to October 2009 to build and testour prediction models. The months span a reason-

able time period to prevent biasing our model selection process towards datasets from a particular timeframe when

some event (such as an undersea cable cut) may have occurred.

A problem with using raw updates from RouteViews is that theyalso include routing table transfers which are

caused by session resets between a monitor and a peer [32]. These spurious updates are an artifact of the update

collection methodology. Zhanget al. [32] developed the Minimum Collection Time (MCT) algorithmto identify

BGP routing table transfers. We executed scripts (contributed by the authors of [32]) from the point of view of every

peer in our dataset. We define a peer as any vantage point gathering routing information which is present in any

routing table entry and at least one update. This definition yields 41-43 peers in our dataset. We developed a script

that removes the table transfer updates from the update filesobtained from RouteViews. We use these filtered updates

for all further processing.

5. Methodology

We define acombinationas a (peer, prefix) tuple, which implies that the prefix was observed by the peer in

the RouteViews dataset. We compute the availability of these combinations and use that for building our prediction

models. The notion of availability of a prefix is with reference to an observation point in the Internet. For the

RouteViews data, these observation points are the peers. They are fairly well spread out over the world, enabling one

to observe the availability of prefixes from various points in the Internet. Note that these peers are not the same as

the RouteViews monitors, which passively collect data about routing tables and updates from the AS routers (peers)

which actually observe prefixes. It is these peers and the prefixes they observe that we refer to ascombinations. In

what follows, a combination isup or downwhen the peer associated with the combination has the corresponding

prefix in an announced or withdrawn state, respectively.

BGP supports aggregation of prefixes [33], and prefixes are frequently aggregated and deaggregated for imple-

menting routing policies like traffic engineering [17]. In arouting table, there can be several prefixes which are more

specific versions (subprefixes) of other prefixes in the table[24]. However, the relationship between the prefixes and

their subprefixes can be complicated since these can be announced from different origin ASes. This can happen if

the customer of an ISP announces a subportion of the prefix allocated to the ISP. Routing policies can change over

time and the announcements of the subprefixes can vary depending upon transient conditions like network load. Mis-

configurations can also cause a subprefix to be announced for ashort duration, making it indistinguishable from the

announcements caused by traffic engineering. Since routingpolicies are unknown, distinguishing the time when the
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prefix is unannounced because of a covering prefix or when it iswithdrawn due to BGP or network conditions is diffi-

cult, and this needs to be handled by an availability metric aggregated across prefixes. Hence, computing an aggregate

long-term availability of prefixes which are subprefixes of other prefixes is a challenging task. In this work, we treat

each announced prefix separately as a part of the (peer, prefix) tuple defined above. Formulation and computation of

aggregate availability across more specific prefixes and their covering prefixes is left as future work.

We learn the prediction models from atraining set, which consists of the combinations with known attributes

computed during the learning period and availability classlabels during the period. We then predict the availability

of a disjoint set of combinations, which we call thetest set. The disjointness is necessary to prevent overfitting [22]

so that the model performs well on unseen test data and to permit a realistic evaluation of the model. After the

prediction model is learned using the combinations from thetraining set and the information from the learning period,

it is applied to the attributes of the combinations of the test set (computed during the learning period) to predict their

availability classes in the future. Thus, the training and test sets are disjoint in both the combinations used and in the

time period they span. If we denote the learning period astl and the future prediction duration astp, then for each test

combination, we apply the prediction model to its attributes learned fromtl and we validate the availability prediction

by comparing it to its availability duringtp. The learning and future prediction durations are contiguous, i.e., the

prediction duration starts right after the learning duration ends.

In this paper, the combinations present in the training and the test sets are randomly chosen from the set of

combinations “visible” in the training and test durationstl andtp. We define a combination to be visible in a time

durationt if it exists in the first routing table of the periodt (for preventing boundary effects) or in any of the updates

in the time duration. Thus, a combination has an equal chanceof appearing in the training and the test sets if it

appears at least once in the first routing table oftl or an update in the periodtl + tp. Since the learning periodtl

and prediction periodtp are contiguous,tl + tp represents the total time starting from the first update oftl to the last

one oftp. This random selection of combinations prevents biasing our prediction results towards a specific group of

combinations which may be related, e.g., combinations containing prefixes from a specific AS may make it easier to

predict availability of combinations containing prefixes from the same AS.

We define thepercentage learning durationas the ratiotl/(tl + tp) which evaluates the percentage of the duration

tl + tp that is used in learning. The larger this ratio, the easier the prediction since less of the future is unknown. We

evaluate the quality of our prediction models by varying this ratio among 0.1, 0.25, 0.5, 0.75, and 0.9. For each of the

values of this ratio, we experiment with values oftl, wheretl = 1, 7, 19 and 30 days. Thus, we have 20 data points for

evaluating each prediction model. The rationale behind this is that the availability distribution may be different when

computed over different periods of time. We want to investigate this difference and the effect it has on prediction for

the same values oftl/(tl + tp), but different values oftl.

The prediction models considered in this paper are described in detail in Section 6. We use Weka [22], a Java

open-source data mining software, for evaluating the models. Weka provides implementations of standard prediction

models and data mining techniques for analyzing the performance of the models.
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5.1. Discretizing Availability

We discretize the continuous availability value into availability classes which we predict using observed attributes.

The process of discretization uses thresholds as parameters, the number and values of which have to be decided. The

choice of these parameters is based on the prediction goal. If one aims to find prefixes that do not meet high availability

requirements, a single threshold can discretize availability into highandlow classes. If one aims to find prefixes which

have both high and low availability values, one should use two thresholds to discretize availability intohigh, medium,

andlow classes.

The computation of the availability of a combination for a particular time period proceeds as follows. The first

routing table of the period is used to initialize the state ofeach combination present in the table to up (or announced).

Thus, the learning duration oftl considers all the combinations found in the first routing table of Jan. 09 and in the

updates recorded in the durationtl. We maintain the state of each combination at each point in time, and at the time

of each state change (as indicated by an update), we record a downtime or an uptime. If the state of a combination

changes from Announced (A) to Withdrawn (W), an uptime is recorded, whereas a change from W to A leads to the

recording of a downtime. After processing all update files, we add an extra up or downtime depending upon the last

state of the combination. For example, if the last state change was to W and was reported at timet1, and if the data

period ended at timet2, we add a downtime with valuet2 − t1. The availability of the combination is computed by

noting the time that the combination was up (cumulative uptime) divided by the total time in which we are interested.

Hence, a combination that only appears in the first routing table of the month and has no updates for the duration

under consideration will have an availability of 1.

We use data from Jan. 09 to study the effect of discretization. Table 1 shows the availability statistics for four

values oftl starting from the beginning of Jan. 09 (i.e.,tl=19 days means data from Jan. 1 to Jan. 19). The second

column shows the number of (non-trivial) availability values that are considered in computing these statistics, where

one value corresponds to one combination. The first quartile, median, and third quartile are the values below which

25%, 50%, and 75% of the availability ordered combinations lie, respectively. The table shows a steady increase in the

number of combinations as more days are considered, since previously undiscovered combinations are found in newer

update files. These new combinations were not present in the first routing table of the month; otherwise they would

have been found fortl = 1 day. These are expected to be low availability combinations. This is validated by the fact

that the first quartile and mean of the combinations show a decreasing trend with these newly added combinations.

The variance of the availability increases as lower values are added to the set of predominantly higher availability

values.

This trend of lower availability values with longer durations motivates us to study four different values oftl with

the sametl/(tl + tp) ratio. The difference in availability distributions for durationstl andtp not only depends on the

value oftl/(tl + tp), but also on the value oftl. This effect is seen in Table 2 which shows the percentage difference

in the mean availability of the learning and test durations (tl andtp) for different values oftl and the same value of

tl/(tl + tp).
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Table 1: Availability statistics for Jan. 09 for different values oftl. Median and 3rd quartile are 1 for alltl.

tl Number of 1st Mean Variance
Combinations Quartile

1 day 10545170 1 0.9975 0.0018
7 days 10700675 1 0.9897 0.0078
19 days 10959231 0.999988 0.9743 0.02041
30 days 11476218 0.999882 0.9604 0.02966

Table 2: Percentage difference of mean availability betweenthe training and test sets for differenttl, tl/(tl + tp)=0.1

tl Mean availability Mean availability % Difference in availability
of learning durationtl of test durationtp of tl w.r.t. tp

1 day 0.9975 0.9853 -1.22
7 days 0.9897 0.9204 -6.99
19 days 0.9743 0.8367 -14.13
30 days 0.9604 0.7996 -16.74

These statistics play an important role in the choice of discretization thresholds. To study this, we start with

a ternary class label (valueshigh, medium,and low), and choose two different threshold sets of (0.99, 0.50) and

(0.99999, 0.50), with the higher threshold demarcatinghighandmediumand the lower one differentiating themedium

and low classes. This enables us to compare the percentage share ofhigh under the two threshold sets, which is

listed in Table 3. Themediumpercentage can be easily calculated since the percentages add up to 100%. If we

choose a relatively lower valued threshold forhigh,e.g., 99%, the class distribution will be highly skewed, with most

combinations (around 91-94%) havinghigh availability. With a 0.5 threshold for thelow class label, about 1-4% of

combinations fall into that category. However, the prediction problem is more difficult with a 0.99999 threshold for

high than with 0.99, since there is a higher chance of combinations that havehighavailability in the learning period to

fall below the 0.99999 threshold in the test period. We verified this observation by evaluating the prediction models

of Section 6 on datasets with the two thresholds for thehigh class and found that the model performance for 0.99

threshold is indeed higher than that with 0.99999, validating that the former is an easier prediction problem. Based

on these observations and the significance of “five nines” availability [1], we use a single threshold of 0.99999 and a

binary class label. However, to find combinations with very low availability, we can easily extend our framework to

two thresholds and a ternary class label.

Table 3: Class distributions when discretizing availability

tl % High with % High with % Low with
0.99 Threshold 0.99999 Threshold 0.5 Threshold

1 day 93.89% 67.92% 1.02 %
7 days 93.09% 67.25% 1.68%
19 days 91.89% 66.19% 2.74%
30 days 91.09% 66.13% 3.59%
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5.2. Computing Attributes

We now investigate the attributes of the (peer, prefix) combinations to be extracted from the RouteViews data.

The attributes are computed for the learning period with theaim of predicting (future) availability classes for the test

set. Our goal is to compute the attributes from publicly available information from RouteViews, which contains both

routing tables and updates for various combinations. We choose not to use the routing tables because they provide

time snapshots of prefixes which can be reached by peers, and we are interested in availability, which is a continuous

time metric. The updates collected from RouteViews have theadvantage that (barring errors) all the updates for a

particular combination will be recorded. Knowing the announcement and withdrawal times for a combination, we

can easily compute its availability. Comparing this computed availability with the predicted availability validates

prediction results.

The attributes of a combination are selected to relate to itsavailability (Section 5.3), and to be easily computable

given the observed updates for the learning period so that the learning system is fast. It is important to note that

the attributes we select do not necessarily cause high/low availability; we are looking for correlationnot causality.

Correlation is sufficient for a prediction model to be successful.

We hypothesize that longer prefixes will have lower availability since they represent smaller networks which

are more likely to go up or down. From [23], it is known that popular destinations, which are expected to have high

availability, are stable, i.e., have fewer updates. Hence,in addition to prefix length, we also compute update frequency,

which is the average number of updates observed for the combination in a time window of one hour (averaged over

the learning period). The period of one hour is chosen so thatthe update frequency numbers are neither too large nor

too small.

Furthermore, by recording the time when a combination goes up/down, we compute two additional attributes,

mean uptime and mean downtime, called the Mean Time to Failure (MTTF) and Mean Time to Recovery (MTTR),

respectively. It is important to note that MTTF and MTTR are computed for the learning period, and hence the

predicted availability for the time-disjoint test set is not a direct function of these values.

In summary, we compute the following attributes for the learning period from routing updates observed through

RouteViews: (1) Prefix length, (2) Update frequency, (3) Mean Time to Failure (MTTF), and (4) Mean Time to

Recovery (MTTR).

We opt not to use information about to which AS a prefix belongsor the AS path to a prefix in this work. This

is because we want to keep our prediction model free from constraints of specific ASes or AS paths that can change.

We defer the investigation of how prefixes are similar acrossthe same AS or neighboring ASes in the AS topology to

future work.

Although we compute the attributes of every combination with at least one recorded uptime or downtime, we

downsample this set of combinations (of about 11 million as in Table 1) to a set of 10,000 combinations with their

attributes, and use that to build and test models. Downsampling does not significantly affect the accuracy of models

since prediction models typically learn well with a few hundred instances. We evaluate the performance of the models
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with increasing number of learning instances in Section 6 and on larger test sets in Section 7. An advantage of

downsampling is the computational efficiency of building and testing the models.

5.3. Demarcating Availability using Attributes

In this section, we quantify whether the four attributes discussed in the last section indeed convey information

about the availability class. We divide the 10,000 combinations into ones that havehigh andlow availability for the

month and compute statistics for the attributes of each of the two groups. We show the means and variances of all the

attributes for a typical value oftl = 19 days in Table 4.

Table 4: Attribute statistics of each class for learning period of tl = 19 days

Attribute
High Class Low Class

Mean Variance Mean Variance

Prefix length 22.04 6.41 22.72 4.25
MTTF (s) 1587480 3.76E+10 777844 2.92E+11
MTTR (s) 0.201002 3.52 58882.2 4.57E+10

Update frequency 0.0244 0.7339 0.0795915 0.5694
(/hr)

We use the pairedt-test to test for equality of the means of each of the attributes of the two classes. We employ

the Welcht-test [34, 35] which assumes that the two populations have normal distributions and their variances cannot

be assumed to be equal (which is true for our data). The normality assumption is valid due to the Central Limit

Theorem (CLT) and because we have about 3000-7000 samples ineach class. We find that the means of each of the

four attributes are significantly different at 1% significance level for each of the four learning periods. This shows that

the attributes show a statistically significant correlation with the availability class labels. For most of the attributes,

their variances for thelow class are higher because the class covers a wider range of availability values.

Our intuition that the combinations with longer prefix lengths have lower availability is confirmed. The mean

prefix lengths of thehighand thelow availability classes usually differ by about 0.7, or about 3% (which is statistically

significant) while the median and first quartile differ in length by 1 and 2 respectively, with the higher value for the

low class. The consistency of the results across each of the fourvalues oftl is convincing of the correlation between

prefix length and availability class. We conjecture that this is because shorter prefixes represent larger, more stable

networks while small portions of the address space can be announced and withdrawn frequently for multihoming or

load balancing purposes. Further, it is more likely that a longer prefix representing a smaller network goes down than

a larger network.

The MTTF of ahighavailability combination is higher than that of alow availability one by about 85% on average,

whereas the MTTR is almost 100% lower. The difference becomes larger astl increases. This result is intuitive: a

high availability prefix has a long uptime before it fails, and when it does fail, it quickly comes back up (well within

one second on average). The average frequency of updates observed for ahigh availability prefix is about 77% lower

than for low availability ones. These results are explained by the fact that a high availability combination stays up
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for a long period of time, and hence has fewer updates. The difference in attribute values of thehigh andlow classes

increases withtl, showing that these attributes correlate well with the availability class since availability computed

over a longer duration is more indicative of the actual availability.

Assuming update frequency distribution in each month is a normally distributed random variable (valid because

of CLT), we construct a 99%t-Confidence Interval (CI) for the average update frequency of a combination. The mean

update frequency of a combination, averaged over all 11.5 million combinations of Table 1 is about 0.03/hr and the

variance is about 0.28. The upper bound of the CI is computed to be about 1.4 updates an hour. Thus, if we observe

more than an update for a combination in about 43 minutes, on average, we are 99% certain that it will havelow

availability.

The conclusion from this section is that the selected prefix attributes perform well in demarcating the availability

classes. The correlation of the attributes with the availability class is consistent with our intuition.

5.4. Learning and Evaluation

We learn several models in this paper to predict the availability class of combinations. The performance of each

model is studied usingn-fold incremental cross-validation. The dataset is divided randomly inton parts, calledfolds,

while maintaining the class distribution of the dataset in the fold (i.e.,supervised sampling). The model is then learned

using the known attributes and class labels ofn-1 folds (called thetraining set), and applied to predict the class labels

of the remaining fold (thetest set). Each fold is left out at a time, resulting inn learned models and corresponding

performance results. The training and the test sets are disjoint in order to get an unbiased estimate of model error. The

algorithm is runk times, each time with a different random seed so that different n folds are constructed in each run.

Thus, for each training set size, we havenkperformance values, and we report the mean value.

As the number of instances to learn a model increases, the model performance on test data typically improves,

but with diminishing returns. We study this usinglearning curves.A model is successively learned using increasing

training set sizes (from each of then training sets) and its performance on the test set is plottedagainst the training

set size. A typical shape of a learning curve is an increasingexponential; the performance increases, and then flattens

after a certain number of instances is reached.

5.5. Performance Metrics

We now describe the performance metrics used to evaluate a model when it is applied to the test set. Any clas-

sification algorithm can be studied using a confusion matrix, which gives all possible combinations of the true and

predicted class. In what follows, the class labelhigh is treated as apositiveclass, and the labellow is treated as a

negativeclass. The confusion matrix can be used to compute several performance measures, the most common of

which isaccuracy, defined as:Accuracy = TP+TN
TP+TN+FP+FN

, where TP and TN are the true positives and negatives

respectively, and FP and FN are the false positives and negatives respectively. The True Positive Rate (TPR) and the

False Positive Rate (FPR) are defined as:TPR = TP
P

= TP
TP+FN

, andFPR = FP
N

= FP
FP+TN

.
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TheKappa statisticmeasures the agreement between predicted and observed values, correcting for agreement that

occurs by chance. It is computed as:κ = P (o)−P (e)
1−P (e) , whereP (o) is the proportion of observed agreement between

the observed and predicted values, andP (e) is the proportion of times the values are expected to agree bychance.

Complete agreement corresponds toκ = 1, which will be the best predictor, whereasκ = 0 for a random predictor, and

κ = -1 indicates complete disagreement between the values.

Unfortunately, confusion matrix-based measures can be misleading with a skewed class distribution, which hap-

pens when the proportion ofhigh availability (positive) andlow availability (negative) instances in the sample are

unequal. For example, a trivial algorithm which predicts every availability value ashighwill have 90% accuracy on a

dataset which has 90%high values. The measures use data from both columns of a confusion matrix, and hence are

sensitive to the proportion of instances in the two columns [36]. From Table 3, we observe that there can be signifi-

cant class skew, which render these measures inappropriate. A better metric is obtained by using Receiver Operating

Characteristic (ROC) curves [22], which plot the TPR versusthe FPR. ROC curves are independent of class skew

because they use a strict columnar ratio from the confusion matrix [37, 36]. We use the Area Under the ROC Curve

(AUC) as a performance metric. The AUC of a classifier is equivalent to the probability that it will rank a randomly

chosenhigh instance higher than a randomly chosenlow instance. A perfect classifier has an AUC of 1.

We compare the results from our prediction models to those obtained using a random classifier, which acts as a

baseline for comparison. A random classifier randomly chooses either of the class labels with equal probability. Such

a classifier has an AUC of 0.5, since it has about as many TPs as FPs. The reason for comparison to a random classifier

is that we need to be sure that any learning-based model performs better than the random classifier. Otherwise, one

could effectively toss a coin and decide the class label, making a trivial predictor the best one.

While ROC curves work well for most classifiers, they are not directly applicable for models which do not produce

any ranking of instances in terms of probabilities of being classified ashighandlow. This is because one plots a ROC

curve by varying the threshold that decides betweenhigh and low to produce various (FPR, TPR) points. A model

which does not produce instance ranking has no threshold to vary; hence, it gives a single point in the ROC space

instead of a curve. For such a model, an option is to randomly order the instances predicted ashighandlow, and then

rank them to produce a ROC curve. We describe the details of this scheme in Section 6.1.

6. Model Space

In this section, we study three prediction models using the metrics in Section 5.5. As mentioned in Section 5.2, we

work with 10,000 combinations and their attributes, downsampled from all the combinations in each of four different

months. We do 10-fold incremental cross-validation as described in Section 5.4; thusn=10. We conductk=5 runs,

generating a different set of 10 folds each time. Hence, we have 50 performance measures for each model averaged

to give an output measurement.

We start with a simple baseline prediction model in Section 6.1. This model does not learn based on other com-

binations, and simply predicts the availability of one combination at a time. We then investigate more sophisticated
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machine learning based models.

6.1. Simple Prediction

The simplest approach to predict the availability of a combination is based on the simplistic assumption that the

future is the same as the past. Thepast availabilityof a combination is its availability during the learning period tl.

This prediction approach does not learn a model based on other combinations, but merely predicts the same availability

for a combination as the discretized value of itspast availability. Thus, if the past availability exceeds 99.999%, the

predicted class label ishigh, otherwise it islow.

This is a model where no instance ranking is performed; only hard classifications are made. Therefore, we compute

confusion matrix-based measures. These measures, computed for various values oftl andtl/(tl + tp) and averaged

overnk= 50 runs, are listed in Table 5.

Table 5: Results with the simple prediction model

tl tl/(tl + tp) Accuracy (%) TPR FPR κ AUC

1 day 0.1 88.60 0.9950 0.9322 0.1022 0.5261
0.25 96.79 0.9940 0.8085 0.2641 0.5877
0.5 97.99 0.9928 0.7160 0.3207 0.6224
0.75 98.69 0.9911 0.5670 0.3175 0.6900
0.9 98.90 0.9900 0.4766 0.1803 0.7272

7 days 0.1 60.02 0.9717 0.8451 0.1353 0.5599
0.25 73.87 0.9502 0.8013 0.1928 0.5774
0.5 83.98 0.9421 0.7410 0.2403 0.5962
0.75 89.37 0.9271 0.7242 0.1575 0.5813
0.9 91.22 0.9224 0.5907 0.1281 0.6713

19 days 0.1 54.10 0.9107 0.6777 0.1917 0.6163
0.25 67.98 0.8933 0.6281 0.2816 0.6326
0.5 76.01 0.8620 0.5315 0.3481 0.6641
0.75 78.30 0.8201 0.4652 0.2726 0.6748
0.9 78.66 0.7953 0.4082 0.1355 0.7015

30 days 0.1 57.17 0.8613 0.5720 0.2242 0.6414
0.25 65.53 0.8379 0.5231 0.3133 0.6548
0.5 70.81 0.7961 0.4752 0.3242 0.6606
0.75 73.45 0.7544 0.3723 0.2955 0.6895
0.9 71.08 0.7154 0.3641 0.1346 0.6728

The results show that while the TPR of the simple model is high, its FPR is high as well. However, this simple

classifier outperforms a random classifier (as indicated by theκ statistic) and hence forms a baseline model to which

other sophisticated models can be compared. Astl/(tl +tp) increases, the prediction problem becomes easier as more

data is available for learning. Hence, the accuracy of the model increases, while its FPR reduces. Astl increases, the

availability distribution becomes more diverse and hence the model typically performs worse.

We now use ROC-based metrics to evaluate this classifier. Themodel gives a single point in the ROC space (since

it does not perform instance ranking), so we modify the algorithm to draw a ROC curve. We take a typical run of

the model with confusion matrix measures close to their average values. The instances which are classified ashigh
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andlow by the model are randomly reordered within their respectivegroups, and then the instances are ranked with

the (predicted)highs higher than thelows. We vary the prediction threshold, and record the TPR and FPR for each

threshold, as in Algorithm 2 of [36] to compute the points on aROC curve.
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(a) tl = 1 day,tl/(tl + tp) = 0.1
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(b) tl = 30 days,tl/(tl + tp) = 0.1
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(c) tl = 30 days,tl/(tl + tp) = 0.9

Figure 1: ROC plots for the simple prediction model.

The ROC curves for the simple prediction model for some typical values oftl andtp are depicted in Figure 1.

The plots show the original model performance (in Table 5) asa point (“star”) on the ROC plots, along with the

performance of a random classifier. The performance of simple prediction is clearly better than a random classifier for

most cases, but there are occasions when it performs as good as or slightly worse than a random one as in Figure 1(a).

This is especially true whentl is small, and hence future availability is quite different from past availability. As the

average accuracy in Table 5 is reasonably high, this emphasizes the inadequacy of accuracy as a metric to evaluate

performance models. Hence, we use ROC metrics, like area under the ROC curve (AUC). The AUC is computed,

using Algorithm 3 of [36], for a typical run (confusion matrix based measures close to their average values of 50

runs). Because of inherent randomness in reordering and ranking the instances, the typical run will give different

AUC values when run with different random seeds; the averageof 50 different AUC values is reported in Table 5.

The results highlight the importance of ROC curves. For example, classifier A fortl = 30 days,tl/(tl + tp) =

0.1 (Figure 1(b)) is worse than classifier B fortl = 30 days,tl/(tl + tp) = 0.9 (Figure 1(c)) using AUC as the metric.

However, examining the ROC curve, we see that for higher FPRs(around 0.8), classifier B outperforms classifier A.

The overall inferior performance of classifier A is because it performs similar to a random classifier for low FPRs.

Hence, if our operating region is at low FPR, classifier B is better, whereas classifier A is better for high FPRs.

6.2. Naive Bayes Model

The Näıve Bayes model predicts ahigh or low class label using the attribute vectorX≡ {X1,X2, . . . ,Xm}

based on Bayes rule [22]. It makes the “naı̈ve” assumption that the attributes are conditionally independent given

the class label. However, the model is often used even when its assumption does not hold due to its simplicity. The

model computes, for each instance, the probability of each class label given its attribute set and the independence
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assumption, using the training set to estimateP (Xi|C) andP (C), whereC is the class label. Hence, instance ranking

is naturally produced by the model which can be used to produce ROC curves.

We evaluate the model on each of the values oftl and tp using learning curves. The model is learned on in-

creasing size training sets, and its performance is evaluated on the 10 different test sets produced by incremental

cross-validation. We plot a typical learning curve in Figure 2, using both accuracy and AUC as performance mea-

sures. The plots for the other time durations lead to similarconclusions. The accuracy initially increases at a fast rate

when the number of training instances is increased, and tapers off afterwards. However, the AUC remains relatively

stable with the increase in number of training instances. Inwhat follows, we use the entire training set to train the

Näıve Bayes model to achieve the maximum accuracy without sacrificing AUC. This ensures that the model is trained

to its potential.
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Figure 2: Näıve Bayes learning curves fortl=30 days,tl/(tl + tp)=0.9

We now compare the Naı̈ve Bayes model to the simple prediction model of Section 6.1. We use the accuracy and

AUC as measures for comparison. The results are given in Table 6. The results show that the Naı̈ve Bayes model

yields a higher AUC than the simple model for all cases. The accuracy values of Näıve Bayes are close to those of

the simple model, except when learning from 30 days of data, where for a smaller prediction periodtp, the accuracy

is significantly better with a high variance (around 26.3), while for a higher prediction periodtp, the accuracy is

significantly lower with a low variance (around 2.3). This isbecause this model assumes that the attributes are

conditionally independent given the class label. The modeluses the frequencies in the training set as estimates of the

probability distributions of the attributes. These estimated distributions are valid only when the period of parameter

estimation, i.e., learning period, is not too different from the prediction period. Whentl = 30 days, the period of

the training and test sets differ by a few days to months (except whentl/(tl + tp) = 0.5) and hence have different

distributions. This leads to different accuracies since this metric is highly dependent on class skew.

We consider the better metric, AUC, and investigate whetherthe higher AUC values of the Naı̈ve Bayes model

are statistically significant. If so, Naı̈ve Bayes would be a better prediction model than the simple model. We use the

Welcht-test [34, 35] to test for equality of the performance measures (means) of the distributions of the two samples

(simple and the Näıve Bayes). We perform the test on the AUCs of the two models for each of the four months,

using the mean values shown in Tables 5 and 6, and the sample variances computed using thenk = 50 data points.
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Table 6: Results with Naı̈ve Bayes model and % change from simple model

tl tl/(tl + tp) Accuracy (%) % Change in Accuracy AUC % Change in AUC
from Simple Model from Simple Model

1 day 0.1 88.51 -0.09 0.6044 14.89
0.25 96.70 -0.09 0.6568 11.76
0.5 97.94 -0.045 0.7097 14.02
0.75 98.66 -0.034 0.7924 14.84
0.9 98.82 -0.074 0.8159 12.19

7 days 0.1 59.85 -0.288 0.6341 13.25
0.25 74.20 0.444 0.6290 8.96
0.5 84.06 0.10 0.6355 6.59
0.75 87.89 -1.65 0.6473 11.35
0.9 89.95 -1.39 0.6990 4.12

19 days 0.1 54.61 0.94 0.6761 9.70
0.25 68.04 0.08 0.6956 9.95
0.5 76.09 0.10 0.7173 8.01
0.75 77.35 -1.21 0.7173 6.31
0.9 77.38 -1.63 0.7304 4.12

30 days 0.1 46.14 -19.29 0.6930 8.04
0.25 59.23 -9.61 0.7009 7.04
0.5 70.29 -0.73 0.7009 6.10
0.75 80.03 8.95 0.7394 7.24
0.9 83.40 17.33 0.7538 12.05

We compute the degree of freedomν using the Welch-Satterthwaite equation, and round it to thenearest integer fort

table lookup using [38]. We find that the null hypothesis of equality of the means is rejected for every month at 5%

significance level. This means that the AUC of the Naı̈ve Bayes model indeed exceeds that of the simple model at 5%

significance level. Table 7 shows the details of the test for some typical values oftl andtp.

Table 7: Pairedt-test results of comparing AUC of Naı̈ve Bayes model and the simple model

tl tl/(tl + tp) Statistic ν t-value for
Value 5% Significance

1 day 0.1 15.80 98 1.984
7 days 0.25 8.46 64 1.998
19 days 0.5 8.75 98 1.984
30 days 0.75 7.28 81 1.99

Finally, we compare the Naı̈ve Bayes model to the simple model using ROC curves. The plotfor tl = 30 days

andtl/(tl + tp) = 0.1 is illustrated in Figure 3. The figure shows that the Naı̈ve Bayes model dominates the simple

model throughout most of the ROC space. For the same FPR, its TPR is higher and hence it is closer to the ideal

point in ROC space. The implication of these results is that amodel which learns based on other prefix combinations

like the Näıve Bayes classifier will typically outperform prediction without learning, despite its naı̈ve assumptions.

This confirms that availability is predictable using the attributes we measure. It is also worth noting that this better

performance in terms of TPR and FPR in the ROC space again points to the inadequacy of accuracy as a metric: even
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though the Näıve Bayes model has much lower accuracy than the simple modelfor these values oftl and tp, it is

better in ROC space.
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Figure 3: ROC plots for Näıve Bayes and simple model fortl=30 days,tl/(tl + tp)=0.1

6.3. Decision Trees

A decision treeis a recursive divide-and-conquer classifier, which divides the instances based on one attribute at a

time in a top-down fashion until the leaves of the tree are reached [22]. A decision tree can be easily transformed into

if-then rules. This classifier has the advantage that it is interpretable, since the attributes of the classifier are ranked

from the root node downwards in the order of importance, and rules to classify an instance can be read off the decision

tree. We use the C4.5 algorithm developed by Quinlan [39] to build decision trees, which uses reduction in entropy

(measure of randomness) when splitting the instance setS based on an attributeA as the information gain metric to

build the tree.

Pruning the tree is necessary to avoid overfitting to the training data, and for constructing a general enough tree to

perform well on unseen test data. In Weka, the J4.8 classifierimplements the C4.5 algorithm [22], and one can choose

to consider the unpruned tree, or prune it based on differentcriteria. C4.5 pruning (the default) uses an estimate of the

error on the training set. An alternative is to use Reduced Error Pruning (REP) [40], which holds back some of the

training data as a fold and uses that to estimate the error. The advantage of REP is that it can lead to more unbiased

estimates of the error; the disadvantage is that it uses lessdata for tree building.

We use the unpruned, C4.5-pruned, and REP trees, and find thatthe accuracy and AUC metrics are not significantly

different among them. However, at very small training set sizes, holding out instances for REP can lead to insufficient

training data, which results in lower AUC. Nonetheless, we decided to use REP because of the advantages of a tree

which avoids overfitting and because we will work with sufficiently large datasets. Our results have a high variance.

This is a typical property of decision trees, since a small difference in the training data can cause different branches to

be constructed. For example, with 200 training instances ineach of the 10 folds, we find decision trees with different

structure and attribute values (two are shown in Figure 4). The right branches of all nodes are for a “Yes” decision and

the left branches are for a “No” decision. While the decision trees shown all useMTTRas their root node, different

trees use different numbers and values of attributes to makedecisions. This increases variance in classification results,

causing mean results to appear worse.
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Figure 4: Decision trees fortl = 30 days,tl/(tl + tp) = 0.1 constructed with 200 training instances.

A method to reduce the variance of decision trees is to usebootstrap aggregating (bagging)[22]. Bagging com-

bines an ensemble of unstable, high variance, predictors into a stable predictor. We apply the bagged decision tree

classifier to predict availability with the underlying baseline classifier chosen to be decision trees with REP. Ten de-

cision trees are learned for each of the 10 folds of the dataset, and they are then voted on to produce thehigh or low

class label. The learning curve for a typical case is shown inFigure 5. The curve demonstrates that the performance

measures flatten with increase in training set size, which confirms that pruning is successful in preventing overfitting.
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Figure 5: Learning curve for bagged decision trees,tl = 30 days,tl/(tl + tp) = 0.1

We now apply the bagged decision tree model learned from the entire training dataset of around 9000 combinations

to predict availability for the values oftl andtp considered earlier. The average results overnk = 50 points are given

in Table 8. As before, we perform significance tests, and find that AUC increases fortl = 1 and 7 days are significant

at 5% significance level, except fortl/(tl + tp) = 0.9 for tl = 1 day, andtl/(tl + tp) = 0.75 and 0.9 fortl = 7 and

19 days. The results reveal that bagged decision trees perform well w.r.t. Näıve Bayes when the learning period is

shorter (up to a couple of weeks) and the prediction period islonger, i.e., whentl/(tl + tp) is small. This is because

as diversity of the data increases, the bagged decision trees adapt to the diversity by building complex trees, which do

not generalize well to future datasets. This cannot be corrected by pruning since the diversity is in the time domain

and occurs in nearly every combination, so holding out a set of combinations for pruning does not necessarily help.
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Table 8: Results with bagged decision trees (% change from Naı̈ve Bayes model given within parentheses)

tl tl/(tl + tp) Accuracy (%) % Change in Accuracy AUC % Change in AUC
from Näıve Bayes Model from Näıve Bayes Model

1 day 0.1 87.81 -0.80 0.6352 5.10
0.25 95.54 -1.21 0.7027 6.99
0.5 96.61 -1.37 0.7525 6.04
0.75 97.22 -1.46 0.8339 5.24
0.9 97.36 -1.48 0.87 6.09

7 days 0.1 60.24 0.67 0.6613 4.29
0.25 74.91 0.96 0.6609 5.05
0.5 83.42 -0.76 0.6648 4.60
0.75 87.41 -0.55 0.6619 2.26
0.9 90.23 0.32 0.7159 2.41

19 days 0.1 54.95 0.6147 0.6726 -0.52
0.25 68.35 0.46 0.6976 0.28
0.5 75.96 -0.17 0.7188 0.21
0.75 77.45 0.13 0.7218 0.62
0.9 76.63 -0.96 0.7235 -0.94

30 days 0.1 56.83 23.17 0.6671 -3.73
0.25 65.24 10.15 0.6745 -3.75
0.5 70.85 0.79 0.6771 -3.39
0.75 73.44 -8.23 0.7018 -5.09
0.9 70.69 -15.23 0.6945 -7.87

6.4. Learning Duration

We now study the effect of learning duration on the prediction results of all the models we have considered. There

are two facets to this problem: the learning duration as a percentage of the overall period of interest, i.e.,tl/(tl + tp),

and the value of the learning duration itself. Lowering the percentage learning duration means that we have a shorter

time to learn the attributes of various combinations, leading to a reduction in prediction accuracy, whereas increasing

this percentage improves prediction results, since there is more information available.

The plot of AUC against percentage learning duration for various values of the learning durationtl is shown in

Figure 6. The results show that the prediction performance gracefully degrades as the amount of data available for

learning is reduced. The decrease is much more steep when thelearning durationtl is low, e.g., 1 day, and this effect

almost disappears whentl reaches 30 days. This result implies that one can predict long-term availability by learning

from only a short learning period, as long as the period spansa few days, e.g., a week. This gives further credence to

the feasibility of availability prediction. The bagged decision tree model performs the best for all learning duration

percentages when the learning durationtl is less than around 3 weeks. Beyond that value oftl, Näıve Bayes performs

best.

We also plot the change in the AUC for each of the models when increasing the learning durationtl, keeping the

percentage learning durationtl/(tl + tp) constant. Two typical plots are shown in Figure 7. The plots show that for

the same percentage learning duration, as more learning data is available (highertl), the performance of all the models



22

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10  20  30  40  50  60  70  80  90

AU
C

Percentage Learning Duration (%)

Bagged Decision Trees

Naive Bayes

Simple Model

(a) tl = 1 day

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10  20  30  40  50  60  70  80  90

AU
C

Percentage Learning Duration (%)

Bagged Decision Trees

Naive Bayes

Simple Model

(b) tl = 7 days

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10  20  30  40  50  60  70  80  90

AU
C

Percentage Learning Duration (%)

Bagged Decision Trees

Naive Bayes

Simple Model

(c) tl = 19 days

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10  20  30  40  50  60  70  80  90

AU
C

Percentage Learning Duration (%)

Bagged Decision Trees

Naive Bayes

Simple Model

(d) tl = 30 days

Figure 6: Effect of percentage learning durationtl/(tl + tp) on prediction performance for different values oftl

improves, except whentl = 30 days. The plots also show that the crossover point between the performance of bagged

decision trees and Naı̈ve Bayes is about three weeks, as indicated above.
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Figure 7: Effect of learning durationtl on prediction performance for different values oftl/(tl + tp)

Based on the results, we can conclude that an availability prediction system using bagged decision trees can learn

from a few days of routing data logs. Our system can be adaptedto real time deploymentby sliding the time window

of the learning period to always learn from the most recent data. For example, if we learn from a week of data, we

can slide our learning window by a day at a time to always learnfrom the most recent past week. Predicting the

availability for about three times the learning duration gives accuracy and AUC of around 75% and 0.66 respectively.
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If these performance measures are acceptable, one can triple the prediction duration at every stage. If we are learning

our prediction models from the most recent week of data, we can predict the availability for three weeks into the future

maintaining this level of performance. If one desires higher performance, one should reduce the prediction duration

for the same learning duration, i.e., increase the percentage learning duration. Our prediction framework allows the

system administrator to trade off prediction performance and prediction duration.

6.5. Classification Attributes

We now study the importance of attributes in the prediction process, by studying the effect of using different sets

of attributes on the output metrics of Naı̈ve Bayes and bagged decision trees. We start with the baggeddecision tree

results from Table 8, and remove certain attributes of the combinations, so that less data is available to the prediction

model. The degradation in various performance metrics is studied; as degradation increases, the importance of the

removed attribute subset increases. We present typical results of removal of some of the attributes fortl = 30 days,

tl/(tl + tp) = 0.1 in Table 9. We choose these values oftl andtp as this represents a long enough learning period and

a hard prediction problem: predicting availability for 9 times the learning duration. The results for the other values

of tl andtp were similar albeit with different values. We choose AUC forcomparison because of its strength as a

performance metric as described earlier. The first column ofthe table indicates which attributes of the combinations

were used for prediction. Along with using subsets of the four attributes from Section 5.2, we also use the the attribute

of past availabilityto build prediction models. This attribute is used in the simple model and we seek to study the

performance of machine learning-based prediction models which use this attribute to predict availability.

Table 9: Percentage change in performance metrics with subsets of attributes fortl = 30 days,tl/(tl + tp) = 0.1. All percentage changes are w.r.t.
results of the corresponding models from Table 6 and Table 8

Attributes Used for Prediction % Change in AUC for % Change in AUC for
Näıve Bayes Bagged Decision Trees

Past Availability -12.03 -9.8
MTTF -4.43 -1.97
MTTR -14.67 -1.93

Prefix Length -15.22 -24.96
Update Frequency -18.18 -7.12

Prefix Length and Update Frequency -9.94 -3.13
MTTF and MTTR -3.75 -1.65

MTTR, Prefix Length and Update Frequency -4.00 -1.33
MTTF, Prefix Length and Update Frequency -0.03 0.25

These results lead us to the following conclusions. Performance significantly degrades (AUC is 10-12% lower)

when only past availability is used. Combining this with theresults of the simple model, we conclude that past

availability is not an adequate metric for prediction of future availability. Prefix length and update frequency are weak

attributes, with prefix length being the weakest since usingit alone causes the AUC to decline by 7-25%. MTTF

is the most important attribute since using it alone causes the least drop in AUC among any single item attribute

set. Using either MTTF or MTTR with prefix length or update frequency, or MTTF and MTTR together, causes the
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AUC and accuracy to be within 4% of their values when no attribute is removed. MTTF combined with the prefix

length and update frequency give very close results to thoseobtained when MTTR was also added to the set, further

confirming that MTTF is the strongest attribute (complemented by the use of prefix length and update frequency).

We also experimented with addingpast availabilityto these attribute subsets and found that the performance did not

change significantly.

It is intuitive that MTTF is the most important prediction attribute and MTTR is the next important, since the

time to fail or recovery will characterize the availabilityof a combination; ahigh availability combination should

have a high MTTF and low MTTR. There exists no subset or superset of the four attributes used that would cause

significantly better results than the four attribute set we have chosen.

It is also interesting to note that the Naı̈ve Bayes model is much more sensitive to the removal of attributes than

bagged decision trees. This is because the intrinsic assumption used in this model is that attributes are conditionally

independent given the class label. This assumption cannot be used when there is only one attribute. Among multiple

attributes, the results will depend upon the degree of conditional independence between the attributes. The bagged

decision tree model, in contrast, builds decision trees based on various attribute values. While attribute removal does

hurt its performance, the trees formed based on other attributes are still reasonably accurate, unless the prediction

attribute is weak, e.g., prefix length.

6.5.1. Additional Attributes

We now investigate whether the prediction accuracy can be improved if we add additional attributes that we have

not considered in this work so far. In Section 5.2, we give therationale for the selection of attributes to be the relation

between these attributes and the availability of the prefix.There are other attributes of BGP updates [41, 42] such as

AS path, community, MED, and aggregation, which we have not considered in this work. This is because we believe

that these attributes are not significantly related to availability as much as MTTF, MTTR, update frequency, and prefix

length. For example, repeated announcements with different AS path do not change the Announced or Withdrawn

status of prefixes. If the prefix flaps frequently with announcements and withdrawals, affecting availability, this will

be captured by our update frequency metric.

The additional attributes that we consider in this section are: (1) Average AS path length percentage change of

the changed AS path w.r.t. the old AS path, averaged over all announcements, (2) Fraction of times AS path length

changes over all announcements, (3) Fraction of time the aggregator attribute changes over all announcements, (4)

Fraction of time the community attribute changes over all announcements, and (5) Fraction of time MED attribute

changes over all announcements. As usual, we compute these attributes for each combination and use them for

availability prediction. We consider these attributes oneat a time, and all these five together for availability prediction

using bagged decision trees. We find that the AUC results are 16% poorer on the average across these six prediction

cases w.r.t. the results in Table 8 . The average AUC of prediction comes out to be only 0.55. Although better

than a random classifier, these results are poor compared to the prediction performance achieved previously. This is
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explained by the fact that these attribute changes are due toAS policies for diverting traffic to the inbound prefixes

by modifying existing announcements, and are less correlated with changes in the announced or withdrawn state of

prefixes, which affects availability.

6.6. Predictability of Prefixes

Thus far, we have used a random set of (peer, prefix) combinations for training the prediction models and for

testing the effectiveness of the prediction techniques. Wenow investigate whether certain combinations are more

predictable than others. The intuition behind this is that the availability of a combination is more predictable from the

attributes chosen in our work for certain kinds of prefixes than for others. There can be several causes of BGP routing

dynamics [41], and some causes are likely to be more correlated with availability, making a particular prefix group

more predictable. For example, a prefix can be withdrawn and announced with a specific pattern (e.g., dependent

on time of day) for traffic engineering purposes, and all prefixes which are announced according to similar policies

will exhibit more predictable availability. The authors of[41] discovered both daily and weekly patterns in prefix

announcements, attributed to several known and unknown causes. Y. Zhang et. al. [13] predicted data plane failures

using control plane updates and also observed that certain prefixes are more predictable than others. While we leave

detailed investigation of exact predictability classes ofprefixes to future work, we investigate whether there are more

predictable combinations in our dataset.

Our methodology is motivated by [13]. Out of all the prediction models considered in this work, only Naı̈ve Bayes

(Section 6.2) gives a probability of prediction of prefix availability as high or low based on its attributes. We use an

option in Weka [22] to output the class prediction probabilities for each of the instances along with the true availability

class. For each of the 20 sets of results from Table 6, we investigate the instances which were classified incorrectly.

We note the probability of incorrect classificationPinc as the P(predicted class label -low or high) for the incorrectly

classified instances output from the Naı̈ve Bayes model.Pinc can never be less than 0.5 since a label is only predicted

if its probability is greater than the other class label. TheCDF ofPinc is shown in Figure 8. The plot shows that about

91% of the incorrectly classified instances have a class prediction probability above 0.93 when they are incorrectly

classified. This implies that when a prediction error is made, the case isnot borderline – the model almost surely

predicts the incorrect class label. This gives credence to the fact that some prefixes in combinations are very poor in

predictability compared to others.

We now seek to isolate the combinations which have poor prediction performance. We look at the instances

incorrectly classified by Naı̈ve Bayes for all the 20 cases of Table 6 and isolate the combinations which have a

probability of prediction of the (incorrect) class label exceeding 0.75. We chose this threshold of 0.75 since it is

midway between 0.5 and 1 and we want to ignore combinations for which a slight prediction error is made. Across all

the 20 cases, this gives 15,722 “poorly predicted” combinations, which is about 39.33% of the total number of unique

combinations for the 20 cases.

To evaluate the prediction performance of the poorly predictable combinations versus the predictable ones, we
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Figure 8: CDF of class label prediction probability for incorrectly classified instances using Naı̈ve Bayes

run the bagged decision tree model from Section 6.3 on both sets of combinations. We show the performance as

indicated by AUC for both the predictable and poorly predictable combinations in Table 10. The results indicate a

large difference in predictability between the two types ofcombinations. On the average, the predictable combinations

have 40.95% higher prediction performance (measured in terms of AUC) than the poorly predictable combinations.

Table 10: Results for predictable and poorly predictable combinations obtained from bagged decision tree model

tl tl/(tl + tp) AUC for AUC for poorly % difference in AUC
predictable combinations predictable combinations of Col. 4 from Col. 3

1 day 0.1 1 0.4581 54.19
0.25 1 0.5144 48.56
0.5 1 0.5128 48.72
0.75 1 0.5226 47.74
0.9 1 0.4893 51.08

7 days 0.1 0.6624 0.4058 38.73
0.25 0.7046 0.5311 24.62
0.5 0.7807 0.5321 31.84
0.75 0.8565 0.4783 44.16
0.9 0.9188 0.3766 59.01

19 days 0.1 0.8384 0.3236 61.40
0.25 0.8469 0.5589 34.01
0.5 0.8608 0.6074 29.44
0.75 0.8626 0.593 31.25
0.9 0.8837 0.4033 54.36

30 days 0.1 0.6971 0.4848 30.45
0.25 0.8122 0.5501 32.27
0.5 0.8269 0.5777 30.14
0.75 0.8558 0.6113 28.57
0.9 0.8751 0.5394 38.36

These results indicate a close to bimodal distribution of predictability of combinations. There are some combina-

tions which are highly predictable (having an average AUC of0.864) and some which are poorly predictable (average

AUC of around 0.5), and, on the average, a 40.95% difference in AUC exists between the two prefix sets. We con-

jecture that this due to the two types of reasons behind BGP dynamics: planned prefix traffic engineering leading to

specific update patterns, and the non-stationary nature of link failures [13]. Understanding the reasons behind varying

prefix predictability has been shown to be a difficult problem[13] because of lack of information about AS policies
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and limited visibility to BGP updates from vantage points. This is similar to root cause identification for BGP up-

dates, which is a hard problem as well [43, 44, 27, 45]. We leave detailed investigation of the causes behind prefix

predictability to future work.

7. Larger Test Datasets

So far in this paper, we have used training and test sets whichare constructed out of a sample of 10,000 combi-

nations using 10-fold cross-validation. We now investigate the scalability of our models, where we apply the learned

models to a large number of combinations. This may be required of a typical prediction application, if one is interested

in predicting the availability of a set of prefixes from a large number of vantage points in the Internet.

To evaluate scalability, we learn Naı̈ve Bayes and bagged decision trees from 10,000 combinations, but predict

the availability of all the remaining combinations in each month (about 11.5 million). The prediction takes only

about 2 minutes to complete for each of the models on a 3.6 GHz single-core machine. The prediction results for a

typical case (tl = 30 days,tl/(tl + tp) = 0.1) show about a 1-2% difference from the results in Table 6and Table 8,

as illustrated in Table 11. We therefore conclude that our models are scalable for availability prediction of a large

number of combinations, without significant degradation inprediction quality. These results also show that the 10-

fold cross-validation methodology does not suffer becauseof using a relatively low number (1000) of combinations

in the test set.

Table 11: Percentage change in performance metrics of a large prediction dataset from Table 6 and Table 8 fortl = 30 days,tl/(tl + tp) = 0.1.

Performance Metric % Change for % Change for
Näıve Bayes Bagged Decision Trees

AUC 1.45 -1.52
Accuracy 2.01 -0.12

8. Conclusions and Future Work

In this paper, we have developed a long-term availability prediction framework that uses mean time to recovery,

mean time to failure, prefix length, and update frequency as attributes. These attributes are easily computable from

public RouteViews data observed for a short period of time. Our framework learns a prediction model from a set of

Internet prefixes, and uses that model to predict availability of other prefixes. To the best of our knowledge, this is the

first work that uses the similarity of prefix behavior in the Internet to predict properties such as availability.

Our simple prediction model is a good baseline with high truepositive rate and accuracy. The model, however,

has a high false positive rate and low AUC. Naı̈ve Bayes and bagged decision trees improve on these metrics, and the

latter performs best especially when the learning periodtl is shorter than about 3 weeks. For longer learning periods,

Näıve Bayes performs best. The Naı̈ve Bayes model, however, is highly susceptible to a change in attributes. We

recommend the use of bagged decision trees, learned from a moderate learning period of a week or two, to predict
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availability for longer future durations. The learning period can be a sliding window which slides with a granularity

of a few days so as to feed the model with the most recent data for learning.

We also find that mean time to failure is the most important attribute for prediction followed by mean time to

recovery. Past availability is inadequate to predict future availability, which is also a reason for the worse performance

of the simple model. We quantify how prefix availability is related to prefix length and update frequency. Our results

show that future availability is indeed predictable. The results are promising given that we are using only public

information about prefixes and that we are building our modelusing a random set of prefixes.

We can extend our framework to predict availability of an arbitrary end point as viewed by an arbitrary vantage

point by using techniques similar to those used in [19]. If the vantage point contributes to RouteViews, and the prefix,

for which availability prediction is desired, is unknown toRouteViews, we can use any other known prefix in the

same BGP atom [46] as the original one. This assumes that updates for two prefixes with the same AS path to a

vantage point will be the same, which should be true unless there is a different BGP policy. If the vantage point is also

arbitrary, one can predict AS pathASPbetween the vantage point and the prefixP using iPlane [19] and then choose a

RouteViews vantage point that has sufficient overlap withASPin AS path toP or a prefix in the same BGP atom asP.

This extension (similar to the one used in [19]) may be inaccurate because of iPlane’s inaccuracy and the incomplete

overlap of AS paths, but it provides a rough availability estimate.

Other future work plans include considering availability of a prefix from multiple peers, as opposed to considering

a single (peer, prefix) combination at a time. We will also investigate additional prefix attributes in our prediction

model, such as the ASes to which the prefixes belong, and the ASpaths to the prefixes. We hope to uncover interesting

patterns, improve the prediction quality, and possibly exploit locality for feature prediction or for prefix clustering.

We also aim to study availability across prefixes which are subprefixes of other prefixes, modifying the long-term

availability metric to incorporate the time varying natureof announcement of these prefixes. Studying the inherent

causes of predictability of prefixes is another topic of future work, since it gives a deeper insight into why some

prefixes are more predictable than others. Finally, a study on control plane availability is not complete without

studying the data plane. We plan to understand the correlation between the control and data planes, leveraging previous

work in this area.
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