Prediction Models for Long-Term Internet Prefix Availability

Ravish Khosla, Sonia Fahmy, Y. Charlie Hu, Jennifer Neville
Purdue University
Email: ravish03@yahoo.cordfahmy, ychu, nevill¢@purdue.edu

Abstract

The Border Gateway Protocol (BGP) maintains inter-domairing information by announcing and withdrawing IP
prefixes. These routing updates can cause prefixes to bechatda for periods of time, reducing prefix availability
observed from different vantage points on the Internet. dihgerved prefix availability values may not meet the
standards promised by Service Level Agreements (SLAS).

In this paper, we develop a framework for predicting longrt@vailability of prefixes, given short-duration prefix
information from publicly available BGP routing databakks RouteViews, and prediction models constructed from
information about other Internet prefixes. We compare tprediction models and find that machine learning-based
prediction methods outperform a baseline model that ptethe future availability of a prefix to be the same as its
past availability. Our results show that mean time to failisrthe most important attribute for predicting availaili
We also quantify how prefix availability is related to prefength and update frequency. Our prediction models
achieve 82% accuracy and 0.7 ranking quality when predjdtin a future duration equal to the learning duration.
We can also predict for a longer future duration, with grateerformance reduction. Our models allow ISPs to
adjust BGP routing policies if predicted availability ishoand are generally useful for cloud computing systems,
content distribution networks, P2P, and VoIP applications

Keywords: Prefix Availability, Border Gateway Protocol (BGP), Preiio, Machine Learning

1. Introduction

The Border Gateway Protocol (BGP), the de-facto Internteridomain routing protocol, propagates reachability
information by announcing paths to prefixes, which are agajes of IP addresses. Autonomous Systems (ASes)
maintain paths to prefixes in their routing tables, and (@@whlly) update this information when route update mes-
sages are received. These update messages @ambencementsvhich announce an AS path to a prefix,vath-
drawals which indicate that no path is available to the prefix. Qmmbus prefix reachability over time is crucial for

the smooth operation of the Internet. This is captured usiegmetric ofavailability, defined as the time duration

1Ravish Khosla, the corresponding author (Tel:+1 (765) 3284, Fax: +1 (765) 494-0739), and Prof. Y. Charlie Hu aréwie Department
of Electrical and Computer Engineering, 465 Northwesterantie, West Lafayette, IN 47907, USA. Prof. Sonia Fahmy antl Beanifer Neville
are with the Department of Computer Science, 305 N. Unive&ityWest Lafayette, IN 47907-2107, USA.

Preprint submitted to Elsevier October 20, 2010



2

when the prefix is deemed reachable divided by the total tioratebn we are interested in. While typical system
availability metrics for telephone networks excdisg 9s,.e., 99.999%, computer networks are known to have lower
availability [1, 2, 3]. The five 9s availability value amosrib the system being down for about five minutes in a year’s
period and is usually too stringent a requirement for Irgeprefixes.

Prefixes belonging to highly popular services such as CNNgE and YouTube need to be highly available, and
a disruption of more than a few minutes is generally unaeat®#et Internet Service Providers (ISPs) such as AT&T
and Sprint usually provide availability guarantees onrtteickbone network through Service Level Agreements
(SLASs) [4, 5]. However, content providers are more intexdsh their website availability as observed from various
points in the Internet, and a routing path being advertisettitical to maintaining traffic flow to their data centers.
Attempts at defining policies so that SLAs can be extendedveral ISPs [6] and at defining and estimating service
availability between two end points [7] in the Internet hdnad limited success. Meanwhile, several reachability
problems have occurred, such as the YouTube prefix hijackiwlaisted about two hours [8], and several undersea
cable cuts, e.g., [9, 10], which caused significant disamgtiand increase in web latencies to much of the Middle
East, Asia, and North Africa for a period of several weekd.[11

Measuring prefix availability is non-trivial without an extsive measurement infrastructure comprising many
vantage points. Additionallgata planemeasurements are inherently discontinuous, as they takbability samples
at periodic time instants. The reachability estimate thayjgute increases in accuracy as the sampling interval is
made smaller, at the cost of increased burden on the prodezlavated network traffic. Moreover, the observations
need to be made over a long period of time to obtain a reaseredimate. A shortfall in measured availability
requires aeactiveapproach that corrects the problem after the fact. Our wakkd gpredictiveapproach to solve
the availability prediction problemij.e., predicting the advertised availability of prefixes,aserved from multiple
vantage points in the Internet.

Our framework predicts long-terontrol planeavailability, i.e., the availability of the paths to prefsxas ad-
vertised by BGP. However, previous work has shown that timrabplane-advertised paths may not always imply
that the paths are usable in tdata plane[12, 13, 14]. Wang et al. [14] studied the correlation betweentrol
plane and data plane events and found that control plangyelanostly result in data plane performance degradation,
showing that the two planes are correlated. BGP routing miyjcehave been used to predict data plane failures in
previous work [13, 15]. Zhang et al. [13] found that data plé&ailures can be predicted using routing updates with
about 80-90% accuracy for about 60-70% of the prefixes. Fearasal. [15] predict end-to-end path failure using
the number of BGP messages observed during a 15 minute wiridosvindicates that the control plane does indeed
have a positive correlation with the data plane.

Transient events like routing convergence and forwardirog$ result in temporary reachability loss in the data
plane, most of which last less than 300 seconds [13]. Howsirere we are concerned with the long term availability
metric considering at least a few days at a time, the pergerwatime that the control plane and data plane paths

mismatch should be insignificant compared to the time ovechvbur availability values are computed.



3

Data plane reachability can exist even when control plariespare withdrawn due to the presence of default
routes [12]. However, it is not possible to predict the edse of default routes, as they depend on intermediate ASes
between the source and the destination. There is no agreedrupthod to detect the existence of default routes,
though some initial efforts have been made by the author$2jfljy controlling announcements and withdrawals of
certain prefixes allocated to their ASes. Our work considatg control plane availability and hence actual prefix
availability could be higher in the data plane if defaulttesiare present. As can be seen from the discussion above,
establishing the correlation between the two planes isdgffit challenging topic [12] and detailed study of this is
beyond the scope of this work.

In this work, we compute attributes during a short duratibsesvation period of publicly available routing infor-
mation (e.g., from RouteViews [16]) and develop a predittimodel based on information on other Internet prefixes.
Thus, our approach does not need additional measuremeatinfcture apart from RouteViews [16], which has been
maintained by the University of Oregon for several years.

A predicted long-term advertised availability value whis short of requirements could lead to changes in
BGP policies of the ISP regulating the advertisement ofah@efixes to the rest of the Internet. For example, one
can increase the penalty threshold associated with rogtelfleping for the routes to a high availability requirement
prefix (like a business customer) to ensure higher avaitail7]. Changing BGP attributes such as MED and
community, or aggregating prefixes, can increase the pemtgirefix availability or aid traffic engineering [17]. We
will make our prediction tool publicly available through a&lwpage so it can be used for monitoring the predicted
availability, e.g., of prefixes of an ISP.

Our work can optimize Hubble [18]- a system that studieskblaaes in the Internet by issuing traceroutes to
potentially problem prefixes, and then analyzing the regdultidentify data plane reachability problems. Currently,
Hubble uses BGP updates for a prefix as one of the potentiahitoiis of problems, focusing on withdrawals and AS
path changes. We can enhance this technique by using theegrédir which the predicted availability falls below
a threshold as the potentially problem prefixes. This witk@ase detection accuracy of black holes. Our work also
complements a data plane loss rate prediction system suPlaag [19].

Applications of our work include Content Distribution Nedvks (CDNSs), cloud computing applications, VolP
applications, and P2P networks. CDNs and cloud computipgjcgtions can use the highest predicted availability
replica/server to redirect the clients to. VolP impleméotes can use predicted availability of relay nodes along
with latency and loss rate estimates for better performa@ee work can also be applied to peer to peer networks,
where ensuring content availability is a primary concerndaextensive peer churn. One can modify the incentive
mechanisms of BitTorrent [20] by unchoking the BitTorremieps which are parts of a highly available prefix, in
addition to considering their download rate and latensglate estimates. Our system eliminates the need forgtorin
information about peers at clients that are not currentiyrdoading from these peers but may do so in the future.

The key premise in this paper is that Internet prefix chareties convey valuable information about prefix

availability. We argue that prediction models are viablereif prefixes whose availability is to be predicted and



4

prefixes used for learning prediction models are unrelagegl,(learning and predicted prefixes are not in the same
AS). This is because an important factor causing paths tiixpsefrom various vantage points to go up or down is
BGP path convergence, caused by BGP reaction to path faityselicy changes. This, combined with the fact that
operator reaction to path failures is relatively standardj that AS policy changes, e.g., AS de-peering, typically
affect several prefixes at a time, supports this premise héfetore use randomly selected prefixes from RouteViews
to learn models, and then predict availability of other piedi This theme is common in other disciplines, such as
medicine, where one uses known symptoms of patients witlagndsed disease to try to diagnose patients with
an unknown condition. To the best of our knowledge, no otherkvinas exploited the similarity of prefixes in the
Internet; a few studies, e.g., [13], applied predictive elod) in the context of BGP, but they only examined problem
ASes in the path to a particular prefix.

While we focus on predicting prefix availability using obssshwouting updates, our prediction framework can
be easily extended to predict other prefix properties ofrésie We formulate hypotheses about how attributes of a
prefix such as prefix length and update frequency relate tvé#ability, and prove or refute them based on our data.
We show that past availability of a prefix is inadequate faruaately predicting future availability. Our availabylit
predictions from three models are compared to measurethbiigy values from RouteViews.

This paper extends our previous work [21] as follows:

1. In addition to varying the ratio of the learning duratiortttie prediction duration as in [21], we vary the learning
duration itself. This is important because the availapiistribution depends on the duration over which it is
computed, and hence this impacts prediction performance.

2. We consider an additional machine learning model, nathel\Wave Bayes model, for availability prediction.
This is a popular model in the machine learning literatutd,[Rnown to be simpler than the bagged decision
trees considered in [21] but potentially less accurate. W that the performance of this model is better or
worse than bagged decision trees, depending on the lealnnagion (Section 6.4). We also conduct a more
thorough investigation of the prediction models used irf.[21

3. We study the distribution of the prefix attributes and shoging statistical tests, that the attributes indeed
demarcate availability classes (Section 5.3).

4. We predict availability of a large number of prefixes, #i®r showing that the prediction models are scalable
(Section 7).

5. All results presented in this paper are for the time peoifoghnuary to October 2009, as opposed to [21], where
one month of data was considered at a time. This leads to héiersity of the visible prefixes, since some
prefixes are only visible for short time periods. As avaii@pis a long-term metric, this 10-month evaluation

of the prediction models is more realistic.

The remainder of this paper is organized as follows. Se@isnmmarizes related work. We define the problem

that we study in Section 3. Section 4 describes our datesedsSection 5 describes our methodology and metrics. In



5

Section 6, we compare results from three prediction modelsstudy the effect of classification attributes and using
certain more predictable prefixes on prediction resultsti®e 7 describes our results of applying prediction models

to large sets of combinations. Section 8 concludes the apkdiscusses future work.

2. Related Work

Rexfordet al.[23] find that highly popular prefixes have relatively staBIBP routes, and experience fewer and
shorter update events. Their results fit into our predictiamework, with the prefix popularity being a feature that
can be used to predict stability, specifically the numberpafaie events associated with a prefix. Our work goes a step
further by predicting prefix availability, not just the e¥smssociated with a prefix, using easily computable ategu
Prefix attributes like activity, update count, reachapiliom various monitors, prefix churn, and growth, have been
studied, e.g., in [24, 25, 26, 27], but the attributes areuset to classify prefixes or predict prefix features, which we
address in this paper.

Changet al.[28] cluster routing updates into events based on the araogipeers and similarity of AS paths using
descriptive modelings the data mining technique. This technique is used for sarimimg the data and improving
understanding of the data features. In contrast, weppsgictive modelingo predict prefix behavior, specifically
availability, given the observed values of prefix attrilsute

Zhanget al. [13] predict the impact of routing changes on the data pldiey aim to predict reachability prob-
lems based on problematic ASes in AS paths in the routingtepdsbserved for a prefix. Our work is orthogonal to
theirs in the sense that we consider control plane avaighitilizing four simple attributes computed from obsiewy
RouteViews data, and we investigate three prediction nsatiek may learn from other prefixes. Predictability of net-
work performance has been extensively studied, e.g., B932]. These studies focused on end-to-end loss, delay, and
throughput, measured by active probes, whereas we consiefer availability indicated by routing update messages.
Recently, Hubble [18] and iPlane [19, 30] have been develaeJniversity of Washington for detecting data plane
reachability problems and predicting data plane paths lagid properties, respectively. Our work is complementary
to iPlane [19] and iPlane Nano [30], since we predict conptahe availability (or existence of routing paths) to a
prefix from multiple Internet vantage points, while iPlaenples data plane metrics like latency, bandwidth and loss
rates to end hosts in the prefix at a low frequency. These gifeds, taken together, can increase knowledge about
prefixes and end hosts in the Internet, which can improve ¢in@pmance of several applications like VoIP, P2P and
CDNs. In cases where no responsive hosts within a prefix céoumel by iPlane, iPlane cannot make predictions, in

which case our availability predictions will be the only é&ble ones for applications.

3. Problem Definition

We define theavailability prediction problento be the prediction of the BGP-advertised availability gifrafix,
given its attributes computed by observing BGP updatessffample, through RouteViews), and the availability and



6

attribute information of other prefixes, collected for a ghduration of time. Advertised availability is critical in
maintaining smooth traffic flow to these prefixes. Going bacéur patient analogy, given the symptoms and known
diseases of some patients, one can use test results of a tient pa diagnose the new patient’s disease. Our “test
results” are the updates observed for a prefix for a limitedbogeof time, which are used to predict its long-term
availability.

In this paper, we compute availability in tisentrol planeby marking the time of an announcement of a prefix as
the time when it goes up and a withdrawal as the time when i gogvn and matching our predictions against this
computed availability. Spurious announcements and watldls are filtered as described in Section 4.

Rather than predicting continuous values of availabilitg discretize availability, and predict the availability
classof a prefix for some time period in the future, based on infdaromacollected from the past that is used to train
prediction models. This is because, for diagnosis or dete@urposes, our interest lies in predicting whether the
availability value is above or below an acceptable threskelg., that advertised in SLA), and not the specific value
of the availability. Discretizing also gives us an addedadage of use of confusion matrix-based measures, e.g.,
false positives, to assess prediction performance. Usingraious availability values causes problems in defining
error measures because a miss in high availability valuegs, (9% predicted as 94%) counts more than a miss
in lower values (e.g., a predicted 35% instead of 40%) becxafisttached importance to higher values. In this
paper, we validate our predictions by computing the “futaeailability class and comparing it with the predicted
class. However, this is purely for validation of our prettintschemes — in a real deployment, we will not have the
availability classes of the future, just our predictions.

In this paper, we seek answers to the following questionstdioframework:

1. How to discretize availability? How many classes and vitwegshold values should be used?

2. Given a set of prefixes with their associated attributesaaailability classes, how accurately can one predict
the availability classes of other prefixes, and which pramticnodels work best?

3. How to extract and represent prefix attributes from Roigw¥ data? Which attributes of a prefix are most
important in predicting availability? For example, are mapecific prefixes (ones with longer length) less
available than less specific ones? Do prefixes that gener@ateupdates have lower availability?

4. How large should a set of prefixes be such that if we learnpoediction model from this set, it will give
accurate results on unseen prefixes?

5. How long should one observe prefix attributes so that adlahility can be accurately inferred?

4. Datasets

The routing tables (RIB files) and updates available fromtBdigws [16] are in .bz2 format with typical sizes
of 0.8 GB per day of RIB files (sampled every 2 hours) and ab8u¥1B per day of update files (written every 15
minutes), which total about 25 GB per month of data. We pregss the data using libbgpdump version 1.4.99.7 [31]



7

to convert the files from the MRT format to text. We reduce tloeegge space required by removing unused fields. We
only keep the timestamp, peer IP, prefix, and the type of @p@anouncement or withdrawal), except when studying
additional attributes of Announcements in Section 6.5 fterfpreprocessing and filtering table transfers (as desdri
below), we have about 14-18 GB of gzipped RIB and update fiéesronth of data.

We utilize data from January to October 2009 to build anddasprediction models. The months span a reason-
able time period to prevent biasing our model selection gged¢owards datasets from a particular timeframe when
some event (such as an undersea cable cut) may have occurred.

A problem with using raw updates from RouteViews is that th&sp include routing table transfers which are
caused by session resets between a monitor and a peer [38%e Bpurious updates are an artifact of the update
collection methodology. Zhanet al. [32] developed the Minimum Collection Time (MCT) algorithtm identify
BGP routing table transfers. We executed scripts (corteibby the authors of [32]) from the point of view of every
peer in our dataset. We define a peer as any vantage pointigatiheuting information which is present in any
routing table entry and at least one update. This definitieldy 41-43 peers in our dataset. We developed a script
that removes the table transfer updates from the updatebtained from RouteViews. We use these filtered updates

for all further processing.

5. Methodology

We define acombinationas a (peer, prefix) tuple, which implies that the prefix waseoled by the peer in
the RouteViews dataset. We compute the availability ofétezsnbinations and use that for building our prediction
models. The notion of availability of a prefix is with refeoento an observation point in the Internet. For the
RouteViews data, these observation points are the peeey. ark fairly well spread out over the world, enabling one
to observe the availability of prefixes from various pointghe Internet. Note that these peers are not the same as
the RouteViews monitors, which passively collect data abouting tables and updates from the AS routers (peers)
which actually observe prefixes. It is these peers and tHexpsethey observe that we refer to @ambinations In
what follows, a combination isp or downwhen the peer associated with the combination has the gomdsg
prefix in an announced or withdrawn state, respectively.

BGP supports aggregation of prefixes [33], and prefixes aguéntly aggregated and deaggregated for imple-
menting routing policies like traffic engineering [17]. Im@uting table, there can be several prefixes which are more
specific versions (subprefixes) of other prefixes in the tilg However, the relationship between the prefixes and
their subprefixes can be complicated since these can be meedrom different origin ASes. This can happen if
the customer of an ISP announces a subportion of the prefigaa#id to the ISP. Routing policies can change over
time and the announcements of the subprefixes can vary degenebn transient conditions like network load. Mis-
configurations can also cause a subprefix to be announcedsfaraduration, making it indistinguishable from the

announcements caused by traffic engineering. Since ropthges are unknown, distinguishing the time when the



8

prefix is unannounced because of a covering prefix or whemitiglrawn due to BGP or network conditions is diffi-
cult, and this needs to be handled by an availability megggregated across prefixes. Hence, computing an aggregate
long-term availability of prefixes which are subprefixes tfey prefixes is a challenging task. In this work, we treat
each announced prefix separately as a part of the (peer,)prgdle defined above. Formulation and computation of
aggregate availability across more specific prefixes arid¢beering prefixes is left as future work.

We learn the prediction models fromtiaining set which consists of the combinations with known attributes
computed during the learning period and availability clatels during the period. We then predict the availability
of a disjoint set of combinations, which we call ttesst set The disjointness is necessary to prevent overfitting [22]
so that the model performs well on unseen test data and toitparmealistic evaluation of the model. After the
prediction model is learned using the combinations frontithi@ing set and the information from the learning period,
it is applied to the attributes of the combinations of the se$ (computed during the learning period) to predict their
availability classes in the future. Thus, the training agst sets are disjoint in both the combinations used and in the
time period they span. If we denote the learning periot] aad the future prediction duration s then for each test
combination, we apply the prediction model to its attrilsutarned front; and we validate the availability prediction
by comparing it to its availability during,. The learning and future prediction durations are contiguya.e., the
prediction duration starts right after the learning duratnds.

In this paper, the combinations present in the training ddtést sets are randomly chosen from the set of
combinations “visible” in the training and test duratiapsandt,. We define a combination to be visible in a time
durationt if it exists in the first routing table of the perigdfor preventing boundary effects) or in any of the updates
in the time duration. Thus, a combination has an equal chaheg@pearing in the training and the test sets if it
appears at least once in the first routing table;asr an update in the period + ¢,. Since the learning periot]
and prediction period, are contiguous,; + t,, represents the total time starting from the first updatg t the last
one oft,. This random selection of combinations prevents biasimrgooediction results towards a specific group of
combinations which may be related, e.g., combinationsatoimy prefixes from a specific AS may make it easier to
predict availability of combinations containing prefixegrh the same AS.

We define thgpercentage learning duratioas the ratia; /(¢; +t,) which evaluates the percentage of the duration
t; + t, that is used in learning. The larger this ratio, the easieptiediction since less of the future is unknown. We
evaluate the quality of our prediction models by varying ttatio among 0.1, 0.25, 0.5, 0.75, and 0.9. For each of the
values of this ratio, we experiment with valueggfwheret; = 1, 7, 19 and 30 days. Thus, we have 20 data points for
evaluating each prediction model. The rationale behirglithihat the availability distribution may be different whe
computed over different periods of time. We want to investiigthis difference and the effect it has on prediction for
the same values of/(¢; + t,), but different values of;.

The prediction models considered in this paper are destiibdetail in Section 6. We use Weka [22], a Java
open-source data mining software, for evaluating the nsod&kka provides implementations of standard prediction

models and data mining techniques for analyzing the pedona of the models.



5.1. Discretizing Availability

We discretize the continuous availability value into aaility classes which we predict using observed attributes
The process of discretization uses thresholds as parasngtemumber and values of which have to be decided. The
choice of these parameters is based on the prediction doale kims to find prefixes that do not meet high availability
requirements, a single threshold can discretize avaitiabito highandlow classes. If one aims to find prefixes which
have both high and low availability values, one should usettwesholds to discretize availability inbdgh, medium
andlow classes.

The computation of the availability of a combination for ataular time period proceeds as follows. The first
routing table of the period is used to initialize the statea¢h combination present in the table to up (or announced).
Thus, the learning duration of considers all the combinations found in the first routindeadf Jan. 09 and in the
updates recorded in the duratign We maintain the state of each combination at each poinirig,tand at the time
of each state change (as indicated by an update), we recardratiche or an uptime. If the state of a combination
changes from Announced (A) to Withdrawn (W), an uptime is réed, whereas a change from W to A leads to the
recording of a downtime. After processing all update files,atld an extra up or downtime depending upon the last
state of the combination. For example, if the last state ghavas to W and was reported at time and if the data
period ended at time,, we add a downtime with valug — ¢;. The availability of the combination is computed by
noting the time that the combination was up (cumulativernpjidivided by the total time in which we are interested.
Hence, a combination that only appears in the first routibdptaf the month and has no updates for the duration
under consideration will have an availability of 1.

We use data from Jan. 09 to study the effect of discretizati@ble 1 shows the availability statistics for four
values oft; starting from the beginning of Jan. 09 (i.6519 days means data from Jan. 1 to Jan. 19). The second
column shows the number of (non-trivial) availability vatuthat are considered in computing these statistics, where
one value corresponds to one combination. The first quantigglian, and third quartile are the values below which
25%, 50%, and 75% of the availability ordered combinatiGagéspectively. The table shows a steady increase in the
number of combinations as more days are considered, siagmpsly undiscovered combinations are found in newer
update files. These new combinations were not present inrgigduting table of the month; otherwise they would
have been found fa; = 1 day. These are expected to be low availability combinatid his is validated by the fact
that the first quartile and mean of the combinations show sedstng trend with these newly added combinations.
The variance of the availability increases as lower valuesadded to the set of predominantly higher availability
values.

This trend of lower availability values with longer duratimotivates us to study four different values ofvith
the same; /(t; + t,,) ratio. The difference in availability distributions for duions¢; andt, not only depends on the
value oft;/(t; + t,,), but also on the value af. This effect is seen in Table 2 which shows the percentaderdifce

in the mean availability of the learning and test duratiapsuidt¢,) for different values ot; and the same value of
ti/(t + tp).



10

Table 1: Availability statistics for Jan. 09 for differeralues oft;. Median and 3¢ quartile are 1 for alt;.

t Number of 15t Mean | Variance
Combinations| Quartile
1 day 10545170 1 0.9975| 0.0018
7 days 10700675 1 0.9897| 0.0078
19days| 10959231 | 0.999988| 0.9743| 0.02041
30days| 11476218 | 0.999882| 0.9604| 0.02966

Table 2: Percentage difference of mean availability betvikertraining and test sets for differemt ¢; /(¢; + t,)=0.1

t; Mean availability Mean availability | % Difference in availability
of learning duratiort; | of test duratiort, of t; w.rt. ¢,
1 day 0.9975 0.9853 -1.22
7 days 0.9897 0.9204 -6.99
19 days 0.9743 0.8367 -14.13
30 days 0.9604 0.7996 -16.74

These statistics play an important role in the choice ofrdiszation thresholds. To study this, we start with
a ternary class label (valudgggh, mediumandlow), and choose two different threshold sets of (0.99, 0.5@) an
(0.99999, 0.50), with the higher threshold demarcattiigin andmediumand the lower one differentiating timeedium
andlow classes. This enables us to compare the percentage shhighafder the two threshold sets, which is
listed in Table 3. Theanediumpercentage can be easily calculated since the percentddegpato 100%. If we
choose a relatively lower valued threshold fagh, e.g., 99%, the class distribution will be highly skewed haritost
combinations (around 91-94%) havihggh availability. With a 0.5 threshold for thiew class label, about 1-4% of
combinations fall into that category. However, the praditproblem is more difficult with a 0.99999 threshold for
highthan with 0.99, since there is a higher chance of combingtioat havénigh availability in the learning period to
fall below the 0.99999 threshold in the test period. We \edlithis observation by evaluating the prediction models
of Section 6 on datasets with the two thresholds forttlgh class and found that the model performance for 0.99
threshold is indeed higher than that with 0.99999, validathat the former is an easier prediction problem. Based
on these observations and the significance of “five nineslahility [1], we use a single threshold of 0.99999 and a
binary class label. However, to find combinations with vexy lvailability, we can easily extend our framework to

two thresholds and a ternary class label.

Table 3: Class distributions when discretizing availdpili

t % High with % High with % Low with
0.99 Threshold| 0.99999 Threshold 0.5 Threshold
1 day 93.89% 67.92% 1.02%
7 days 93.09% 67.25% 1.68%
19 days 91.89% 66.19% 2.74%
30 days 91.09% 66.13% 3.59%




11

5.2. Computing Attributes

We now investigate the attributes of the (peer, prefix) comatibns to be extracted from the RouteViews data.
The attributes are computed for the learning period withatiihe of predicting (future) availability classes for thettes
set. Our goal is to compute the attributes from publicly i@é information from RouteViews, which contains both
routing tables and updates for various combinations. Weshoot to use the routing tables because they provide
time snapshots of prefixes which can be reached by peers, @aadainterested in availability, which is a continuous
time metric. The updates collected from RouteViews haveatheantage that (barring errors) all the updates for a
particular combination will be recorded. Knowing the annoement and withdrawal times for a combination, we
can easily compute its availability. Comparing this conapuavailability with the predicted availability validates
prediction results.

The attributes of a combination are selected to relate tavadability (Section 5.3), and to be easily computable
given the observed updates for the learning period so tleatetirning system is fast. It is important to note that
the attributes we select do not necessarily cause highNaiahility; we are looking for correlationot causality
Correlation is sufficient for a prediction model to be susfgls

We hypothesize that longer prefixes will have lower avaligbsince they represent smaller networks which
are more likely to go up or down. From [23], it is known that ptar destinations, which are expected to have high
availability, are stable, i.e., have fewer updates. Heincaddition to prefix length, we also compute update frequenc
which is the average number of updates observed for the catidin in a time window of one hour (averaged over
the learning period). The period of one hour is chosen satigatipdate frequency numbers are neither too large nor
too small.

Furthermore, by recording the time when a combination ggedawn, we compute two additional attributes,
mean uptime and mean downtime, called the Mean Time to EafMA TF) and Mean Time to Recovery (MTTR),
respectively. It is important to note that MTTF and MTTR ammputed for the learning period, and hence the
predicted availability for the time-disjoint test set ismadirect function of these values.

In summary, we compute the following attributes for the té@g period from routing updates observed through
RouteViews: (1) Prefix length, (2) Update frequency, (3) M&ame to Failure (MTTF), and (4) Mean Time to
Recovery (MTTR).

We opt not to use information about to which AS a prefix beloogthe AS path to a prefix in this work. This
is because we want to keep our prediction model free fromtraings of specific ASes or AS paths that can change.
We defer the investigation of how prefixes are similar actbessame AS or neighboring ASes in the AS topology to
future work.

Although we compute the attributes of every combinatiorhveit least one recorded uptime or downtime, we
downsample this set of combinations (of about 11 millionra3able 1) to a set of 10,000 combinations with their
attributes, and use that to build and test models. Downsaggdbes not significantly affect the accuracy of models

since prediction models typically learn well with a few hued instances. We evaluate the performance of the models



12
with increasing number of learning instances in Section & @m larger test sets in Section 7. An advantage of
downsampling is the computational efficiency of buildingl aesting the models.

5.3. Demarcating Availability using Attributes

In this section, we quantify whether the four attributescdssed in the last section indeed convey information
about the availability class. We divide the 10,000 comlbamet into ones that havaigh andlow availability for the
month and compute statistics for the attributes of eacheoftlo groups. We show the means and variances of all the

attributes for a typical value @f = 19 days in Table 4.

Table 4: Attribute statistics of each class for learningqukof ¢; = 19 days

. High Class Low Class
Attribute Mean | Variance Mean | Variance
Prefix length 22.04 6.41 22.72 4.25
MTTF (s) 1587480 | 3.76E+10| 777844 | 2.92E+11
MTTR (s) 0.201002 3.52 58882.2 | 4.57E+10
Update frequency 0.0244 0.7339 | 0.0795915| 0.5694
(/hr)

We use the pairetttest to test for equality of the means of each of the atteibutf the two classes. We employ
the Welcht-test [34, 35] which assumes that the two populations hawmaladistributions and their variances cannot
be assumed to be equal (which is true for our data). The naynadsumption is valid due to the Central Limit
Theorem (CLT) and because we have about 3000-7000 sammeslinclass. We find that the means of each of the
four attributes are significantly different at 1% significarevel for each of the four learning periods. This shows tha
the attributes show a statistically significant correlatwith the availability class labels. For most of the atttés)
their variances for thiow class are higher because the class covers a wider rangeilabditg values.

Our intuition that the combinations with longer prefix lemgthave lower availability is confirmed. The mean
prefix lengths of théighand thdow availability classes usually differ by about 0.7, or abdit @vhich is statistically
significant) while the median and first quartile differ in ¢gh by 1 and 2 respectively, with the higher value for the
low class. The consistency of the results across each of thevédugs oft; is convincing of the correlation between
prefix length and availability class. We conjecture thas fkibecause shorter prefixes represent larger, more stable
networks while small portions of the address space can beusged and withdrawn frequently for multihoming or
load balancing purposes. Further, it is more likely thatregkr prefix representing a smaller network goes down than
a larger network.

The MTTF of ahighavailability combination is higher than that ofav availability one by about 85% on average,
whereas the MTTR is almost 100% lower. The difference besoarger ag; increases. This result is intuitive: a
high availability prefix has a long uptime before it fails, and whedoes fall, it quickly comes back up (well within
one second on average). The average frequency of updamwseth$or ahigh availability prefix is about 77% lower

than forlow availability ones. These results are explained by the faait & high availability combination stays up



13

for a long period of time, and hence has fewer updates. THereifce in attribute values of tlegh andlow classes
increases with;, showing that these attributes correlate well with the latsility class since availability computed
over a longer duration is more indicative of the actual alality.

Assuming update frequency distribution in each month isranatly distributed random variable (valid because
of CLT), we construct a 99%Confidence Interval (Cl) for the average update frequefieyjammbination. The mean
update frequency of a combination, averaged over all 11liomicombinations of Table 1 is about 0.03/hr and the
variance is about 0.28. The upper bound of the Cl is computée about 1.4 updates an hour. Thus, if we observe
more than an update for a combination in about 43 minutesyerage, we are 99% certain that it will hakosv
availability.

The conclusion from this section is that the selected prefilbates perform well in demarcating the availability

classes. The correlation of the attributes with the avditglzlass is consistent with our intuition.

5.4. Learning and Evaluation

We learn several models in this paper to predict the avéithalolass of combinations. The performance of each
model is studied using-fold incremental cross-validatiomhe dataset is divided randomly intgarts, calledolds,
while maintaining the class distribution of the datasehmfold (i.e. supervised samplingThe model is then learned
using the known attributes and class labelgs-dffolds (called theraining sej, and applied to predict the class labels
of the remaining fold (theéest set. Each fold is left out at a time, resulting mlearned models and corresponding
performance results. The training and the test sets a@imigj order to get an unbiased estimate of model error. The
algorithm is rurk times, each time with a different random seed so that diffiandolds are constructed in each run.
Thus, for each training set size, we haeperformance values, and we report the mean value.

As the number of instances to learn a model increases, thelrpedormance on test data typically improves,
but with diminishing returns. We study this usitearning curves A model is successively learned using increasing
training set sizes (from each of tindraining sets) and its performance on the test set is plettyadhst the training
set size. A typical shape of a learning curve is an increaskpgnential; the performance increases, and then flattens

after a certain number of instances is reached.

5.5. Performance Metrics

We now describe the performance metrics used to evaluatedalmden it is applied to the test set. Any clas-
sification algorithm can be studied using a confusion matrixich gives all possible combinations of the true and
predicted class. In what follows, the class labigh is treated as @ositiveclass, and the labébw is treated as a
negativeclass. The confusion matrix can be used to compute severfarp@ance measures, the most common of
which isaccuracy defined asAccuracy = %, where TP and TN are the true positives and negatives
respectively, and FP and FN are the false positives andimegaespectively. The True Positive Rate (TPR) and the

" : P P FP FP
False Positive Rate (FPR) are definedB&R = I = 7, andFPR = &7 = -~



14

TheKappa statistianeasures the agreement between predicted and observed,\atrecting for agreement that

%{eg‘”, whereP(o) is the proportion of observed agreement between

the observed and predicted values, dh@) is the proportion of times the values are expected to agreghasce.

occurs by chance. Itis computed as:=

Complete agreement corresponds te 1, which will be the best predictor, whereas 0 for a random predictor, and
k = -1 indicates complete disagreement between the values.

Unfortunately, confusion matrix-based measures can bleadmg with a skewed class distribution, which hap-
pens when the proportion diigh availability (positive) andow availability (negative) instances in the sample are
unequal. For example, a trivial algorithm which predictemgavailability value akigh will have 90% accuracy on a
dataset which has 90%igh values. The measures use data from both columns of a confositrix, and hence are
sensitive to the proportion of instances in the two colun®@.[ From Table 3, we observe that there can be signifi-
cant class skew, which render these measures inapprophisetter metric is obtained by using Receiver Operating
Characteristic (ROC) curves [22], which plot the TPR verthesFPR. ROC curves are independent of class skew
because they use a strict columnar ratio from the confusiatmix{37, 36]. We use the Area Under the ROC Curve
(AUC) as a performance metric. The AUC of a classifier is egjent to the probability that it will rank a randomly
choserhighinstance higher than a randomly chosew instance. A perfect classifier has an AUC of 1.

We compare the results from our prediction models to thosairdd using a random classifier, which acts as a
baseline for comparison. A random classifier randomly cesedther of the class labels with equal probability. Such
a classifier has an AUC of 0.5, since it has about as many TPRsasIhe reason for comparison to a random classifier
is that we need to be sure that any learning-based modelrperfioetter than the random classifier. Otherwise, one
could effectively toss a coin and decide the class label,mgek trivial predictor the best one.

While ROC curves work well for most classifiers, they are noectly applicable for models which do not produce
any ranking of instances in terms of probabilities of beilagsified adigh andlow. This is because one plots a ROC
curve by varying the threshold that decides betweigih andlow to produce various (FPR, TPR) points. A model
which does not produce instance ranking has no thresholdrig fience, it gives a single point in the ROC space
instead of a curve. For such a model, an option is to randonalgrahe instances predictedl@gh andlow, and then

rank them to produce a ROC curve. We describe the detailssa$theme in Section 6.1.

6. Model Space

In this section, we study three prediction models using te&inos in Section 5.5. As mentioned in Section 5.2, we
work with 10,000 combinations and their attributes, dovamgled from all the combinations in each of four different
months. We do 10-fold incremental cross-validation as rilesd in Section 5.4; thus=10. We conduck=5 runs,
generating a different set of 10 folds each time. Hence, we b8 performance measures for each model averaged
to give an output measurement.

We start with a simple baseline prediction model in Sectidn &his model does not learn based on other com-

binations, and simply predicts the availability of one camalion at a time. We then investigate more sophisticated



15

machine learning based models.

6.1. Simple Prediction

The simplest approach to predict the availability of a camabbn is based on the simplistic assumption that the
future is the same as the past. Thast availabilityof a combination is its availability during the learning joer;.
This prediction approach does not learn a model based onaih®inations, but merely predicts the same availability
for a combination as the discretized value ofgtsst availability Thus, if the past availability exceeds 99.999%, the
predicted class label lsgh, otherwise it idow.

This is a model where no instance ranking is performed; oald blassifications are made. Therefore, we compute
confusion matrix-based measures. These measures, cahiputarious values of, andt;/(t; + t,) and averaged

overnk= 50 runs, are listed in Table 5.

Table 5: Results with the simple prediction model
|t [ t/(ti+t,) | Accuracy ()] TPR | FPR [ s [ AUC |

1 day 0.1 88.60 0.9950| 0.9322| 0.1022| 0.5261

0.25 96.79 0.9940| 0.8085| 0.2641| 0.5877

0.5 97.99 0.9928| 0.7160| 0.3207 | 0.6224

0.75 98.69 0.9911| 0.5670| 0.3175| 0.6900

0.9 98.90 0.9900| 0.4766 | 0.1803| 0.7272

7 days 0.1 60.02 0.9717| 0.8451| 0.1353| 0.5599
0.25 73.87 0.9502| 0.8013| 0.1928| 0.5774

0.5 83.98 0.9421| 0.7410| 0.2403| 0.5962

0.75 89.37 0.9271| 0.7242| 0.1575| 0.5813

0.9 91.22 0.9224| 0.5907| 0.1281| 0.6713

19 days 0.1 54.10 0.9107| 0.6777| 0.1917| 0.6163
0.25 67.98 0.8933| 0.6281| 0.2816 | 0.6326

0.5 76.01 0.8620| 0.5315| 0.3481| 0.6641

0.75 78.30 0.8201| 0.4652| 0.2726| 0.6748

0.9 78.66 0.7953| 0.4082| 0.1355| 0.7015

30 days 0.1 57.17 0.8613| 0.5720| 0.2242| 0.6414
0.25 65.53 0.8379| 0.5231| 0.3133| 0.6548

0.5 70.81 0.7961| 0.4752| 0.3242| 0.6606

0.75 73.45 0.7544| 0.3723| 0.2955| 0.6895

0.9 71.08 0.7154| 0.3641| 0.1346| 0.6728

The results show that while the TPR of the simple model is hitghFPR is high as well. However, this simple
classifier outperforms a random classifier (as indicatedhby: tstatistic) and hence forms a baseline model to which
other sophisticated models can be compared; A3, +1,) increases, the prediction problem becomes easier as more
data is available for learning. Hence, the accuracy of thdehincreases, while its FPR reduces.tAgicreases, the
availability distribution becomes more diverse and heheamodel typically performs worse.

We now use ROC-based metrics to evaluate this classifiermiduel gives a single point in the ROC space (since
it does not perform instance ranking), so we modify the allgor to draw a ROC curve. We take a typical run of

the model with confusion matrix measures close to theirayewvalues. The instances which are classifieligis



16

andlow by the model are randomly reordered within their respedieeips, and then the instances are ranked with
the (predictedhighs higher than théows. We vary the prediction threshold, and record the TPR arRiflePeach
threshold, as in Algorithm 2 of [36] to compute the points dR@C curve.

— 1 — 1r — 1
o o o
o o o
= 0.8 Lk 0.8 [ 0.8
2 L L
© © ©
o 0.6 o 0.6 | o 0.6 |
[ [ <5}
= = =
G 0.4 G 04 % 041
£ p ROC plot £ ROC plot g ROC plot
g 02 ~Average Performance  >K 1 8 02  /-Average Performance >K 1 § 02 / _-Average Performance K 1
= o Random Classifier ---------- = o Random Classifier ;--------- = o Random Classifier ;---------
(0] 0.2 0.4 0.6 0.8 1 o] 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
False Positive Rate (FPR) False Positive Rate (FPR) False Positive Rate (FPR)
(@)t; =1day,t;/(t; +tp) =0.1 (b) t; =30 daysg; /(t; +tp) =0.1 (c)t; =30dayst;/(t; +tp) =0.9

Figure 1: ROC plots for the simple prediction model.

The ROC curves for the simple prediction model for some gfpialues oft; andt, are depicted in Figure 1.
The plots show the original model performance (in Table 5a g®int (“star”) on the ROC plots, along with the
performance of a random classifier. The performance of €ipdiction is clearly better than a random classifier for
most cases, but there are occasions when it performs as gawdkghtly worse than a random one as in Figure 1(a).
This is especially true whef; is small, and hence future availability is quite differerdrh past availability. As the
average accuracy in Table 5 is reasonably high, this empmstie inadequacy of accuracy as a metric to evaluate
performance models. Hence, we use ROC metrics, like arearuhd ROC curve (AUC). The AUC is computed,
using Algorithm 3 of [36], for a typical run (confusion matrbased measures close to their average values of 50
runs). Because of inherent randomness in reordering ardhgathe instances, the typical run will give different
AUC values when run with different random seeds; the aveod§@ different AUC values is reported in Table 5.

The results highlight the importance of ROC curves. For epanclassifier A fort; = 30 daysgt;/(t; + t,) =
0.1 (Figure 1(b)) is worse than classifier B for= 30 days¢;/(t; + t,,) = 0.9 (Figure 1(c)) using AUC as the metric.
However, examining the ROC curve, we see that for higher RBR&ind 0.8), classifier B outperforms classifier A.
The overall inferior performance of classifier A is becausggerforms similar to a random classifier for low FPRs.

Hence, if our operating region is at low FPR, classifier B igdsewhereas classifier A is better for high FPRs.
6.2. Naive Bayes Model

The Nédve Bayes model predicts lsigh or low class label using the attribute vectd= {X;, Xo,..., X}
based on Bayes rule [22]. It makes the fr&l assumption that the attributes are conditionally peledent given
the class label. However, the model is often used even whas#umption does not hold due to its simplicity. The

model computes, for each instance, the probability of ed@ésdabel given its attribute set and the independence



17

assumption, using the training set to estim@fe(;|C') and P(C'), whereC' is the class label. Hence, instance ranking
is naturally produced by the model which can be used to p®&@C curves.

We evaluate the model on each of the valueg;aind¢, using learning curves. The model is learned on in-
creasing size training sets, and its performance is evaduan the 10 different test sets produced by incremental
cross-validation. We plot a typical learning curve in Fig@;, using both accuracy and AUC as performance mea-
sures. The plots for the other time durations lead to sinsiterclusions. The accuracy initially increases at a fast rat
when the number of training instances is increased, andgaieafterwards. However, the AUC remains relatively
stable with the increase in number of training instanceswhat follows, we use the entire training set to train the
Naive Bayes model to achieve the maximum accuracy withoutfgdieg AUC. This ensures that the model is trained

to its potential.

920 g
... 0.85
85 - [ 7 | os
g s 075
: 1 0.7 =
g 75/ aoe o7
Accuracy --------oee- |
70 F .
‘ 1 0.55
65 o3

200 400 600 800 1000 '
Training Set Size

Figure 2: Néve Bayes learning curves for=30 days¢,;/(t; + t,)=0.9

We now compare the Nize Bayes model to the simple prediction model of Section /& use the accuracy and
AUC as measures for comparison. The results are given ireT&ablThe results show that the Na Bayes model
yields a higher AUC than the simple model for all cases. Trruxy values of Ni@e Bayes are close to those of
the simple model, except when learning from 30 days of dalerevfor a smaller prediction periag, the accuracy
is significantly better with a high variance (around 26.3ile for a higher prediction period,, the accuracy is
significantly lower with a low variance (around 2.3). Thishiscause this model assumes that the attributes are
conditionally independent given the class label. The madek the frequencies in the training set as estimates of the
probability distributions of the attributes. These estimdadistributions are valid only when the period of paramete
estimation, i.e., learning period, is not too differentrfréhe prediction period. Whet) = 30 days, the period of
the training and test sets differ by a few days to months (@xetent;/(t; + t,) = 0.5) and hence have different
distributions. This leads to different accuracies sinég iretric is highly dependent on class skew.

We consider the better metric, AUC, and investigate whetihehigher AUC values of the Mz Bayes model
are statistically significant. If so, Mz Bayes would be a better prediction model than the simpléain We use the
Welcht-test [34, 35] to test for equality of the performance measmeans) of the distributions of the two samples
(simple and the Nae Bayes). We perform the test on the AUCs of the two modeale&zh of the four months,

using the mean values shown in Tables 5 and 6, and the samdeaes computed using timk = 50 data points.



18

Table 6: Results with Nae Bayes model and % change from simple model

t t1/(ti +t,) | Accuracy (%)| % Change in Accuracy AUC | % Change in AUC
from Simple Model from Simple Model

1 day 0.1 88.51 -0.09 0.6044 14.89
0.25 96.70 -0.09 0.6568 11.76

0.5 97.94 -0.045 0.7097 14.02

0.75 98.66 -0.034 0.7924 14.84

0.9 98.82 -0.074 0.8159 12.19

7 days 0.1 59.85 -0.288 0.6341 13.25
0.25 74.20 0.444 0.6290 8.96

0.5 84.06 0.10 0.6355 6.59

0.75 87.89 -1.65 0.6473 11.35

0.9 89.95 -1.39 0.6990 412

19 days 0.1 54.61 0.94 0.6761 9.70
0.25 68.04 0.08 0.6956 9.95

0.5 76.09 0.10 0.7173 8.01

0.75 77.35 -1.21 0.7173 6.31

0.9 77.38 -1.63 0.7304 412

30 days 0.1 46.14 -19.29 0.6930 8.04
0.25 59.23 -9.61 0.7009 7.04

0.5 70.29 -0.73 0.7009 6.10

0.75 80.03 8.95 0.7394 7.24

0.9 83.40 17.33 0.7538 12.05

We compute the degree of freedenusing the Welch-Satterthwaite equation, and round it tonderest integer far
table lookup using [38]. We find that the null hypothesis afi@gy of the means is rejected for every month at 5%
significance level. This means that the AUC of thé\aBayes model indeed exceeds that of the simple model at 5%

significance level. Table 7 shows the details of the testdarestypical values of; andt,,.

Table 7: Paired-test results of comparing AUC of Mz Bayes model and the simple model

t ti/(t, +tp) | Statistic| v t-value for
Value 5% Significance
1 day 0.1 15.80 | 98 1.984
7 days 0.25 8.46 | 64 1.998
19 days 0.5 8.75 98 1.984
30 days 0.75 7.28 | 81 1.99

Finally, we compare the Nize Bayes model to the simple model using ROC curves. Thefpta = 30 days
andt;/(t; + t,) = 0.1 is illustrated in Figure 3. The figure shows that thévd@ayes model dominates the simple
model throughout most of the ROC space. For the same FPRPRsIF higher and hence it is closer to the ideal
point in ROC space. The implication of these results is thrabdel which learns based on other prefix combinations
like the Ndve Bayes classifier will typically outperform predictionthout learning, despite its in& assumptions.
This confirms that availability is predictable using theibtites we measure. It is also worth noting that this better

performance in terms of TPR and FPR in the ROC space agaitsfoithe inadequacy of accuracy as a metric: even



19

though the Neve Bayes model has much lower accuracy than the simple nfodétese values of, andt,, it is

better in ROC space.

— 1

o

o

= o8t

[<5)

T

o 0.6

(<5

=

i 0.4 |

& o Simple Model

g 0.2 r Average Performance >l'< R
a g Naive Bayes ---------- .

(o] 0.2 0.4 0.6 0.8 1
False Positive Rate (FPR)

Figure 3: ROC plots for Na&e Bayes and simple model f6;=30 days¢; /(t; + t)=0.1

6.3. Decision Trees

A decision treds a recursive divide-and-conquer classifier, which digithe instances based on one attribute at a
time in a top-down fashion until the leaves of the tree arelred [22]. A decision tree can be easily transformed into
if-then rules. This classifier has the advantage that itterpretable, since the attributes of the classifier areaank
from the root node downwards in the order of importance, atebrto classify an instance can be read off the decision
tree. We use the C4.5 algorithm developed by Quinlan [39Litwecision trees, which uses reduction in entropy
(measure of randomness) when splitting the instancé &etsed on an attributéd as the information gain metric to
build the tree.

Pruning the tree is necessary to avoid overfitting to thaimgidata, and for constructing a general enough tree to
perform well on unseen test data. In Weka, the J4.8 classifidements the C4.5 algorithm [22], and one can choose
to consider the unpruned tree, or prune it based on differ@etia. C4.5 pruning (the default) uses an estimate of the
error on the training set. An alternative is to use ReducedrBruning (REP) [40], which holds back some of the
training data as a fold and uses that to estimate the errer.a@iiantage of REP is that it can lead to more unbiased
estimates of the error; the disadvantage is that it usesisgador tree building.

We use the unpruned, C4.5-pruned, and REP trees, and firtdéreatcuracy and AUC metrics are not significantly
different among them. However, at very small training se¢s; holding out instances for REP can lead to insufficient
training data, which results in lower AUC. Nonetheless, weided to use REP because of the advantages of a tree
which avoids overfitting and because we will work with suffitily large datasets. Our results have a high variance.
This is a typical property of decision trees, since a smé#fitince in the training data can cause different branahes t
be constructed. For example, with 200 training instancesoh of the 10 folds, we find decision trees with different
structure and attribute values (two are shown in Figure B fight branches of all nodes are for a “Yes” decision and
the left branches are for a “No” decision. While the decisi@e$ shown all usMITTRas their root node, different
trees use different numbers and values of attributes to hegisions. This increases variance in classification tesul

causing mean results to appear worse.



20
MTTR< 25

MTTR< 13 Low Update Frequency 0.04202
High Low
High Prefix Length< 21

(a) Fold 6 N
Low High

(b) Fold 8

Figure 4: Decision trees faj = 30 days¢; /(t; + tp) = 0.1 constructed with 200 training instances.

A method to reduce the variance of decision trees is tdasgstrap aggregating (bagging22]. Bagging com-
bines an ensemble of unstable, high variance, predicttwsaiistable predictor. We apply the bagged decision tree
classifier to predict availability with the underlying béise classifier chosen to be decision trees with REP. Ten de-
cision trees are learned for each of the 10 folds of the diatasd they are then voted on to produce lingh or low
class label. The learning curve for a typical case is showkigare 5. The curve demonstrates that the performance

measures flatten with increase in training set size, whiclfirros that pruning is successful in preventing overfitting.

75 - 0.8

65 .. { 0.75

55 ¢
> i 4 0.7
<] 45 (&}
=1 1 0.65 =]
S 35 AUC ——— =<
< 41 0.6

25 Accuracy - )

15 4 0.55

5 0.5

50 100 150 200

Training Set Size

Figure 5: Learning curve for bagged decision treées; 30 dayst;/(t; + ¢p) = 0.1

We now apply the bagged decision tree model learned fronritieéraining dataset of around 9000 combinations
to predict availability for the values @f andt, considered earlier. The average results aer 50 points are given
in Table 8. As before, we perform significance tests, and fiatl AUC increases fa = 1 and 7 days are significant
at 5% significance level, except for/(¢; + t,) = 0.9 for¢, = 1 day, and;/(t, + t,) = 0.75 and 0.9 for; = 7 and
19 days. The results reveal that bagged decision treesrperiell w.r.t. Ndve Bayes when the learning period is
shorter (up to a couple of weeks) and the prediction peridohiger, i.e., whert; /(¢; + t,) is small. This is because
as diversity of the data increases, the bagged decisiomadspt to the diversity by building complex trees, which do
not generalize well to future datasets. This cannot be ctadeby pruning since the diversity is in the time domain

and occurs in nearly every combination, so holding out asedbmbinations for pruning does not necessarily help.



Table 8: Results with bagged decision trees (% change froiveNBayes model given within parentheses)

t ti/(ti +t,) | Accuracy (%)| % Change in Accuracy| AUC % Change in AUC
from Naive Bayes Model from Naive Bayes Model

1 day 0.1 87.81 -0.80 0.6352 5.10
0.25 95.54 -1.21 0.7027 6.99

0.5 96.61 -1.37 0.7525 6.04

0.75 97.22 -1.46 0.8339 5.24

0.9 97.36 -1.48 0.87 6.09

7 days 0.1 60.24 0.67 0.6613 4.29
0.25 74.91 0.96 0.6609 5.05

0.5 83.42 -0.76 0.6648 4.60

0.75 87.41 -0.55 0.6619 2.26

0.9 90.23 0.32 0.7159 2.41

19 days 0.1 54.95 0.6147 0.6726 -0.52
0.25 68.35 0.46 0.6976 0.28

0.5 75.96 -0.17 0.7188 0.21

0.75 77.45 0.13 0.7218 0.62

0.9 76.63 -0.96 0.7235 -0.94

30 days 0.1 56.83 23.17 0.6671 -3.73
0.25 65.24 10.15 0.6745 -3.75

0.5 70.85 0.79 0.6771 -3.39

0.75 73.44 -8.23 0.7018 -5.09

0.9 70.69 -15.23 0.6945 -7.87

21

6.4. Learning Duration

We now study the effect of learning duration on the predictesults of all the models we have considered. There
are two facets to this problem: the learning duration as equeage of the overall period of interest, ife/(t; + t,).
and the value of the learning duration itself. Lowering tieegentage learning duration means that we have a shorter
time to learn the attributes of various combinations, legdo a reduction in prediction accuracy, whereas incrgasin
this percentage improves prediction results, since ttsamgoire information available.

The plot of AUC against percentage learning duration forotes values of the learning duratiepis shown in
Figure 6. The results show that the prediction performamaeajully degrades as the amount of data available for
learning is reduced. The decrease is much more steep whéatiéng duratiort; is low, e.g., 1 day, and this effect
almost disappears whepreaches 30 days. This result implies that one can predigtterm availability by learning
from only a short learning period, as long as the period spdew days, e.g., a week. This gives further credence to
the feasibility of availability prediction. The bagged &&on tree model performs the best for all learning duration
percentages when the learning duratipis less than around 3 weeks. Beyond that valug,dfldive Bayes performs
best.

We also plot the change in the AUC for each of the models whereasing the learning duratiap keeping the
percentage learning duratiory (¢; + t,) constant. Two typical plots are shown in Figure 7. The plbtsthat for

the same percentage learning duration, as more learniagsdatailable (highef;), the performance of all the models



O
>
<<
agged Decision Trees
0.5 Naive Bayes ----
a Simple Model
10 20 30 40 50 60 70 80 90
Percentage Learning Duration (%)
(a)t; =1day
0.9
0.8
o
>
<<

Bagged Decision Trees
Naive Bayes --—-
Simple Model
10 20 30 40 50 60 70 80 90
Percentage Learning Duration (%)

(c)t; =19 days

AuC

AuC

4
10 20 30 40 50 60 70 80 90

22

Bagged Decision Trees
Naive Bayes
Simple Model

Percentage Learning Duration (%)

(b) ¢; =7 days

Bagged Decision Trees
Naive Bayes --

Simple Model
10 20 30 40 50 60 70 80 90
Percentage Learning Duration (%)

(d) t; = 30 days

Figure 6: Effect of percentage learning duratipfi(¢; + ¢, ) on prediction performance for different valuestpf

improves, except when = 30 days. The plots also show that the crossover point bettheeperformance of bagged

decision trees and Nize Bayes is about three weeks, as indicated above.

0.6
o
>
<<
0.5 r Bagged Decision Trees
Naive Bayes ----
0.4 Simple Model

(o] 5 10 15 20 25 30
Learning Duration (Days)

@t /(ti +tp)=0.1

AuC

Bagged Decision Trees

Naive Bayes

Simple Model
(0] 5 10 15 20 25 30
Learning Duration (Days)

(b)t;/(t; +tp) =0.25

Figure 7: Effect of learning duration on prediction performance for different valuestpf (t; + t,)

Based on the results, we can conclude that an availabilkigliption system using bagged decision trees can learn

from a few days of routing data logs. Our system can be adapteal time deploymertty sliding the time window

of the learning period to always learn from the most receta.dBor example, if we learn from a week of data, we

can slide our learning window by a day at a time to always |léeom the most recent past week. Predicting the

availability for about three times the learning duratiomegi accuracy and AUC of around 75% and 0.66 respectively.



23

If these performance measures are acceptable, one canthdpprediction duration at every stage. If we are learning
our prediction models from the most recent week of data, wepcadict the availability for three weeks into the future
maintaining this level of performance. If one desires higberformance, one should reduce the prediction duration
for the same learning duration, i.e., increase the perger&arning duration. Our prediction framework allows the

system administrator to trade off prediction performanue rediction duration.

6.5. Classification Attributes

We now study the importance of attributes in the predictimtpss, by studying the effect of using different sets
of attributes on the output metrics of Na Bayes and bagged decision trees. We start with the batgggsion tree
results from Table 8, and remove certain attributes of tmelipations, so that less data is available to the prediction
model. The degradation in various performance metricsuidist; as degradation increases, the importance of the
removed attribute subset increases. We present typiadtsed removal of some of the attributes for= 30 days,
t;/(t; +t,) =0.1in Table 9. We choose these values;@indt,, as this represents a long enough learning period and
a hard prediction problem: predicting availability for #nés the learning duration. The results for the other values
of t; and¢, were similar albeit with different values. We choose AUC éomparison because of its strength as a
performance metric as described earlier. The first colunthetable indicates which attributes of the combinations
were used for prediction. Along with using subsets of the &dtributes from Section 5.2, we also use the the attribute
of past availabilityto build prediction models. This attribute is used in the@emmodel and we seek to study the

performance of machine learning-based prediction modkishwuse this attribute to predict availability.

Table 9: Percentage change in performance metrics with subkettributes fot; = 30 days#; /(¢ + tp) = 0.1. All percentage changes are w.r.t.
results of the corresponding models from Table 6 and Table 8

Attributes Used for Prediction % Change in AUC for| % Change in AUC for
Naive Bayes Bagged Decision Trees

Past Availability -12.03 -9.8

MTTF -4.43 -1.97

MTTR -14.67 -1.93

Prefix Length -15.22 -24.96

Update Frequency -18.18 -7.12

Prefix Length and Update Frequency -9.94 -3.13
MTTF and MTTR -3.75 -1.65

MTTR, Prefix Length and Update Frequency -4.00 -1.33
MTTF, Prefix Length and Update Frequency -0.03 0.25

These results lead us to the following conclusions. Perdoce significantly degrades (AUC is 10-12% lower)
when only past availability is used. Combining this with ttesults of the simple model, we conclude that past
availability is not an adequate metric for prediction ol availability. Prefix length and update frequency arekwea
attributes, with prefix length being the weakest since ud#irone causes the AUC to decline by 7-25%. MTTF
is the most important attribute since using it alone causeddast drop in AUC among any single item attribute
set. Using either MTTF or MTTR with prefix length or updatedquency, or MTTF and MTTR together, causes the



24

AUC and accuracy to be within 4% of their values when no attalis removed. MTTF combined with the prefix
length and update frequency give very close results to thbsned when MTTR was also added to the set, further
confirming that MTTF is the strongest attribute (compleredriby the use of prefix length and update frequency).
We also experimented with addipgst availabilityto these attribute subsets and found that the performadoeodi
change significantly.

It is intuitive that MTTF is the most important predictiortréttute and MTTR is the next important, since the
time to fail or recovery will characterize the availabiliby a combination; anigh availability combination should
have a high MTTF and low MTTR. There exists no subset or saperfsthe four attributes used that would cause
significantly better results than the four attribute set weehchosen.

It is also interesting to note that the INa Bayes model is much more sensitive to the removal obatis than
bagged decision trees. This is because the intrinsic asgamysed in this model is that attributes are conditionally
independent given the class label. This assumption caros&d when there is only one attribute. Among multiple
attributes, the results will depend upon the degree of ¢immdil independence between the attributes. The bagged
decision tree model, in contrast, builds decision treesdbas various attribute values. While attribute removal does
hurt its performance, the trees formed based on other @tidsbare still reasonably accurate, unless the prediction

attribute is weak, e.g., prefix length.

6.5.1. Additional Attributes

We now investigate whether the prediction accuracy can Ipedwed if we add additional attributes that we have
not considered in this work so far. In Section 5.2, we givertii®mnale for the selection of attributes to be the relation
between these attributes and the availability of the pr@mere are other attributes of BGP updates [41, 42] such as
AS path, community, MED, and aggregation, which we have naositlered in this work. This is because we believe
that these attributes are not significantly related to atsdity as much as MTTF, MTTR, update frequency, and prefix
length. For example, repeated announcements with diffé&k&npath do not change the Announced or Withdrawn
status of prefixes. If the prefix flaps frequently with ann@ments and withdrawals, affecting availability, this will
be captured by our update frequency metric.

The additional attributes that we consider in this sectien &1) Average AS path length percentage change of
the changed AS path w.r.t. the old AS path, averaged ovenathancements, (2) Fraction of times AS path length
changes over all announcements, (3) Fraction of time theeggtpr attribute changes over all announcements, (4)
Fraction of time the community attribute changes over atlcamcements, and (5) Fraction of time MED attribute
changes over all announcements. As usual, we compute tkieibeitas for each combination and use them for
availability prediction. We consider these attributes ana time, and all these five together for availability prédit
using bagged decision trees. We find that the AUC results@¥edoorer on the average across these six prediction
cases w.r.t. the results in Table 8 . The average AUC of ptiedicomes out to be only 0.55. Although better

than a random classifier, these results are poor comparée frediction performance achieved previously. This is



25

explained by the fact that these attribute changes are da& taolicies for diverting traffic to the inbound prefixes
by modifying existing announcements, and are less coeghaith changes in the announced or withdrawn state of

prefixes, which affects availability.

6.6. Predictability of Prefixes

Thus far, we have used a random set of (peer, prefix) combimafor training the prediction models and for
testing the effectiveness of the prediction techniques. ndfe investigate whether certain combinations are more
predictable than others. The intuition behind this is thatavailability of a combination is more predictable frora th
attributes chosen in our work for certain kinds of prefixemtfor others. There can be several causes of BGP routing
dynamics [41], and some causes are likely to be more coecklaith availability, making a particular prefix group
more predictable. For example, a prefix can be withdrawn amdanced with a specific pattern (e.g., dependent
on time of day) for traffic engineering purposes, and all gesfiwhich are announced according to similar policies
will exhibit more predictable availability. The authors [@fl] discovered both daily and weekly patterns in prefix
announcements, attributed to several known and unknowsesaly. Zhang et. al. [13] predicted data plane failures
using control plane updates and also observed that cenafiixgs are more predictable than others. While we leave
detailed investigation of exact predictability classepm@ffixes to future work, we investigate whether there areemor
predictable combinations in our dataset.

Our methodology is motivated by [13]. Out of all the predictmodels considered in this work, only Ma Bayes
(Section 6.2) gives a probability of prediction of prefix Bahility as high or low based on its attributes. We use an
option in Weka [22] to output the class prediction probaileti for each of the instances along with the true availgbili
class. For each of the 20 sets of results from Table 6, wetigets the instances which were classified incorrectly.
We note the probability of incorrect classificatid),. as the P(predicted class labébw or high) for the incorrectly
classified instances output from theiaBayes modelP;,,. can never be less than 0.5 since a label is only predicted
if its probability is greater than the other class label. TR of P;,,. is shown in Figure 8. The plot shows that about
91% of the incorrectly classified instances have a classgiiaal probability above 0.93 when they are incorrectly
classified. This implies that when a prediction error is madbe case isot borderline — the model almost surely
predicts the incorrect class label. This gives credencheadédct that some prefixes in combinations are very poor in
predictability compared to others.

We now seek to isolate the combinations which have poor gliedi performance. We look at the instances
incorrectly classified by Nae Bayes for all the 20 cases of Table 6 and isolate the catibivs which have a
probability of prediction of the (incorrect) class labekerding 0.75. We chose this threshold of 0.75 since it is
midway between 0.5 and 1 and we want to ignore combinatianstiach a slight prediction error is made. Across all
the 20 cases, this gives 15,722 “poorly predicted” commnat which is about 39.33% of the total number of unique
combinations for the 20 cases.

To evaluate the prediction performance of the poorly ptattie combinations versus the predictable ones, we



26

Frequency

0.2

o
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
P(Class Label) on erroneous decisions

Figure 8: CDF of class label prediction probability for imextly classified instances usingiNe Bayes

run the bagged decision tree model from Section 6.3 on bdthadecombinations. We show the performance as
indicated by AUC for both the predictable and poorly prealit¢ combinations in Table 10. The results indicate a
large difference in predictability between the two typesahbinations. On the average, the predictable combination

have 40.95% higher prediction performance (measurednmstef AUC) than the poorly predictable combinations.

Table 10: Results for predictable and poorly predictablaltinations obtained from bagged decision tree model

t t/(t +tp) AUC for AUC for poorly % difference in AUC
predictable combinations predictable combinations of Col. 4 from Col. 3

1 day 0.1 1 0.4581 54.19
0.25 1 0.5144 48.56

0.5 1 0.5128 48.72

0.75 1 0.5226 47.74

0.9 1 0.4893 51.08

7 days 0.1 0.6624 0.4058 38.73
0.25 0.7046 0.5311 24.62

0.5 0.7807 0.5321 31.84

0.75 0.8565 0.4783 44.16

0.9 0.9188 0.3766 59.01

19 days 0.1 0.8384 0.3236 61.40
0.25 0.8469 0.5589 34.01

0.5 0.8608 0.6074 29.44

0.75 0.8626 0.593 31.25

0.9 0.8837 0.4033 54.36

30 days 0.1 0.6971 0.4848 30.45
0.25 0.8122 0.5501 32.27

0.5 0.8269 0.5777 30.14

0.75 0.8558 0.6113 28.57

0.9 0.8751 0.5394 38.36

These results indicate a close to bimodal distribution efipotability of combinations. There are some combina-
tions which are highly predictable (having an average AUQ.864) and some which are poorly predictable (average
AUC of around 0.5), and, on the average, a 40.95% differem@JC exists between the two prefix sets. We con-
jecture that this due to the two types of reasons behind B@Rrdics: planned prefix traffic engineering leading to
specific update patterns, and the non-stationary natunekofdilures [13]. Understanding the reasons behind varyin

prefix predictability has been shown to be a difficult problgi3] because of lack of information about AS policies



27

and limited visibility to BGP updates from vantage pointdisTis similar to root cause identification for BGP up-
dates, which is a hard problem as well [43, 44, 27, 45]. Wedairtailed investigation of the causes behind prefix

predictability to future work.

7. Larger Test Datasets

So far in this paper, we have used training and test sets vemelsonstructed out of a sample of 10,000 combi-
nations using 10-fold cross-validation. We now invesgghie scalability of our models, where we apply the learned
models to a large number of combinations. This may be redwifa typical prediction application, if one is interested
in predicting the availability of a set of prefixes from a langumber of vantage points in the Internet.

To evaluate scalability, we learn N& Bayes and bagged decision trees from 10,000 combimatinn predict
the availability of all the remaining combinations in eaclnth (about 11.5 million). The prediction takes only
about 2 minutes to complete for each of the models on a 3.6 @idiescore machine. The prediction results for a
typical casef; = 30 days¢;/(t; + t,) = 0.1) show about a 1-2% difference from the results in Talded Table 8,
as illustrated in Table 11. We therefore conclude that oudetsare scalable for availability prediction of a large
number of combinations, without significant degradatiopiiediction quality. These results also show that the 10-
fold cross-validation methodology does not suffer becaiisesing a relatively low number (1000) of combinations

in the test set.

Table 11: Percentage change in performance metrics of a leegection dataset from Table 6 and Table 8fpr 30 days¢; /(¢; + tp) = 0.1.

Performance Metrig % Change for % Change for
Naive Bayes | Bagged Decision Trees
AUC 1.45 -1.52
Accuracy 2.01 -0.12

8. Conclusions and Future Work

In this paper, we have developed a long-term availabilisdption framework that uses mean time to recovery,
mean time to failure, prefix length, and update frequencyttaibates. These attributes are easily computable from
public RouteViews data observed for a short period of timar ftamework learns a prediction model from a set of
Internet prefixes, and uses that model to predict avaitglufiother prefixes. To the best of our knowledge, this is the
first work that uses the similarity of prefix behavior in théelmet to predict properties such as availability.

Our simple prediction model is a good baseline with high pasitive rate and accuracy. The model, however,
has a high false positive rate and low AUC.i&aBayes and bagged decision trees improve on these meinitshe
latter performs best especially when the learning pefjdasishorter than about 3 weeks. For longer learning periods,
Naive Bayes performs best. The iNa Bayes model, however, is highly susceptible to a changstiibutes. We

recommend the use of bagged decision trees, learned frondarate learning period of a week or two, to predict



28

availability for longer future durations. The learning joercan be a sliding window which slides with a granularity
of a few days so as to feed the model with the most recent datediming.

We also find that mean time to failure is the most importanitatte for prediction followed by mean time to
recovery. Past availability is inadequate to predict fetwvailability, which is also a reason for the worse perfaroga
of the simple model. We quantify how prefix availability idated to prefix length and update frequency. Our results
show that future availability is indeed predictable. Thsutes are promising given that we are using only public
information about prefixes and that we are building our mogéig a random set of prefixes.

We can extend our framework to predict availability of anitagloy end point as viewed by an arbitrary vantage
point by using techniques similar to those used in [19]. éf¥hntage point contributes to RouteViews, and the prefix,
for which availability prediction is desired, is unknown RouteViews, we can use any other known prefix in the
same BGP atom [46] as the original one. This assumes thategétar two prefixes with the same AS path to a
vantage point will be the same, which should be true unlesgftis a different BGP policy. If the vantage point is also
arbitrary, one can predict AS paf{SPbetween the vantage point and the préfixsing iPlane [19] and then choose a
RouteViews vantage point that has sufficient overlap Wi#Pin AS path toP or a prefix in the same BGP atomRs
This extension (similar to the one used in [19]) may be ineateubecause of iPlane’s inaccuracy and the incomplete
overlap of AS paths, but it provides a rough availabilityireste.

Other future work plans include considering availabilifyagrefix from multiple peers, as opposed to considering
a single (peer, prefix) combination at a time. We will alsoeistigate additional prefix attributes in our prediction
model, such as the ASes to which the prefixes belong, and thga&s to the prefixes. We hope to uncover interesting
patterns, improve the prediction quality, and possiblyle@xpocality for feature prediction or for prefix clustegn
We also aim to study availability across prefixes which atgpsefixes of other prefixes, modifying the long-term
availability metric to incorporate the time varying natufannouncement of these prefixes. Studying the inherent
causes of predictability of prefixes is another topic of fatwork, since it gives a deeper insight into why some
prefixes are more predictable than others. Finally, a studgantrol plane availability is not complete without
studying the data plane. We plan to understand the cowalagtween the control and data planes, leveraging previous

work in this area.

References
[1] John Shepler, The Holy Grail of five-nines reliabilitiyttp://searchnetworking.techtarget.com/generic/0,29 5582,
sid7_gcil064318,00.html , 2005.
[2] M. Dahlin, B. B. V. Chandra, L. Gao, A. Nayate, End-to-enAN service availability, IEEE/ACM Transactions on Networg 11 (2003)
300-313.

[3] V. Paxson, End-to-end routing behavior in the InternEEE/ACM Transactions on Networking 5 (1997) 601-615.
[4] AT&T, AT&T High Speed Internet Business Edition Serviceved Agreementshttp://www.att.com/gen/general?pid=6622
URL Accessed April 2010.

[5] Sprint, Sprint service level agreemertistp://www.sprintworldwide.com/english/solutions/sl a/ , URL Accessed April
2010.

[6] P. Pongpaibool, H. S. Kim, Providing end-to-end servieeel agreements across multiple ISP networks, Computer Nietwi (2004)
3-18.

[7] R. Keralapura, C.-N. Chuah, G. lannaccone, S. Bhattggha Service availability: a new approach to characteifzbackbone topologies,
Twelfth IEEE International Workshop on Quality of Servid&/QOS) (2004) 232—241.



29

[8] E. Zmijewski, Threats to Internet routing and global ceativity, in: Proc. of 20th Annual FIRST Conference 2008.
[9] Cable News Network (CNN), Internet failure hits two comnts, http://edition.cnn.com/2008/WORLD/meast/02/01/

internet.outage/index.html , 2008.

[10] Fox News, Severed Cables Cut Egypt's Internet AccesseGygain, http://www.foxnews.com/story/0,2933,470224,00.
html , 2008.

[11] Akamai, Mideast outagédittp://www.akamai.com/mideast-outage , 2008.

[12] R. Bush, O. Maennel, M. Roughan, S. Uhlig, Internet opétry: assessing the broken glasses in internet reaclabitit IMC '09:
Proceedings of the 9th ACM SIGCOMM conference on Internetsueament conference, ACM, New York, NY, USA, 2009, pp. 243-25

[13] Y. Zhang, Z. M. Mao, J. Wang, A Framework for Measuring @edicting the Impact of Routing Changes, in: INFOCOM 20Q7, p
339-347.

[14] F. Wang, Z. M. Mao, J. Wang, L. Gao, R. Bush, A measuremertysbn the impact of routing events on end-to-end internét patfor-
mance, in: SIGCOMM ’'06: Proceedings of the 2006 conferencémplications, technologies, architectures, and pro®déol computer
communications, ACM, New York, NY, USA, 2006, pp. 375-386.

[15] N. Feamster, D. G. Andersen, H. Balakrishnan, M. F. Kaakh Measuring the effects of internet path faults on regaatouting, in:
SIGMETRICS '03: Proceedings of the 2003 ACM SIGMETRICS intional conference on Measurement and modeling of computer
systems, ACM, New York, NY, USA, 2003, pp. 126-137.

[16] University of Oregon, Route Views Projetittp://www.routeviews.org/ , URL Accessed April 2010.

[17] M. Caesar, J. Rexford, BGP routing policies in ISP neksp IEEE Network Magazine 19 (2005) 5-11.

[18] E. Katz-Bassett, H. V. Madhyastha, J. P. John, A. Kragharthy, D. Wetherall, T. Anderson, Studying Blackholesimlinternet with Hubble,
in: Proc. of NSDI 2008.

[19] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anden, A. Krishnamurthy, A. Venkataramani, iPlane: An inforroatplane for
distributed services, in: Proc. of OSDI 2006, pp. 367—-380.

[20] B. Cohen, Incentives Build Robustness in BitTorrédritp://www.bittorrent.org/bittorrentecon.pdf , 2003.

[21] R.Khosla, S. Fahmy, Y. C. Hu, J. Neville, Predicting Ptéfvailability in the Internet, in: INFOCOM 2010.

[22] 1. H. Witten, E. Frank, Data Mining: Practical machinairing tools and techniques, Morgan Kaufmann, San Fran@scbedition, 2005.

[23] J. Rexford, J. Wang, Z. Xiao, Y. Zhang, BGP routing stipof popular destinations, in: Proc. of ACM IMW 2002.

[24] A. Broido, E. Nemeth, K. Claffy, Internet expansion, refimnent and churn, in: European Transactions on Telecommiams&002.

[25] X.Zhao, D. Massey, S. F. Wu, M. Lad, D. Pei, L. Wang, L. BbaUnderstanding BGP Behavior through a Study of DoD Prefike Proc.
of DARPA Information Survivability Conference and Expositi2003.

[26] R. V. Oliveira, R. Izhak-Ratzin, B. Zhang, L. Zhang, Meaement of highly active prefixes in BGP, in: Proc. of GLOBEX 005,
volume 2.

[27] A.Feldmann, O. Maennel, Z. M. Mao, A. Berger, B. Maggscating Internet Routing Instabilities, in: Proc. of ACM SIGMM 2004.

[28] D.-F. Chang, R. Govindan, J. Heidemann, The temporal epolégical characteristics of BGP path changes, in: PrdEBE ICNP 2003,
pp. 190-199.

[29] Y. Zhang, N. Duffield, V. Paxson, S. Shenker, On the camsy of Internet path properties, in: Proceedings of theri@t Measurement
Workshop 2001, pp. 197-211.

[30] H. V. Madhyastha, E. Katz-Bassett, T. Anderson, A. Knamurthy, A. VVenkataramani, iPlane Nano: path predictianpfeer-to-peer
applications, in: NSDI'09, pp. 137-152.

[31] RIPE, RIPE Network Coordination Centtefp://www.ris.ripe.net/source/ , URL Accessed April 2010.
[32] B. Zhang, V. Kambhampati, M. Lad, D. Massey, L. Zhang, kifgimg BGP routing table transfers, in: Proc. of ACM MinetNeorkshop
2005.

[33] Network Working Group , RFC 2519: A Framework for IntepiDain Route Aggregatiomttp://www.ietf.org/rfc/rfc2519.
txt , February 1999.

[34] E.L.Lehmann, J. P. Romano, Testing Statistical HypatheSpringer, New York, 3rd edition, 2005.

[35] S.S. Sawilowsky, Fermat, Schubert, Einstein, and Bedifésher: The probable difference between two means whe# o2, in: Journal
of Modern Applied Statistical Methods 2002, volume 1.

[36] T. Fawcett, ROC Graphs: Notes and Practical Considerafor Researchers, Tech Report HPL-2003-4, HP Labadeatd2003. Available:

http://home.comcast.net/ ~ tom.fawcett/public_html/papers/ROC101.pdf

[37] L. Hamel, Model assessment with ROC curves, in: The Engetia of Data Warehousing and Mining, Idea Group Publst#erd edition,
2008.

[38] R. Webster West, T distribution calculatdwtp://www.stat.tamu.edu/ ~ west/applets/tdemo.html , URL accessed April
2010.

[39] J. R. Quinlan, C4.5: Programs for Machine Learning, Mor¢g{aufmann Publishers, 1993.

[40] J.R. Quinlan, P.J. Compton, K. A. Horn, L. Lazarus, Iniltecknowledge acquisition: a case study, in: ProceedififsedSecond Australian
Conference on Applications of expert systems 1987, pp. 156—1

[41] J. Li, M. Guidero, Z. Wu, E. Purpus, T. Ehrenkranz, BGRtiog dynamics revisited, SIGCOMM Computer Communication Bev87

(2007) 5-16.
[42] Second PacNOG Meeting, Conference and Educationakskiop, BGP Attributes and Policy Contrdiftp://www.pacnog.org/
pacnog2/track2/routing/b1-1up.pdf , February 1999.

[43] M. Caesar, L. Subramanian, R. H. Katz, Towards LocajzRoot Causes of BGP Dynamics, Technical Report UCB/CSDZ®R1EECS
Department, University of California, Berkeley, 2003.

[44] J. Wu, Z. M. Mao, Finding a needle in a haystack: Pingomsignificant bgp routing changes in an ip network, in: INDNS

[45] R. Teixeira, J. Rexford, A measurement framework for pamfing routing changes, in: SIGCOMM 04 Workshops.

[46] A. Broido, K. Claffy, Analysis of RouteViews BGP datalcy atoms, in: Network Resource Data Management Worksh6g 20



30

Author Biographies

Ravish Khoslais a graduate student pursuing a Ph.D. in Electrical and @tengEngineering Department at
Purdue University under the supervision of Prof Sonia Falamy Prof Y. Charlie Hu. His research interests lie in
routing protocols in the Internet, specifically Border Gedg Protocol (BGP). He is currently working on evaluating
BGP resilience by studying availability of Internet prefixeHe is a student member of IEEE. He has a MS in ECE
from Purdue University with thesis titled “Reliable DatasBémination in Energy Constrained Sensor Networks” and
a B.Tech (H) in Electrical Engineering from IIT Kharagpurdla.

Sonia Fahmyis an Associate Professor of Computer Science departméntrdtie University. She received her
Ph.D. degree from the Ohio State University in 1999. Herentrresearch interests lie in Internet measurement and
tomography, network testbeds, network security, and es®kensor networks. She received the National Science
Foundation CAREER award in 2003, and the Schlumberger teahmerit award in 2000. She is a member of the
ACM and a senior member of the IEEE. For more informationapéesee: http://www.cs.purdue.edtdhmy/

Y. Charlie Hu is an Associate Professor of Electrical and Computer Eging at Purdue University. He received
his Ph.D. degree in Computer Science from Harvard Uniyeirsit997 and was a research scientist at Rice University
from 1997 to 2001. His research interests include wirelessarking, overlay networking, operating systems, and
distributed systems. He has published more than 120 pap#rase areas. Dr. Hu received the NSF CAREER Award
in 2003. He served as a TPC vice chair for ICPP 2004, ICDCS ,280F SBAC PAD 2009. He is a senior member
of ACM and IEEE.

Jennifer Neville is an Assistant Professor of Computer Science and Statetieurdue University. She received
her Ph.D. degree from University of Massachusetts, Amhars?006. Her research interests lie in data mining
and machine learning techniques for relational data. Shesfs on the development and analysis of relational
learning algorithms and the application of those algorghmreal-world tasks. For more information, please see:

http://www.cs.purdue.eduheville/



