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Abstract—Effective network measurement can significantly
improve application performance. One of the main challenges
in obtaining network measurements is to achieve high accuracy
while consuming few network resources. To address this problem,
several inference mechanisms have been proposed. These mech-
anisms can provide the O(n2) end-to-end measurements among
n nodes using O(n) measurements, with some loss in accuracy.

We construct a measurement request graph where a measure-
ment request issued by an application (e.g., for delay between
two nodes) is represented by an edge between the nodes.
When the measurement request graph is sparse, an inference
mechanism operating over all the nodes (complete inference)
incurs unnecessary cost. Given a measurement request graph,
our goal is to optimize the number of measurements as well
as improve overall accuracy by applying inference only to dense
sub-graphs, while taking the other measurements directly. We call
this technique partial inference. Previous work only considered
static measurement request graphs. However, the measurement
request graph can be dynamic when nodes frequently join and
leave the network. This paper designs and evaluates a distributed
algorithm where each node decides if it should participate in an
inference mechanism based on limited information.

I. INTRODUCTION

Over the past few years, several inference mechanisms [6],
[13], [14], [17] have been proposed to infer network prop-
erties (e.g., end-to-end delays). The underlying methodology
in most of these mechanisms is that each node contacts
a constant number of nodes on average to take measure-
ments and exchange information. The remaining measurement
values are inferred so that all pair-wise measurements are
obtained. More formally, inference mechanisms provide all-
pairs (O(n2), where n is the number of nodes) measurement
data, by taking fewer measurements – a value proportional to
the number of nodes participating in the measurements (O(n)).

We use k to represent the average number of measure-
ments taken per node by an inference mechanism. Vivaldi [6]
suggests that nodes take measurements to 32 neighbors for
reasonable accuracy. Similarly, GNP [13] recommends that
the nodes take measurements to 15 landmarks. Thus, an
inference mechanism similar to [6], [13], [14], [17] takes nk
measurements in steady state, where n is the number of nodes
and k is an inference mechanism parameter.

Measurement services such as [10]–[12], [15], [19] can be
deployed to provide estimates of network characteristics to
applications. When a measurement service receives a request
for measurement data between two nodes, we refer to this
as a measurement request. These measurement requests can

be modeled via a measurement request graph, where each
measurement request is represented by an edge between the
nodes. A measurement service accepts measurement requests
from applications for various measurement data between dif-
ferent nodes in the network. To handle these requests, a
measurement service may utilize inference mechanisms to
reduce measurement traffic. Using an inference mechanism to
satisfy every measurement request (i.e., complete inference)
may, however, result in taking unnecessary measurements.
This is especially the case when either (a) the measurement
request graph is sparse, or (b) the constant k of the inference
mechanism is large. In these cases, an inference mechanism
will take more measurements than what is actually required.
For example, a node may be interested in taking measurement
to only one other node; in that case, it is beneficial to take
a direct measurement rather than include it in an inference
mechanism. Further, accuracy of inference mechanisms is
lower than direct measurements.

In this work, we identify nodes that should participate in
an inference mechanism (each taking k measurements on
average) in order to reduce the total number of measurements
taken. We assume that the value of k is an input parameter to
our problem, and that it is a constant specific to an inference
mechanism. The term measurement denotes the measurement
of any network characteristic (e.g., path delay or loss). The
measurement can be taken directly, or inferred by an inference
mechanism that uses kn overall measurements and supplies
all-pairs measurement data. We use the term node or vertex to
represent a machine involved in taking measurements.

In our previous work [3], we proposed and evaluated an
algorithm for detecting “dense” clusters in a measurement
request graph. The main idea was to execute a minimum span-
ning tree algorithm multiple times (with random edge weights)
and remove edges which are deemed “critical.” The remaining
graph represents dense clusters and employs inference in order
to reduce the total number of measurements. Our algorithm
was centralized and operated on static measurement request
graphs. In this paper, we design a distributed algorithm that
performs well in the presence of churn.

In section II, we define the problem. In sections III and IV,
we give a simple algorithm called k − Core to solve the
problem, and give a theoretical bound on its performance. In
section V, we develop a distributed version of the k − Core
algorithm, and show how it handles node churn. In section VI,
we evaluate the performance of this distributed algorithm.
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Fig. 1. Example showing the optimal solution for a measurement request
graph. The inference parameter k = 3. The white vertices are inference-
vertices, and the black vertices are direct-vertices.

Section VII concludes the paper.

II. PROBLEM STATEMENT

Given a measurement request graph G(V,E) (where V is
a set of vertices representing nodes involved in measurement
requests, and E is a set of edges representing measurement
requests) and the inference mechanism parameter k, our prob-
lem is to find a sub-graph Gi(Vi, Ei) such that when connected
components in Gi participate in inference, and nodes in G−Gi

take direct measurements, the total number of measurements,
M , is minimized. Thus, M is given by

M = k|Vi|+ (|E| − |Ei|), and

Ei = {vw/v ∈ Vi, w ∈ Vi}

The first term in the equation, k|Vi|, corresponds to mea-
surements taken by an inference mechanism, and the second
term, |E|−|Ei|, corresponds to direct measurements. If a ver-
tex v participates in inference (v ∈ Vi), we call it an inference-
vertex; otherwise we call it a direct-vertex (v ∈ V −Vi). Note
that the sub-graph Gi may be disconnected, even if the input
graph G is connected. Note also that both vertices v and w of
edge vw have to be inference vertices for the edge to be in
the term Ei.

In the context of a measurement service, using an inference
mechanism on the entire measurement request graph (i.e.,
complete inference) is not always efficient. It is often beneficial
to use inference on a subset of the graph (i.e., partial inference)
to reduce the total number of measurements taken and increase
accuracy. Consider the graph in Fig. 1 for k = 3. A vertex in
this measurement request graph corresponds to an end node
(host) in the network. An edge in the measurement request
graph represents a measurement request between the vertices,
e.g., computing the loss rate on the path between the two hosts
(the hosts may, of course, be connected via multiple physical
links in the underlying network). Using inference on the entire
graph will require k × |V | = 3 × 12 = 36 measurements.
Using direct measurements on the graph will require |E| = 34
measurements, since there are 34 edges in the graph. The opti-
mal solution identifies the vertices colored white as inference-
vertices. This partial inference configuration will require a total
of k|Vi| + (|E| − |Ei|) = 3 × 8 + 6 = 30 measurements to
be taken. Additionally, the 6 direct measurements may benefit
from higher accuracy.

Fig. 2. An optimal solution identifies all vertices to be direct-vertices. The
inference parameter k = 3.

III. THE K-CORE ALGORITHM

The k−Core algorithm gives an approximate solution to the
problem defined in the previous section, which is NP-hard [3].
We define the k−Core of graph G as the graph resulting from
repeated deletion of vertices (and their incident edges) whose
degree is ≤ k. This process can be viewed as a decomposition
technique to find densely connected vertices in a graph. The
resulting sub-graph (with all vertices of degree greater than
k) is identified as a good candidate to utilize an inference
mechanism. The deleted edges represent direct measurements.

The pseudo-code of this method is given in Algorithm 1.
An optimized O(|E|) k − Core algorithm is given in [2],
where |E| is the number of edges. The k − Core algorithm
is intuitive. Suppose a vertex v has degree ≤ k. The vertex v
will take ≤ k measurements if it is a direct-vertex. However,
it can take k measurements if it is an inference-vertex.

Algorithm 1 k-Core (G(V,E),k)
repeat
|V prev| ← |V |
for each v ∈ V do

if degree(v) <= k then
V ← V \ {v}
for each edge vw incident on v do

E ← E \ {vw}
end for

end if
end for

until |V prev| = |V |

IV. BOUNDS ON PERFORMANCE OF THE K-CORE
ALGORITHM

The k−Core algorithm gives an optimal solution in many
cases. Consider Fig. 2 with k = 3. The algorithm identifies all
vertices as direct-vertices, and the number of measurements is
12. The k−Core algorithm also gives the optimal solution for
Fig. 1. We conducted several simulations with the k − Core
algorithm, and found that it gives close to optimal solutions
on graphs representing peer connections in the UUSee peer-
to-peer video streaming service [4].

The k−Core algorithm does not, however, always give the
optimal solution. The algorithm fails for the example graph
shown in Fig. 3 for k = 3. Since there is no vertex with degree
≤ 3, all vertices will be designated as inference-vertices, and
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Fig. 3. An example graph where the k − Core algorithm fails to give an
optimal solution for k = 3.

the number of measurements in this case will be 6 × 3 =
18. The optimal solution identifies each vertex as a direct-
vertex, and the optimal number measurements is 15 (|E|). The
following results formalize some properties of the k − Core
algorithm. We omit the proofs for brevity; they can be found
in [7].

Lemma 1. If the degree of a vertex in a measurement request
graph is ≤ k, then an optimal solution to the problem chooses
that vertex to be a participant in direct measurements.

Corollary 1. Any vertex chosen by the k − Core algorithm
to be a participant in direct measurements also belongs to the
set of direct-vertices chosen by an optimal solution.

Theorem 1. Let Mo be the optimal total number of measure-
ments value for a given measurement request graph G(V,E)
and inference parameter k. Let Mc be the number of mea-
surements value using the k − Core algorithm. Then

Mo ≤Mc < 2Mo

V. HANDLING CHURN

If the k−Core algorithm is centralized, it must be cognizant
of all the measurement requests. This can be known by sending
control messages for each measurement request to a central-
ized location that executes the algorithm. Each measurement
node is classified to be an inference-vertex or direct-vertex and
the centralized location then informs each measurement node
of its classification. This approach is not scalable and creates a
single point of failure. Additionally, in the presence of churn,
the algorithm may be using stale and inconsistent information,
since the measurement request graph changes over time.

Due to these reasons, we need to develop a scalable
distributed protocol to apply the k − Core concept at each
measurement node, taking into account that the set of nodes in
the graph can dynamically change. Each pair of measurement
nodes corresponding to measurement request must therefore
exchange their state information.

A. The distributed k-Core algorithm

We design an algorithm that is executed at each node to de-
cide if it should participate in an inference mechanism or not.
The intuition behind this “Distributed k−Core Algorithm” is
similar to that of the k−Core algorithm. The decision taken
by each node whether to be an inference-vertex or a direct-
vertex is based on how many measurements it would take.

A node decides to join an inference mechanism based on the
degree and state of the neighbors of that node. For example,
if the number of neighbors of a vertex v that are participating
in inference exceeds k, the algorithm will identify the vertex
v to be a participant in inference.

Consider the case when all nodes are initially inference-
vertices. Without churn, the distributed k − Core algorithm
is similar to the centralized version: Changing state to direct
measurement corresponds to removing a vertex with degree
≤ k in the k − Core algorithm. The set of neighbors which
are direct-vertices corresponds to the vertices which have been
removed from the graph in the k − Core algorithm.

Our distributed k−Core algorithm is given in Algorithm 2.
Each node maintains a state: Inference or Direct. The state
indicates if the vertex is an inference-vertex or a direct-vertex.
The variables Nn,i and Nn,d (initialized to zero) represent the
number of neighbors of a vertex n that are participating in
inference and direct measurements respectively. The variable
Dn,2k (also initialized to zero) represents the number of
neighbors of node n with degree > 2k.

Algorithm 2 Distributed k-Core
for each neighbor nb of n do

Get State(nb) and Degree(nb)
if Degree(nb) > 2k then

Dn,2k ← Dn,2k + 1
end if
if State(nb) = Inference then

Nn,i ← Nn,i + 1
else if State(nb) = Direct then

Nn,d ← Nn,d + 1
end if

end for
if Nn,i > k or ( Dn,2k > 2k and Nn,i + Nn,d > 2k )
then

State(n)← Inference
else

State(n)← Direct
end if

Compared to the k − Core algorithm, an additional test:
(Dn,2k > 2k and Nn,i + Nn,d > 2k) is used so that the
algorithm is stable in the presence of churn. Suppose that the
graph has all direct-vertices and many vertices join the graph.
Without this test, the higher degree direct-vertices would never
be able to change their state to Inference.

B. Message passing

To execute the distributed k − Core algorithm, a node has
to detect changes in the degrees and states of its neighbors
in response to churn. The nodes need to exchange messages
containing degree and node state information. We consider two
basic ways to exchange these messages:

1) Messages are sent each time a node receives a signal
indicating a change in topology or state of its neighbors.
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2) Messages are sent periodically irrespective of any topol-
ogy or state change of its neighbors.

In the first case, a signal is sent by a newly joining node
or a departing node to its neighbors indicating a change in
the measurement request graph. Upon receiving this signal, a
node will exchange messages with its neighbors and execute
Algorithm 2. If there is a change in state from Inference to
Direct or vice versa, a node must notify its neighbors via a
signal. This message passing technique responds well to churn
and is effective for determining an accurate and up-to-date set
of inference vertices. However, if the arrival and departure
rates are high, there will be an explosion in the number of
signals.

In the second message passing technique, each node com-
municates periodically with its neighbors and executes Algo-
rithm 2. We refer to the periodicity of message exchange as the
time step. The time step is also a measure of how frequently
the algorithm runs at each node. This strategy can be effective
if the arrival and departure rates are high, but the time step
should accurately reflect churn. It should not be too large
(stale topology information is used) or too small (results in
unnecessary computation and network overhead).

The network cost associated with signaling or messaging
neighbors is critical. We note that the information that is
being sent in each message or signal is on the order of bits.
These messages or signals can be easily piggybacked onto
other traffic in the network. Additionally, once the inference
vertices have been determined and are known to be stable for
some time, inference can be further optimized.

VI. EVALUATION

We evaluate the distributed k−Core algorithm using both
message passing techniques (signaling and time step). The
problem of identifying vertices to perform inference depends
on the inference parameter k, the measurement request graph,
and the churn. For the measurement request graph, we use
graphs representing peer connections of the UUSee live video
streaming service. For the churn, we use synthetic churn as
well as churn data from the Skype network. We experiment
with a wide range of values (3 to 60) of the inference
parameter k.

A. Simulation parameters

1) Input measurement request graphs: We use UUSee
graphs [3] as measurement request graphs. These graphs were
generated to match the node degree distribution and clustering
properties of the UUSee service, as published in [18]. They
represent the peer connections among nodes in the UUSee live
streaming video service, and they have about 2500 vertices
and 53000 edges. A detailed discussion of how the graphs are
generated can be found in [3].

2) Synthetic churn model: We use a synthetic churn model
where node arrivals follow a Poisson process. The node
staying times in the network follow a Pareto distribution, with
minimum staying time 90 s and Pareto shape parameter 1.42.
These parameters are consistent with distributions found in
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Fig. 4. Session time CDF of nodes in the Skype network.

live streaming applications [5], [16]. In our simulations, the
inter-arrival time for a node is exponentially distributed with
a mean of 90 s unless otherwise stated. This value results in
about 70% of the live nodes being at equilibrium.

3) Experimental churn: We use an experimental churn data
set from the Skype network [8], [9]. In this data set, arrival
and departure times are provided for 2081 nodes, for a period
of 28.7 days. There are about 690 nodes up (on average) at a
given time. The cdf of session times of Skype peers is shown
in Fig. 4. Note that most of the nodes have a session length
of more than 1000 seconds.

4) Delays among nodes: To observe the convergence ef-
fects of the algorithm, we simulate delay between the nodes
so that the time taken for message passing is realistic. We use
a subset of the MIT king latency dataset [1] which includes
latency between sets of DNS servers. This subset has about
53000 RTT values with a mean of 133 ms.

B. Performance of the distributed k-Core algorithm

The objective of the distributed k − Core algorithm is
to dynamically identify sub-graphs in a measurement request
graph suitable for an inference mechanism. Fig. 5 compares
the performance of our algorithm with that of complete
inference (when all vertices participate in inference) and direct
measurements (without any inference mechanism) over time.
The synthetic churn model was used in these simulations. The
results were consistent with different sets of UUSee graphs
and different churn parameters. The inference parameter k
was chosen to be 15 for this simulation. For smaller values
of k, the number of measurements taken in partial inference
and complete inference will be closer because more vertices
tend to participate in inference. Our algorithm gives close to
optimal classification of inference vertices because it leverages
the same basic intuition as the k−Core algorithm (which gives
nearly optimal results without churn [4]).

The larger the value of the inference parameter k, the more
expensive the inference mechanism is (in terms of number of
measurements). Fig. 6 compares the percentage of inference
vertices over time and for different values of k. As expected,
for larger values of k, the percentage of inference vertices
decreases. A larger value of k implies the need for a “denser”
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of k.

(in terms of degree) subset of nodes in order to participate in
inference.

C. Time step choice

In the time step message passing technique, a node sends
messages to its neighbors periodically. The overhead of the
algorithm depends on the number of messages exchanged by
the nodes, which is directly related to the time step choice. We
need to identify the time step value so that as few messages
as reasonable are exchanged without using stale information.

Our algorithm tries to “save” measurements by switching
states among inference or direct whenever appropriate. Let
∆M denote the change in the number of measurements due to
this state change. We define measurements saved as the sum
of all the ∆M values over all nodes for a sufficiently long
time period. This value serves as a performance metric of the
algorithm. A higher value of measurements saved implies that
the algorithm has responded well to churn.

1) Time step for the synthetic churn data set: For several
arrival and departure parameters of the synthetic churn model,
we find that, as expected, the measurements saved decreases
with increasing time step values. However, we observed that
for low churn (larger inter-arrival times and smaller Pareto
shape parameter), the time step value does not significantly
affect the performance. Further, for larger values of k (from
40-45 onwards), we observed that the performance is best
when the time step value is close to the minimum staying
time of the nodes.
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2) Time step for the Skype churn data set: In the Skype
churn data set, there are fewer live nodes at each point in time
and this makes the measurement request graph less dense. We
use the inference parameter k = 5 for this experiment so that
there are sufficient vertices participating in inference and in
direct measurements. Note that the time step value of 1000
seconds is optimal for this churn model, as can be seen in
Fig. 7. We believe that this is because most of the nodes have
a session time greater than 1000 seconds as shown in Fig. 4.

D. Convergence of the algorithm

1) Transient performance: Fig. 8 shows the transient be-
havior of the algorithm for k = 15. At time 300 seconds, one
fourth of the nodes leave the network and the total number of
measurements drops sharply. The plot shows the time taken
by the algorithm to converge for different time step values.
Convergence is attained when the number of measurements
becomes constant. As expected, it takes a longer time to
converge if the time step is larger. Note that the convergence
times are less than the time step values. We also evaluate the
signaling based message passing technique when one fourth
of the nodes instantly leave the network. We observe that
convergence time varies from 2 to 3 s, which is a reasonable
value for the size of the graphs we use (with 2500 vertices
and 53000 edges).

2) Startup convergence: We now evaluate the convergence
of the algorithm when all nodes are initially inference-vertices,
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or all the nodes are initially direct-vertices (i.e., the startup
convergence).

When the signaling based message passing technique is
used, we observe that the time to converge lies between 2 to 3
seconds for most values of k. For the time step based message
passing technique, we plot the average number of messages
per edge required for the algorithm to converge in Fig. 9. A
time step of 5 s was used in the simulation. We compare the
performance with different values of k. When the value of k
is small relative to the average degree, most of the vertices
will have a degree > k and converge to inference-vertices
after a few messages. Similarly, for larger values of k, most
of the vertices have a degree ≤ k and quickly become direct-
vertices. In between these two extremes, there is a larger set of
nodes which require a higher number of messages to converge.
This results in the network overhead graph shown in Fig. 9.

VII. CONCLUSIONS

In this work, we tackle the problem of identifying nodes
suitable for participating in inference in the context of a
measurement service. We design a simple algorithm, k−Core,
to address the problem. We give bounds on the number
of measurements with this algorithm. We then develop a
distributed version of the algorithm by maintaining and ex-
changing node and neighbor information at each node. We
develop a simulator which implements signaling as well as
time step based message passing techniques for the algorithm.
We evaluate the performance of both versions of the algorithm
with synthetic and experimental churn models. We also vary
the inference parameter k. We find that the algorithm rapidly
converges in our experiments. The minimum staying time or
session time of the nodes appears to give a good estimate for
setting the algorithm time step. In our future work, we plan to
integrate and deploy this algorithm in a measurement service.
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