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Abstract
Fairness to current unicast (point-to-point) Internet traffic is an im-
portant requirement of multicast (group communication) protocols.
In this paper, we investigate the fairness (in terms of bandwidth use
relative to TCP/UDP traffic) of the “pgmcc” protocol. Pgmcc is
a promising multicast congestion control proposal, but it has not
been extensively stress-tested. We investigate the performance of
pgmcc when competing with bursty TCP and UDP flows in a sce-
nario with multiple time-varying bottlenecks and round trip times.
Our results indicate that pgmcc is a robust protocol, but is missing
an algorithm for dynamically determining the timeout value, and an
algorithm for smoother handling of switches among receiver repre-
sentatives.
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tion

1. Introduction
Multicasting allows efficient information exchange among mul-

tiple senders and multiple receivers. Popular multicast applica-
tions include audio/video conferencing, distance learning, and dis-
tributed games. Pgmcc [1] is a single rate, representative-based
multicast congestion control protocol designed to be fair to compet-
ing TCP flows. Pgmcc sets its transmission window size according
to a representative called the “acker.” The acker is the receiver with
the lowest rate (throughput) among all receivers within a group. A
tight control loop is run between the acker and the sender [1].

Although pgmcc is one of the most promising multicast conges-
tion control proposals, it has not been extensively tested. In this
paper, we examine the pgmcc protocol as implemented according
to the standard discussed at the IETF. In our first set of experi-
ments, we demonstrate the feedback aggregation problem caused
by the NAK suppression at routers and show its effect on acker
selection. In the second set of experiments, the performance of
pgmcc is evaluated when competing with TCP and UDP flows in
a realistic scenario. The fairness of pgmcc to TCP flows is exam-
ined with different bottleneck link bandwidths. Simulation results
show pgmcc may achieve higher throughput than competing TCP
flows during acker switching, especially during the first few acker
switches. In other cases, pgmcc performance degrades due to the
fixed timeout interval used in pgmcc. Experiments are performed
using ns 2.1b5, and pgmcc is implemented on top of the PGM [2]
multicast transport protocol.

The remainder of this paper is organized as follows. Section 2
discusses reliable multicast protocols, specifically PGM and pgmcc.
Section 3 examines the effect of feedback aggregation. Section 4

discusses simulation results of fairness among pgmcc and TCP. Fu-
ture work is discussed in section 5.

2. Related Work
This section discusses reliable multicast protocols, including de-

tailed descriptions of PGM and pgmcc.

2.1 Reliable Multicast Protocols
Figure 1 illustrates the operation of reliable multicast protocols.

S represents a sender host, and each R represents a receiver host
in a multicast group. S sends a single copy of every packet into
the network. As the packet is forwarded by a router (the rectangles
in figure 1 represent network routers), it is replicated when needed
and forwarded via multiple outgoing links of the router. The packet
should reach all the receivers in a group. In order to enforce relia-
bility, each receiver has to provide some form of feedback to notify
the sender whether the packet has been received. A receiver may
send an ACK if it receives packets successfully, or it may send a
NAK if a packet is assumed to be lost.

S Router Router

R

R

R

data
feedback

Feedback
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Figure 1: Reliable multicast protocol operation and the feed-
back implosion problem

Two important problems with reliable multicast protocols are de-
picted in figure 1 and figure 2. Since each of the receivers sends
feedback to the sender, the sender may be overwhelmed by the
implosion of ACKs/NAKs when the number of receivers becomes
very large. Feedback uses bandwidth unnecessarily, and the sender
is burdened with processing all the feedback packets.

Determining the appropriate sending rate at the multicast sender
is the second problem (shown in Figure 2). Each of the receivers
in a multicast group may have a different capacity. The problem
of determining the sending rate to achieve the “optimal” bandwidth
usage depends on the application reliability semantics.

2.2 Pragmatic General Multicast (PGM)
PGM is a single-sender multicast protocol, providing a reliable

service by using NAK-based retransmission requests. Feedback
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Figure 2: Acker selection in pgmcc

suppression allows PGM routers to only forward the first NAK to
arrive at a router for each missing or corrupted packet [3]. An ex-
ample data/feedback packet flow in PGM is depicted in figure 3.
Each original data packet (odata) sent from the PGM sender is
replicated at each router, and forwarded to each of the receivers
in a group. If a receiver does not receive odata, it sends a NAK
upstream. When the upstream router receives a NAK, it sends an
NCF packet to the receiver indicating the reception of the NAK,
and forwards only one NAK out of all the NAKs sent from dif-
ferent receivers in the same subtree for each of the lost/corrupted
packets. Eventually, the sender will receive the NAK, and repair of
the data (rdata) is transmitted only to the receivers who requested
the retransmission.
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Figure 3: PGM protocol operation

2.3 Pgmcc Congestion Control
One method of adjusting the sending rate at the PGM sender

is to pace the sender according to the “slowest” PGM receiver.
Pgmcc paces the sending rate according to the receiver with the
worst throughput, which serves as the group representative. This
receiver is called the “acker.” The acker can change at any time
since receivers are continuously joining and leaving the multicast
group, and bottlenecks vary over time. A tight control loop is run
between the acker and the sender. Only the acker sends ACKs to the
sender to adjust the sender transmission window and token bucket.
Other receivers may send NAKs when they lose packets. Both the
loss rate and the round trip time (RTT) are needed to calculate the
throughput of each of the receiver. This information is carried in
both NAK and ACK packets, and the sender uses the throughput
equation as specified in [1] to compute the throughput of each re-
ceiver. The acker is switched from one receiver to another if a
receiver with a lower throughput is found. An example of acker
switching is illustrated in figure 2.

A window based congestion control protocol similar to that used
by TCP is run between the acker and the sender. In the protocol
specified in [1], the sender maintains two state variables: a window

$
, and a token count % .

$
represents the number of packets in

flight, while % is used to regulate the generation of data packets.
One token is needed and consumed in order to transmit one data
packet. Initially, both

$
and % are initialized to one. The values of$

and % are updated with every ACK, NAK, timeout, and packet
transmission [1].

3. Feedback Aggregation
In this section, we illustrate the effect of feedback aggregation on

pgmcc performance. Due to the suppression of PGM NAKs con-
taining RTT and loss rate information needed by the pgmcc sender
to select the acker, incorrect acker switches may occur in certain
cases. An example is shown in figure 4, where one PGM session
runs pgmcc at the sender PS, and each of the four receivers PR*.
There are two PGM routers, and all the links in this topology have
the same bandwidth and delay. Among the four PGM receivers, we
are interested in receivers PR1 and PR3. PR1 is closer to the sender
and has a lower loss rate; PR3 is further away from the sender and
exhibits a higher loss rate.

Suppose the PGM sender begins to send data to all its receivers,
and both PR1 and PR3 lose packet number 5. Due to the shorter
delay to PR1, the router closest to the sender will receive the NAK
from PR1 before receiving one from PR3. Hence, the router for-
wards the NAK sent from PR1 to the sender, and the NAK sent
from PR3 is suppressed. Since pgmcc needs the loss rate and RTT
carried in NAK packets to perform acker switching, the sender may
select PR1 as the acker instead of PR3 at certain instances, even
though PR3 clearly has lower throughput.

PS Router Router

PR2 PR3

PR4PR1

20% loss

25% loss

All links are 10Mb/s with 5ms delay

Figure 4: Simulation topology to examine feedback aggregation
problems

To verify this scenario, we simulate the scenario depicted in fig-
ure 4 (except PR3 and PR4 are switched) for 50 seconds. We plot
the sequence numbers and acker switches in figure 5(a). In the fig-
ure, “data” is sent from the sender to the receivers, “ack” is the ac-
knowledgment sent from the acker upon receiving a packet, “nak1”
is the NAK sent from PR1, etc. “Acker1” shows that the current
acker is PR1 at the specified time and “acker2” and “acker4” de-
note PR2 and PR4 are the ackers respectively. From the simulation
results, we can see that PR2 is selected as the acker at the begin-
ning of the simulation. About 4 seconds later, the sender receives
a NAK from PR4, and it switches the current acker to PR4. The
acker is switched to PR1 because the sender receives a NAK from
PR1, and the one possibly sent from PR4 is suppressed. Thus, the
acker is switched back to PR4 again at the 8th second. The sender
switches the acker between PR1 and PR4 a number of times. Un-
necessary acker switches occur between PR1 and PR4 although the
acker should (on a larger time scale) always be PR4 which has a
higher loss rate and higher RTT. Thus the time scale of pgmcc may
be too fine, and coarser time scales may enhance stability.
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Figure 5: Simulation results depicting feedback aggregation and performance in a highly congested network

4. Pgmcc Fairness Dynamics
In this section, we simulate pgmcc in more complex configura-

tions. The objective of our experiments is to determine whether
pgmcc is fair to TCP (i.e., is TCP friendly) in realistic scenarios.
Figure 6 shows our simulation topology which includes 22 source
nodes (S*) and 22 destination nodes (D*). The link between each
node and router has a bandwidth of 150 kbps with 1 ms delay. The
link bandwidths and link delays between routers are specified in
table 1. 22 TCP flows run between source and destination nodes.
TCP NewReno is used because NewReno and SACK are being de-
ployed in the majority of web servers to provide better congestion
control compared to other TCP versions [4]. We investigate the per-
formance of the TCP flow from ��� to ��� , which runs across the
same links and nodes as the PGM receiver with the longest RTT.
One UDP flow sending Pareto traffic runs across “Link 4” with a
500 ms on/off interval. All the routers use simple drop tail queues
of size 120 packets. The PGM sender and receivers are located in
the nodes labeled “PS” and “PR*” in Figure 6. All the simulations
were run for 900 seconds.
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router
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Figure 6: Simulation topology to investigate fairness

In each of the following experiments, we measure the good-
put (as defined in [5]) which indicates bandwidth achieved at the
receiver excluding duplicate packets. In all the experiments, the
goodput for TCP flows from ��� to ��� , from �	�
� to ���
� , and
from ���� to ����� is almost 2/3 of the link bandwidth because the
RTT of each of them is fairly short [6].

4.1 Experiment I: Highly Congested Net-
work

The goodputs of the PGM session and the TCP session from ���
to ��� are shown in figure 5(b), and the sizes of their congestion
windows are depicted in figure 5(c). In terms of the goodput, the
goodput for each of the PGM receivers ranges from 3.95 to 4.26
kbps and the goodput for TCP receiver is 1.39 kbps. It is not sur-
prising that goodput for both PGM and TCP flows is quite low be-
cause the links are congested and shared among many TCP and
UDP flows. Figure 5(b) shows that for the first 50 seconds of the
simulation, PGM has a much higher throughput than TCP. After 50
seconds, the slopes of the PGM flow and the TCP flow are similar.
Both of the flows have low throughput. The reason for this is that
the PGM window (figure 5(c)) increases only during the first 50
seconds of the simulation. The size of the PGM window drops to
one several times in the first 100 seconds, and it remains one till the
end of the simulation. On the other hand, the congestion window at
the TCP sender increases slowly due to slow start at the beginning,
but the TCP sender is able to send more data afterwards compared
to the PGM sender due to a larger window throughout the rest of
the simulation.

Observe that the PGM sender always chooses the receiver closest
to it as the acker at the beginning of the simulation (since it is the
first receiver it receives feedback from). Hence, ����� is elected
as the initial acker. Later, several packets are dropped at router 4
causing PR4 and PR5 to send NAKs for the same lost packets. The
NAKs from PR5 are suppressed and only the NAKs sent from PR4
are forwarded to the sender. Hence, the acker is switched from PR1
to PR4 due to the higher loss rate of PR4 over PR1 perceived by the
PGM sender. Finally, more packets are dropped at router 5 causing
PR5 to send NAKs for the lost packets, so the acker is switched to
PR5, which has the longest RTT and the highest loss rate.

We now investigate why initial acker switches cause steep in-
crease of the window at the PGM sender. Figure 5(d) illustrates
the time that data packets (represented by the diamond shape) are
sent and the acks are received by the PGM sender in this experi-
ment. Each ack (sent from the current acker) is represented by a
plus sign in the figure. The packet number (modulo 50 to make the
figure more readable) is given on the y-axis. At the beginning of
the simulation, PR1 is selected as the acker because it is closest to
the sender. After sending packet number 173, the acker switched
from PR1 to PR4 at time 50.222 second (the overlapped diamond
and plus sign in Figure 5(d) at time 76.9 seconds indicates the acker
switch). Because the RTT of PR4 is much longer than PR1, it takes



Table 1: Link bandwidths and delays between routers
Link Link 0 Link 1 Link 2 Link 3 Link 4 Link 5
Bandwidth (kbps) 50 100 50 150 150 50
Delay (ms) 20 10 5 5 5 10

longer for PR4 to receive data packets sent from the sender than it
does for PR1. Moreover, each data packet is marked with the cur-
rent acker address in pgmcc. Hence, even though an acker switch
occurs early, the previous acker (PR1) continues sending ACKs to
the sender until reception of packet number 173. As a result, the
new acker (PR4) only sends ACKs after the reception of packet
number 174. In this experiment, PR4 began sending ACKs after
76.9292 seconds even though the acker switch occurred at time
50.222 seconds.

There are two consequences of this behavior. First, when an
acker switch occurs, it means there is a receiver with a lower through-
put than the current acker. However, as discussed above, the pre-
vious acker keeps on sending ACKs till the packet number is equal
to the trail of the sender window at the time of the acker switch.
For each ACK received at the sender side, the sender increases the
token count % by one and increases the window accordingly. Thus,
more data packets are sent by the sender. This leads to the second
consequence which is that the network becomes even more con-
gested. We observed the same behavior when the acker switched
from PR4 to PR5.

The delay of sending ACKs from the new acker observed in this
experiment is one of the causes of the sudden drop of the window
size to one. Because pgmcc uses a fixed timeout interval to detect
congestion, if the sender does not receive an ACK from the acker
within the timeout specified, it drops the window size

$
to one and

decreases the token count % to �

�
��� [1]. Revisiting figure 5(d), we

see that the distance between the last overlapped cross and diamond
at time 76.9 and the first non-overlapping cross indicates the time
that the sender waits for the ACK for packet number 174 from the
new acker (PR4). If the distance is longer than the timeout inter-
val, which is true in this experiment, one or more timeouts occur,
degrading PGM performance.

Another reason for the sudden drop of the window size to one is
that the RTT of the current acker itself is sometimes simply longer
than the timeout interval. In this case, the PGM sender will never
be able to receive an ACK within the timeout time and will keep
timing out, as shown in figure 5(c). This problem can be remedied
by implementing a TCP-like retransmission timeout determination
algorithm.

4.2 Experiment II: Medium Congestion
In this section, we maintain all simulation parameters unchanged

except that we increase the bandwidth of the links between routers.
Many experiments were run with bottleneck link bandwidths rang-
ing between 2.5 and 3.5 times the original bandwidths shown in
table 1. The results are similar, so we only discuss the results using
bandwidth of 2.5 times, and 3.5 times the original bandwidth.

The throughput of both PGM and TCP flows and their windows
sizes are shown in figure 7. We observe similar behavior to fig-
ure 5(b) in figure 7(a). Fewer timeouts occur in this experiment
(figure 7(d)) compared to the highly congested network in the pre-
vious subsection. This is because we have increased the link band-
widths, so the time it takes for transmission of ACKs from the acker
to the sender is shorter than that in the previous setting. However,
the timeouts are still frequent, causing the window to drop to 1 be-

cause the RTT of PR5 is greater than the PGM sender timeout in-
terval. The throughput of the TCP flow, on the other hand, is higher
than the one in experiment I and has a higher slope. In terms of the
goodput, the goodput of PGM receivers ranges from 4.77 to 4.91
kbps, and goodput of the TCP receiver is 4.97 kbps.

Figure 7(b) may appear different at first, but it is similar to Fig-
ure 7(a) if we had run the simulation longer. The goodput of each
of the PGM receivers ranges between 22 and 22.4 kbps, and that of
the TCP receiver is 7.24 kbps. The reason for the higher goodput
for PGM receivers, in addition to the increase of the bandwidth, is
that the acker was switched from PR3 to PR5 several times. As
discussed above, acker switches take time and the sender window
is increased meanwhile. Further, the two different branches have
different throughputs. This effect is clearly shown in figure 7(d).

By increasing the bottleneck link bandwidth, the throughput of
both the PGM and TCP flows increases. From this set of experi-
ments, we conclude that the PGM flow outperforms the TCP flow
during initial acker switching, but the TCP flow has a higher through-
put if the timeout interval at the sender does not adapt to the in-
crease of the acker RTT.

4.3 Experiment III: Uncongested Network
In this section, we retain all the parameter values of previous

experiments but we increase the bandwidth of the links between
routers. Many experiments were run with various bandwidths, but,
since the results are similar, we only show the results using band-
widths 10 times and 80 times the original bandwidths in table 1.
The throughput of both PGM and TCP flows and their windows
sizes are shown in figure 7(e)–(h). From the figure, we find that
the acker switches back and forth between PR3 and PR5 due to
the closeness of the throughputs of PR3 and PR5. Feedback sup-
pression does not cause problems here because PR3 and PR5 lose
different packets. As expected, the PGM sender window continues
to increase some time after acker switch. In terms of goodput, the
goodput for each of the PGM receivers ranges from 74.15 to 76.56
kbps, and for the TCP receivers it is around 7.8 kbps in figures 7(e)
and (f).

The reason why PGM outperforms TCP appears to be the selec-
tion of PR3 as the acker throughput most of the simulation. Both
the TCP receiver and PGM receiver PR5 are connected to router 6.
PR5 is the acker for only 173 seconds while PR3 is the acker for
736 seconds of the simulation time. PR3 has a short RTT and rea-
sonable loss rate. Therefore, even though increasing the link band-
width will increases the throughput of both PGM and TCP flows,
the PGM flow outperforms the TCP flow in this case.

5. Conclusions and Future Work
In this paper, we have investigated the fairness and dynamics of

the pgmcc single-rate multicast congestion control protocol. Our
simulation results show that pgmcc flows initially send more than
competing TCP flows due to the rapid opening of the PGM sender
window between initial acker switches. If the acker selection pro-
cess stabilizes and a PGM receiver with a very long RTT is se-
lected to be the acker, timeouts severely degrade the performance
of the PGM flow. A TCP-like retransmission timeout computation
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Figure 7: PGM/TCP throughput and window size with medium and no congestion

mechanism can remedy this problem. With the use of a timeout
interval selected according to the acker RTT, the PGM sender can
distinguish between situations of real congestion and late ACKs re-
ceived from an acker with a long RTT. In an uncongested network,
the PGM flow may outperform a competing TCP flow if frequent
acker switches occur between ackers of different throughputs.

We plan to examine various application reliability semantics to
see how the pgmcc protocol fits in the unreliable (or not fully reli-
able) multicast protocol context. The PGM multicast protocol pro-
vides reliability in the transport layer as specified in [2] and illus-
trated in Figure 3. On examining the pgmcc implementation, we
find that if a PGM receiver loses a data packet, it only sends a
NAK back to the sender once. If the NAK get lost or corrupted
before it gets to the sender, or if the NCF sent to acknowledge the
NAK reception is lost or corrupted before it gets to the receiver,
the receiver which originally sent the NAK will wait for a retrans-
mission timeout. Then, the receiver reschedules the retransmission
timeout up to ten times waiting for the repair, instead of resending
the NAK. If, after rescheduling the retransmission timeout for ten
times, the repair is not received, the receiver treats the packet as
unrecoverable. This essentially means that this flavor of PGM is
not fully reliable. It is not completely unreliable though, because
NAKs are sent, and when a receiver receives the repair from the
sender, it does not check whether the repair is needed or not (e.g.,
if the repair must be received within a certain amount of time and
it is useless otherwise). We plan to experiment with various relia-
bility semantics, and examine their effect on the pgmcc congestion
control algorithm, especially on acker selection with insufficient
NAKs.
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