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Abstract—Understanding the behavior of large-scale systems
is challenging, but essential when designing new Internet pro-
tocols and applications. It is often infeasible or undesirable to
conduct experiments directly on the Internet. Thus, simulation,
emulation, and testbed experiments are important techniques
for researchers to investigate large-scale systems.

In this paper, we propose a platform-independent mecha-
nism to partition a large network experiment into a set of small
experiments that are sequentiallyexecuted. Each of the small
experiments can be conducted on a given number of experi-
mental nodes, e.g., the available machines on a testbed. Results
from the small experiments approximate the results that would
have been obtained from the original large experiment. We
model the original experiment using aflow dependency graph.
We partition this graph, after pruning uncongested links,
to obtain a set of small experiments. We execute the small
experiments in two iterations. In the second iteration, we model
dependent partitions using information gathered about both the
traffic and the network conditions during the first iteration.
Experimental results from several simulation and testbed
experiments demonstrate that our techniques approximate
performance characteristics, even with closed-loop traffic and
congested links. We expose the fundamental tradeoff between
the simplicity of the partitioning and experimentation process,
and the loss of experimental fidelity.1
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I. I NTRODUCTION

Understanding the behavior of large-scale systems is criti-
cal when designing and validating a new Internet protocol or
application. However, investigating large systems is difficult.
Since it is often infeasible to perform experiments directly on
the Internet or build analytical models for complex systems,
researchers often resort to simulation, emulation, and testbed
experiments. Consider the example of studying the impact
of a large-scale Distributed Denial of Service (DDoS) attack
utilizing a massive botnet. The attack against Estonia is
a well-publicized example [1]. It is important to explore
defenses against this attack using realistic scenarios, but it is
undesirable to perform attack experiments on the operational
Internet. Testbed experiments are vital for studying how well
a defense would work against such a large scale attack.
Due to this, several countries have invested in large security
testbeds, popularly referred to ascyber-ranges.

1This work was funded in part by Northrop Grumman Information
Systems, and by NSF grant CNS–0831353.

Simulators scale through abstraction. For example, the
popular network simulator ns-2 [2] uses simplified models
for physical links, host operating systems, and lower layers
of the network protocol stack. Researchers can easily sim-
ulate a network topology with hundreds of nodes and links
on a single physical machine. Naturally, the simplification
of hardware and system properties can adversely impact the
fidelity of experimental results [3]. In contrast to simula-
tors, network emulators mostly use the real hardware and
software. This allows experimenters to run their unmodified
applications. While emulation can provide higher fidelity,
scalability is a challenge. Emulation testbeds such as Em-
ulab [4] and the popular cyber-range DETER [5] include
a limited set of physical machines that are shared among
several users. For fidelity reasons, many testbeds allocate
resources conservatively; for example, using a one-to-one
mapping between hosts in an experimental topology and
machines in the testbed. This implies that if the number
of experimental nodes exceeds the number of machines
currently available in the emulation testbed, the experiment
cannot be executed.

Scalability of network simulation and emulation has been
extensively studied in the literature. Ideas from parallel
computing [6] and resource multiplexing [7] have been
adopted to increase experimental scale. For discrete-event
simulators [8], [6], events are distributed among multiple
machines to reduce the simulation time and required hard-
ware resources per machine. Additional overhead for inter-
machine synchronization and communication depends on
how events are partitioned. Emulation testbeds can scale,
to a certain extent, via mapping multiple virtual resources
onto available physical resources. For example, the Em-
ulab testbed [7] can support experiments which are 20
times larger than the testbed. This network testbed mapping
problem is NP-hard [9]. The main challenge, especially
with DDoS experiments, is that the mapped experiment
can overload physical resources (e.g., CPU or memory of
a physical machine) and lead to inaccurate experimental
results [3].

In this paper, we present a more versatile solution to
the experimental scalability problem. We divide a large
network experiment into multiple smaller experiments, each
of which is manageable on a testbed. We conduct the smaller
experimentssequentiallyon the testbed in two iterations.



The key contributions of our work include (1) our novel
approach and tool to automatically partition a large exper-
iment into sequential small experiments based onnetwork
flows and the dependencies among them, (2) our iterative
approach to modeling interacting small experiments, and (3)
our comparisons of different approaches via both simulations
and testbed experiments.

Our proposed method,flow-based scenario partitioning
(FSP), is platform-independentbecause it does not require
any modifications to the simulation, emulation, or physical
testbed. FSP can be integrated with any existing scaling
solution. FSP can also be used to analyze dependencies
and tune an experiment, even when the experiment is small
enough to fit onto a testbed.

The remainder of this paper is structured as follows.
Section II defines our notation and assumptions. Sections III,
IV, and V explain our proposed method, FSP. Sections VI
and VII describe the experiments used to validate FSP.

Section VIII summarizes related work. We conclude in
Section IX.

II. BACKGROUND

In this paper, we focus on performance of data flows.
Hence, the termnetwork experimentswill be used to refer to
data plane experiments. A network experiment is represented
by anetwork scenario; the smaller experiments generated by
our method are referred to assub-scenariosor partitions. A
network scenario includes thenetwork topologyand theflow
information.

We model the network topology as a graphG = (V,E)
with vertex setV, representing the routers and end hosts
in the network, and edge setE, representing the links in
the network. |V| and |E| denote the number of vertices
and number of edges in the graph, respectively. The flow
information describes all traffic in the experiment. Each flow
in F includes information about the network application that
generated the traffic flow (e.g., FTP, HTTP), the parameters
of the traffic of that application (e.g., request inter-arrival
times, file sizes), and the source, destination, route, and di-
rection of the flow. Traffic flowing between the same source
and destination nodes is grouped into the same macro-flow.
Depending on the type of network application that generates
a flow, the flow can beopen-loop(e.g., unresponsive CBR
UDP flow) or closed-loop(e.g., TCP flow). The route of a
flow is a sequence of hops from its source to its destination
node. Thedirection of the traffic indicates whether it is
unidirectional or bidirectional.

We initially make the following simplifying assumptions.
First, routes in the network are assumed not to change
during the course of the experiment. Second, we assume
symmetric routes for bidirectional flows, i.e., the packets
in both directions traverse the same route. Third, flows
traversing the same router butnot sharing any linkare
independent. For example, a flow from port 1 to port 2 of

a router does not interfere with a flow from port 4 to port
3. Although this is not always true for low-end routers [3],
the assumption holds for typical core routers, and in most
network simulators, e.g., ns-2 [2].

Our approach relies on several simple but important ob-
servations. First, a large-scale network experiment involves
many nodes and flows but not all flows directly interact
with each other, e.g., by sharing a physical link. If we can
identify the parts of the network that are not strongly tied,we
can initially examine each part independently. The second
observation is that even though a network scenario may
contain many flows, researchers are often only interested
in fine-grained performance of a few of the flows. The rest
of the flows may be used to generate network workload
and considered as background traffic. For example, when
studying performance of a web server, we can set up an
experiment with several background FTP flows. Since we are
interested in the web server, we need detailed measurements
for HTTP connections such as request/response time. We
may not need to measure file transfer times for the FTP
flows, and the precise arrival processes of these flows are not
important as long as they possess certain statistical properties
(e.g., average throughput is 1 Mbps or FTP file request
frequency is 1 file per second).

III. OVERVIEW OF FSP

Our proposed method, which we refer to asflow-based
scenario partitioning(FSP), does not partition the network
nodes, as with partitioning approaches for parallel and
distributed simulation [6]. This is because our goal is to
conduct experiments for each sub-scenarioindependentlyon
a testbed. If we partition the network topology directly as
illustrated in Fig. 1(a), some flows may traverse two or more
partitions, and we would need to concurrently execute and
synchronize more than one sub-scenario experiment. Instead
of partitioning the nodes in the topology, we partition the
flows in the network scenario as illustrated in Fig. 1(b).

Flow 1

Flow 2

Flow 1

Flow 2

Sub-scenario 1 Sub-scenario 2 Sub-scenario 2

Sub-scenario 1

(a) Partitioning the network directly (b) Flow-oriented partitioning

Figure 1. Direct network partitioning versus flow-based network partition-
ing.

FSP consists of two phases. In the first phase, we auto-
matically split the input scenario into several sub-scenarios.
We build a flow dependency graph (FDG) to model the
relationship between flows. Each connected component in



the FDG constitutes a partition of the graph, which repre-
sents a sub-scenario. If any of the connected components
is too large for the resources available for an experiment,
i.e., it contains too many hosts and routers, we apply a
modified recursive bisection algorithm [10] to cut these
connected components into partitions that meet the resource
constraints. Section IV gives the details of this phase. The
quantitymaxNodedenotes the upper bound on the number
of nodes that can be supported in each sub-scenario. Observe
that in emulation testbeds such as Emulab and DETER, we
need to take into account additional required testbed nodes,
e.g., to emulate link delays, when computingmaxNode.

In the second phase, we conduct experiments for each
sub-scenario and collect measurements for the flows of
interest. If sub-scenarios do notinteract with each other,
i.e., they are disjoint components in the FDG, we simply
conduct experiments for each sub-scenario independently.
In most cases, however, there will be interactions among
sub-scenarios, i.e., there are edges in the FDG that cross
partition boundaries. To account for these interactions, we
must conduct experiments iteratively. In the first iteration,
we study each sub-scenario independently and collect packet
traces that capture information related to dependent flows
in interacting sub-scenarios. In each subsequent iteration,
we incorporate informationcomputed fromthe traces in
the previous iteration (via tools like [11], [12], [13]) into
interacting sub-scenarios. In the final iteration, we collect the
desired measurements, such as the FTP transfer completion
time or HTTP response time. Section V gives the details
of this phase. The overall FSP approach is summarized in
Algorithm 1.

IV. PHASE I: SCENARIO PARTITIONING

In the first phase of our approach, the input network
scenario is partitioned into sub-scenarios. By carefully se-
lecting which flows to include in each sub-scenario, flows
can have as little interaction as possible with flows in other
sub-scenarios. Given a network scenario (S) which includes
the network topology (G= (V,E)) and flow information (F),
we divideS into sub-scenarios (S1,S2, · · · ,Sj ) such that the
number of hosts and routers in each of the sub-scenario (Si)
is ≤ maxNode. An example of this FDG construction and
partitioning (tiling) process is illustrated in Fig. 2.

A. Flow Dependency Graph (FDG) Construction

Our first step is to identify the relationship among flows in
the network scenario. We consider two flows to bedirectly
dependentif they both compete for the same resources
such as network buffers or link bandwidth. In our current
implementation, two flows directly depend on each other
if they share at least one common link in the network in
the same direction during a time window. We model this
relationship using a flow dependency graph (FDG).

Algorithm 1 Flow-based Scenario Partitioning (FSP)

FLOW-BASED PARTITIONING(network, f lows,maxNode)

Input: A network scenario with topology (network),
flow information (f lows), andmaxNode

Output: Estimate of results for original network scenario.

¤ Phase 1: Partition the input network scenario
1 f dg← BUILD -FDG(network, f lows)
2 Parts← PARTITION( f dg,maxNode)

¤ Phase 2, Iteration 1
¤ Collect traces in case of interaction among partitions.

3 for (P∈ Parts)
4 do Conduct experiment for sub-scenarioP
5 for each f ∈ P
6 do for each f ′ ∈ f dg.neighbors( f )
7 do if ( f ′ /∈ P)
8 then collect f ’s packet traces

on f .path∩ f ′.path
¤ Phase 2, Iterate for interacting partitions
¤ Incorporate traces collected from first iteration

and acquire experimental results.
9 repeat

10 for (P∈ Parts) ¤ For interacting partitions only
11 do for each f ′ /∈ P
12 do sharedPath← ( f ′’s path)∩ (links in P)
13 if sharedPath6= /0
14 then Import model (e.g., Tmix)

of f ′ on sharedPath(in P).
15 Conduct experiment for sub-scenarioP
16 until Convergence of results (i.e., twice)

A flow dependency graph, FDG = (FV ,FE, f nv, f ne), is
a weighted graph with vertex setFV , edge setFE, vertex
weight function f nv, and edge weight functionf ne. Algo-
rithm 2 gives the steps for FDG construction. A vertex inFV

represents a flow in the given scenarioSand an edge( f1, f2)
in FE denotes that flowsf1 and f2 are directly dependent
on each other. All FDG edges are bidirectional. Note that
two flows u andv may impact each other if there is a path
from u to v in the FDG. This follows from the transitivity
property of dependence. Unless two flows belong to different
connected components in the FDG, they may affect each
other in the experiment.

The f nv function we use in our current implementation
sets the weight of a vertex (i.e., flow) to the number of nodes
(routers or hosts in the network) in the path of the flow. The
weight of an edgef ne is set to the number of nodes shared
by the two directly dependent flows. We evaluate this choice
experimentally in Section VI.

In Algorithm 2, we insert all flows in scenarioSas vertices
in FV . We then insert edges into the FDG based on the routes



(a)  A network experiment scenario (with topology and flows).
      The end hosts (senders and receivers for all flows) are not
      shown in this figure.

(b)  The flow dependency graph of (a).
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Figure 2. Example of transforming a network scenario into a flowdepen-
dency graph. According to the partitioning in (b), the network scenario in (a)
can be divided into two sub-scenarios with five routers each.Sub-scenario
1 contains routers{R0,R1,R3,R6,R9} and flows{F0,F1,F2,F5}. Sub-
scenario 2 contains routers{R0,R4,R7,R8,R9} and flows{F3,F4,F6,F7}.

and the directions of the flows. Recall that an edge between
two vertices in the FDG indicates that the two flows will
compete for resources. We need to predict the existence of
such competitionwithout actually conducting the original
large experiment. Unfortunately, such a priori prediction is
challenging, especially for closed-loop flows. Therefore,we
resort to using flow path and direction. For example, if the
set of flows that will traverse linkl at any time during the
experimentis {a,b,c}, we insert the three edges, (a,b), (b,c),
and (a,c), into the FDG. Of course, even though flowsa, b,
andc all traverse linkl , it is possible that only a single flow
traverses linkl at any given time.

Edge pruning. Extra FDG edges unnecessarily limit our
ability to partition the experiment. Therefore, we prune
edges in cases of underload. Previous work [14] shows that
when flows are competing for the same link bandwidth, if
the capacity of the link is large enough, i.e., there are no
packet drops and only a few packets in the buffers, each
flow will utilize this link as if there are no other flows on
the same link. Therefore, we identify “uncongested links”
in the network and remove these links from the FDG. (An
edge in the FDG represents a set of links in the network that
are shared by two directly dependent flows, and an edge is
removed from the FDG when it contains no links.)

Using flow path information and physical link capacity,
we can estimate an approximate upper bound on the work-
load that can appear on any single link. If the upper bound
is less than the physical link capacity, we mark this link as
“uncongested” and remove it from the FDG. For example, in
Fig. 3, assuming that there are three flows (from hostsa,b,
and c to host x) in the network, the aggregate throughput

Algorithm 2 Constructing the flow dependency graph

BUILD -FDG(network, f lows)

Input: A network scenario with topology (network)
and flow information (f lows).

Output: A flow dependency graph (f dg)
¤ Initialize the flow dependency graph.

1 fdg ← an empty graph
2 for each f ∈ f lows
3 do f dg.addNode(f )

¤ Add edge if the paths of two flows have
common links innetwork.

4 for each( f lowA, f lowB) ∈ f dg.nodes()
5 do commonlinks← f lowA.path∩ f lowB.path
6 if commonlinks6= /0
7 then newEdge← ( f lowA, f lowB)
8 newEdge.commonlinks← commonlinks
9 f dg.addEdge(newEdge)

¤ Remove uncongested links. Remove the edge if
all common links are removed.

10 freeLinks← UNLOADED-L INKS(network, f lows)
11 for eachedge∈ f dg.edges()
12 do edge.commonlinks←

edge.commonlinks− f reeLinks
13 if edge.commonlinks= /0
14 then f dg.removeEdge(edge)

of the three flows on linkx cannot exceed 30 Mbps. Since
the physical capacity of linkx exceeds 30 Mbps, we predict
that link x will not be significantly congested during the
experiment. We have implemented an automated tool to
identify such links and delete them from the FDG.

20 Mbps

10 Mbps 10 Mbps

20 Mbps
100 Mbps

Link x

Host a

Host b Host c

Host x

Figure 3. The solid lines are (unidirectional) physical links and the link
capacity is shown next to the link. Regardless of the type of flows, the
aggregate throughput on linkx cannot exceed 30 Mbps.

The connected components in the FDG are automatically
assigned as partitions of the graph. The size of a partition is
defined as the number of routers and hosts used by the flows
in that partition. Wemergesmall partitions if their total size
is less than available nodes (maxNode), in order to limit
the number of experiments to be conducted. However, if
the size of any partition (connected component in the FDG)
exceedsmaxNode, we must further sub-divide this partition,
as discussed next.



B. Partitioning the FDG

The FDG created in the previous step may have several
connected components, and one or more of these com-
ponents may be too large to fit onto an experimentation
platform. Our next step is to further divide the FDG such
that each partition needs at mostmaxNodenodes (routers
and hosts). Ideally, we would like to partition the FDG
such that there is as little interaction as possible among
the components. Since the optimal solution to this graph
partitioning problem is computationally intractable, we em-
ploy an approximation that repeatedly computes two-way
partitions (i.e., bisections) of the graph [15]. Algorithm3
gives the complete algorithm.

We leverage the greedy graph growing partitioning ap-
proach (GGGP) [16]. GGGP is a simple approach to bisect
a graph. It starts from a vertex and grows the region in a
greedy and breadth-first fashion. While the number of nodes
in the region is smaller than half of the nodes in the graph
(line 5 of GGGP()), the algorithm will add new vertices into
the region. A vertex that is adjacent to the current region and
has the smallest edge-cut (number of edges that connect it to
nodes in that region) is selected in each iteration. Since the
algorithm is sensitive to the choice of the initial vertex, we
randomly select the initial vertex and repeat the process five
times. The partition with the smallest edge-cut is selectedas
the final output.

As discussed above, the size of a partition in the FDG
is not sum of the weights of its vertices (i.e., flows). Since
there are nodes shared among the flows in the partition, the
total size is the number ofdistinct network nodestraversed
by the flows. Therefore, the size of a partition that is used in
the partitioning algorithm (line 6 of PARTITION() and lines 4
and 5 of GGGP()) represents the number of network nodes
required to execute an experiment with that partition.

When computing the weight of the edge-cut between two
partitions (line 8 of GGGP()), we do not simply add the
weights of edges; rather, we compute the distinct network
nodes included in the edge-cut. We evaluate this choice in
our simulation experiments.

V. PHASE II: SUB-SCENARIOEXPERIMENTS

After determining the partitions (sub-scenarios) (S1, S2,
· · · , Sj ), our goal is to obtain the desired performance
measurements, such as the goodput of flows, from these sub-
scenarios. Without loss of generality, letS1 be a sub-scenario
containing certain flows of interest, and let there bem sub-
scenarios thatinteract with S1, i.e., they belong to the same
connected component in the FDG. We define ashared link
as a link in the original network topology that is shared by
flows in more than one sub-scenario. Assume that there are
n shared links inS1. In order to obtain measurements for the
flows of interest (inS1), we need to generate workload on
thesen shared links for flows in{S2, · · · ,Sm} (since these

Algorithm 3 Graph partitioning algorithm

PARTITION( f dg,maxNode)

Input: A flow dependency graph (f dg) and
a positive integermaxNode.

Output: A set of f dg partitions (each partition
is a set of vertices inf dg).

1 maxFlowNode← the maximum number of nodes
a flow will visit in the original scenario.

2 if maxNode< maxFlowNode
3 then return /0 ¤ Error, maxNodetoo small.

¤ Partition f dg such that each partition needs no
more thanmaxNodenodes.

4 initPart ← f dg.nodes()
5 PartSet←{initPart}
6 while (P∈ PartSet) and (REQNODES(P) > maxNode)
7 do PartSet← PartSet−{P}+ GGGP(P)
8 return PartSet

GGGP(P)

Input: A partitionP
Output: Two partitions (P1,P2)
¤ Generate two initial partitions ofP.

1 v← a random vertex inP
2 P1 ←{v}
3 P2 ← P−{v}

¤ Move vertices fromP2 to P1 until their weights
are balanced.

4 hal f Nodes← REQNODES(P)/2
5 while (REQNODES(P1) < hal f Nodes)

¤ Move the best candidate vertex (candV) from P2 to P1.
6 do for eachcandV∈ P2

7 do cutEdges← all f dg edges between
({P1 +candV},{P2−candV}).

8 cutWeight[candV] ←
WEIGHT(cutEdges)

9 Let cutWeight[vertex] be the smallest
value incutWeight[·]

10 P1 ← P1 +{vertex}
11 P2 ← P2−{vertex}
12 return {P1,P2}

REQNODES(s)

Input: A set of vertices in anf dg
1 for each f low∈ s.nodes()
2 do nodeSet← nodeSet∪{nodes onf low’s path}
3 return |nodeSet|

WEIGHT(s)

Input: A set of edges in anf dg
1 for each( f1, f2) ∈ s
2 do sharedLinks← f1’s path∪ f2’s path
3 nodeSet← nodeSet∪ {nodes onsharedLinks}
4 return |nodeSet|



flows are not inS1). To achieve this, we propose to conduct
the experiments in two iterations.

A. First Iteration

In the first iteration, we conduct experiments indepen-
dently for each sub-scenario. For interacting sub-scenarios,
there will be flowsmissingon the shared links, compared
to the original large scenario. For example, there can be a
network link l that exists in both sub-scenariosS1 and S2,
and there are two flowsf1 ∈ S1, f2 ∈ S2 on link l in the
original scenario. When we conduct the experiment forS1

in the first iteration, flowf2 will not generate any workload
on link l since it is not included inS1, and f1 will also
be missing fromS2. As a result, the measurements in this
iteration may be dramatically different, compared to thosein
the original scenario, e.g., the throughput off1 may increase
since f1 does not need to compete for bandwidth withf2.
Therefore, we collect packet traces for these interacting
flows, and then use information computed from these traces
to generate workload that models the missing flows.

B. Second Iteration

In the second iteration, we sequentially conduct experi-
ments for each sub-scenario that interacts with others, but
we now incorporate information computed from the first it-
eration to model its interacting sub-scenarios. Measurements
collected in this final iteration approximate the results ofthe
original experiment.

Since many flows areclosed-loop, we cannot simply
replay the collected packet traces on the shared links. We
must model the workload of flows at the application level,
and model theconditions experienced by these flows in
the non-shared links in interacting sub-scenarios. This is
crucial so that the missing flows areno more aggressive
than they would have been in the original unpartitioned
experiment. In other words, the conditions in the network,
such as congestion level and delays experienced by the
missing flows during the second iteration, must mimic the
original unpartitioned experiment, so that the transport and
application layers at the end hosts can react similar to
their reaction in the original experiment. This is critical
when the flows are bottlenecked in another partition or their
propagation delays in another partition are high.

In our experiments in this paper, we investigate the use
of three tools (1) Tmix [11], (2) Harpoon [13], and (3)
Swing [12] to (i) process packet traces collected during the
first iteration, and (ii) model non-shared network conditions
and generate application workloads in the second iteration.
These tools capture application traffic characteristics (e.g.,
connection vectors representing requests, responses, and
think times), as well as network conditions (e.g., round-trip-
time (RTT) and packet loss) on the parts of the network that
arenot shared among partitions.

C. Illustrative Examples

To understand how the two iterations of the second phase
of FSP work, we use a set of simple illustrative examples.
We study network scenarios with FTP and HTTP flows using
the popular network simulator ns-2 (Version 2.31) [2]. We
use the topology given in Fig. 2, and set all last-mile links to
100 Mbps to create more interaction among flows. The FDG
for the closed-loop scenarios is given in Fig. 2(b). For FTP,
a client at the source host will send requests to download
files from an FTP server at the destination host. Each time
the client downloads a 5 MB file, and the interval between
requests is exponentially distributed with the rate parameter
(λ ) set to 0.1, 1, or 2. We generate HTTP flows using the
PackMime-HTTP [17] traffic generator. We control the rate
parameter in the traffic generator to study network scenarios
under different loads.

Uncongested scenarios.We first study the performance
of our method in lightly loaded network scenarios. We use 8
FTP flows and the rate parameter (λ ) is 0.1. We measure the
goodput and packet drop rate for all 8 flows. As expected, the
measurements from the original scenario and sub-scenarios
(iteration 1) are almost identical (results omitted for brevity),
and we observe similar results for lightly loaded network
scenarios with 8 HTTP flows (rate = 1). This confirms the
intuition that under lightly loaded scenarios, results from
a single iteration suffice to accurately approximate results
of the original scenario, which is the rationale for pruning
uncongested links in Section IV.

Congested scenarios.We now increase the load in the
network to increase interaction among flows. Table I lists
the average results for a heavily loaded network with 8 FTP
flows (λ = 2), repeating each experiment 10 times. The left
side of the table gives the results of the original network
scenario, and the rightmost columns list the percentage
difference between the original scenario and the partitioned
sub-scenarios. For example, if flow 0 sent 100 packets in
the original network and 120 packets in the sub-scenarios,
we indicate the difference as 20%.

Table I
RESULTS FOR8 FTPFLOWS (λ = 2).

Original Difference
Flow Sent Goodput Sent Goodput

(Packets) (Mbps) (%) (%)
0 89189.2 38.52 -1.57 -1.42
1 46636.2 21.58 1.59 1.78
2 89164.5 51.73 -0.69 -0.71
3 103391.8 40.74 0.66 0.69
4 77328.8 36.03 -1.66 -1.70
5 77194 29.83 0.22 0.33
6 81920.4 43.97 -1.39 -1.47
7 62159.5 30.65 1.43 1.47

As depicted in Fig. 2, we have 2 sub-scenarios (P1,P2) and
link R0-R9 is shared among them. In the first iteration, we
conduct an experiment forP1, and collect a packet trace on



link R0-R9, which contains packets for flow 0. We collect
another packet trace on link R0-R9 which includes flow 4
and flow 6 when running the experiment forP2.

In the second iteration, the packet trace on link R0-R9
is input to the Tmix tool [11] to generate workloads that
represent the missing flows on the link, i.e., flow 4 and
flow 6 for P1 and flow 0 forP2. When connecting the Tmix
workload generator to link R0-R9, we insert a “delay box”
between the link and each Tmix traffic generator. This delay
box introduces delays representing the one way portion of
the RTT of each flow, minus the propagation delay of the
shared path. The capacity of the delay box is configured to be
the bottleneck link capacity of a flow. We assign loss rates to
the delay box to model the network conditions encountered
in interacting partitions. For each path, we compute the
packet loss rates of the non-shared linksfrom the trace
collected in the first iteration. For example, letn1,n2,n3,
andn4 be the nodes on the path of flow 0, wheren1 andn4

are the source and destination of the flow andn2 andn3 are
the two end points of the shared link. The four loss rates
on the non-shared parts of the flow (in both directions), i.e.,
(n1,n2),(n3,n4),(n4,n3), and(n2,n1), are used in the delay
box configuration.

Tmix also infers application behavior from the trace and
represents it asconnection vectors[11]. The results in
Table I demonstrate that long-term metrics, such as the
average goodput of a flow, can be reasonably predicted
using our method. Transient behavior of the flows is not
preserved due to this simple Tmix configuration that does not
capture dynamics of the interacting partitions, and simply
uses average values over the entire experiment.

Shared links are bottlenecks.In the previous experiment,
although the network is congested, the shared link R0-R9 is
not a bottleneck in the original network because flows 4 and
6 and flow 0 are downloading files in opposite directions.
We now reverse the direction of flow 0 to make link R0-R9
the bottleneck link. The goodput of the flows is given in
Table II. We are especially interested in flows 0, 4, and 6,
since they are the flows on the shared link R0-R9. In the first
iteration, the goodput of flows 0, 4, and 6 is 16.22, 11.16,
and 13.75 Mbps higher than the goodput they obtain in the
original scenario. This is due to the missing flows in each
sub-scenario, e.g., flow 0 does not exist inP2.

Table II
GOODPUT OF8 FTPFLOWS (MBPS) IN DIFFERENT ITERATIONS.

Flow Original Iteration 1 Iteration 2
0 29.55 45.77 33.68
1 40.41 38.99 40.37
2 49.88 38.63 49.53
3 46.16 39.07 47.45
4 29.03 40.19 29.17
5 40.20 38.67 39.42
6 32.18 45.93 33.23
7 39.72 33.98 41.24

After the second iteration, we are better able to predict
the goodput of flows 4 and 6. However, the goodput of
flow 0 is still 5.32 Mbps higher than the correct value.
Recall that when we generate the workload for flow 4 and
flow 6 into P1, the network conditions ofP2 are modeled
as the delay, link capacity, and loss on the Tmix delay
boxes. Ideally, the loss rates should capture the impact of
other flows inP2 (flow 3 and flow 7). However, to reduce
complexity, we do not capture thedynamicsencountered
by each flow in the interacting partition. As a result, the
workload generated by Tmix in the second iteration ofP1

fails to accurately constrain the goodput of flow 0. We are
currently investigating alternative Tmix configurations that
more accurately represent the workload of missing flows, at
the expense of space and time complexity.

D. Examples with Multiple Interacting Partitions

We now examine other aspects of the tradeoff between
experimental fidelity and complexity. Consider open-loop
flows and assume we will simply replay traces during the
second iteration andnot use a tool like Tmix to model
network conditions. As discussed earlier, FSP represents the
relationship between flows by an FDG, where each flow
is a vertex in the graph and two flows can influence each
other as long as there is a path between them. If there is no
direct edge between two flows, the interaction among the two
flows can only be propagated transitively via other flows. If
the flows belong to different sub-scenarios, this propagation
process can only take place in a subsequent iteration.

R1R0 R2

15 Mbps

F1

F2 F310 Mbps

Flow 1

Flow 2 Flow 3

Figure 4. A scenario with a sub-scenario that interacts withtwo others.

For example, consider the network scenario shown in
Fig. 4. In this simple scenario, there are three UDP flows,
each belonging to a different partition (F1 ∈ P1,F2 ∈
P2,F3∈ P3). Table III gives the goodput for all three flows
after each iteration. The goodputs of flow 1 and flow 2
can be collected after iteration 2, as they do not change
in subsequent iterations. The goodput of flow 3 is incorrect
until the third iteration. This is because, in this network,the
traffic on the bottleneck link R1-R2 depends on all three
flows, and the effect of flow 2 on flow 1 will not have
propagated to the packet trace on link R1-R2 after the first
iteration.

Now consider closed-loop flows and the use of Tmix. We
again use the network scenario shown in Fig. 4, with three
FTP flows, and 1 ms propagation delay on all links. The
results are given in Table IV. We observe that the results
stabilize after the second iteration.



Table III
GOODPUT OFUDP FLOWS IN KBPS.

Flow Original Iteration 1 Iteration 2 Iteration 3
1 4902 6064 4850 4850
2 5057 5644 4469 4469
3 1513 2646 1225 1546

Table IV
GOODPUT OFFTP FLOWS IN KBPS.

Flow Original Iteration 1 Iteration 2 Iteration 3
1 4014 9333 5416 5416
2 10684 12705 8542 8542
3 5756 10039 6600 6600

Unlike the open-loop case, where we naively replayed
the packet trace, we employ Tmix togenerate the ap-
plication workload and to model the network conditions
in interacting partitions. Two iterations are now sufficient
because, in the second iteration, we are already modeling
network conditions that a flow encounters on parts of the
network not represented in this sub-scenario. The application
behavior extracted by Tmix for all three flows, each a single
long-term TCP flow, remains unchanged in all iterations,
since we are using the same application traffic model. Tmix
correctly infers that model from the traffic traces. The
network conditions (delay and loss) inferred by Tmix from
the traces are stable from the second iteration onwards. We
repeat this experiment with HTTP flows, with different levels
of network congestion (with high and low packet loss) and
the results are always consistent: results after the second
iteration are close to the original scenario. Table V gives a
sample result from a highly congested scenario.

Table V
GOODPUT OFHTTP FLOWS IN KBPS. ITERATIONS 6 ONWARDS YIELD

THE SAME RESULTS AS ITERATION5.

Flow Original Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5
1 3607 9748 3610 3617 3563 3529
2 10961 14490 10487 10801 10550 10744
3 5902 9734 5585 5684 5640 5649

The examples in this section highlight a fundamental
tradeoff: fidelity of the results versus the time and space
complexity of the experimentation process. When simple
aggregate measurements, e.g., average RTT or loss over the
entire experiment, are input to a tool like Tmix to model
network conditions encountered by a flow, loss of fidelity
will occur, compared to having more detailed representations
of network conditions, e.g., a time series of packet loss over
the entire experiment duration. We are currently exploring
this tradeoff in greater depth.

VI. PARTITIONING EXPERIMENTS

In this section, we investigate the first phase of FSP. Given
the size of a backbone network (the number of routers) and
the number of flows we wish to have in a network scenario,

we generate a set of Rocketfuel [18] topologies representing
the backbone network using the Rocketfuel-to-ns tool [19].
For each flow, we insert two end hosts as the source and the
destination of this flow and randomly attach these end hosts
to the backbone network. The end hosts are only attached to
routers with degree no larger than three and, to avoid trivial
cases, the source and destination nodes of a flow are not
attached to the same router.

A. Weights in Partitioning

We first evaluate our choice of weight function in the
first phase of FSP. Recall that we compute the weight of an
edge cut in the FDG as the number of distinct nodes (hosts
and routers in the network topology) among all the shared
network links represented in the cut (Section IV). Since the
graph partitioning algorithm in our method aims to select
partitions with low edge cut weight, the function we choose
to calculate the weight of an edge cut should help reduce
the interactions among partitions. In this section, we show
how our weight function compares to a sample alternative
function that uses the number of FDG edges on an edge cut
as the weight. Since an edge in the FDG implies dependence
among two flows, fewer FDG edges between partitions also
implies less dependence among partitions.

Fig. 5 demonstrates the average number of shared links
between partitioned network scenarios when using these
two methods of computing the weight of an edge cut. In
this experiment, we generate different network scenarios by
randomly assigning 50 or 100 flows with their end hosts onto
a fixed Rocketfuel backbone with 100 routers. We compute
the average number of shared links among partitions and the
averaged results from 30 experiment runs are plotted. From
Fig. 5, we find that using the number of distinct nodes as the
weight of an edge cut can lead to fewer shared links among
sub-scenarios than simply using the number of dependent
flows. This not only indicates that we have fewer packet
traces to collect in the second phase of our method, but also
implies that there may be less complex interactions among
sub-scenarios.
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B. Time Complexity

The time required for the second phase of FSP depends
on the number of sub-scenarios and the tool used (e.g.,
Tmix vs. Harpoon) which can significantly vary According
to Algorithm 1, the time complexity of the first phase of
FSP, i.e., partitioning a large network scenarios into sub-
scenarios, is decided by the graph partitioning algorithm (Al-
gorithm 3). Our current implementation uses the recursive
bisection algorithm with complexityO(|FE| logk), whereFE

denotes the edges in the FDG andk denotes the number of
partitions generated by the algorithm [16]. The worst case
time complexity of our complete algorithm isO(|F |4) where
|F | is the number of input flows. This includes our functions
to determine the size of a partition and weight of an edge
cut (REQNODES() and WEIGHT() in Algorithm 3).

We computed the run-time for partitioning scenarios with
100 to 500 flows, randomly generating 30 scenarios for each
value of the number of flows. As expected, the runtime
is proportional to the number of flows in the network
scenario. The runtime can vary from seconds to hours for
the same number of flows depending on the complexity of
the scenario or, in other words, the number of edges in the
FDG. Despite the fact that FSP took up to a few hours for
some scenarios with 500 flows, partitioning will typically
be invoked offline and infrequently, and hence FSP is still
feasible. Moreover, our current implementation does not take
advantage of possible performance optimizations; we will
develop a faster implementation by selecting a faster graph
partitioning algorithm, e.g., the k-way multilevel partitioning
algorithm with O(|E|) [16], and using more sophisticated
data structures and program optimization techniques.

Due to space limitations, more partition characteristics
such as the number of partitions can be found in [20].

VII. B OTNET EXPERIMENTS

Denial of Service (DoS) attacks have been launched
against Internet sites for decades, and distributed DoS at-
tacks are one of the hardest assaults to defend against. With
the prevalence of botnets in today’s Internet, individualscan
easily launch a massive DDoS attack from a rented botnet
for just a few hundred dollars per day. In this section, we
use both phases of FSP on a scenario that studies the impact
of a large-scale DDoS attack targeting a busy web server at
Purdue University.

To understand the availability of our web server to visitors
during the attack, we selected 200 domains as sources
of the legitimate users and 50 subnets as the attackers.
The 200 (out of 14407) domains cover more than 70%
of the service providers of all visitors to our web server
between May 2009 and May 2010, and the 50 subnets are
selected from the black list generated by DShield.org [21]
in June 2010. We use traceroute from the web server to all
200+50=250 /24 subnets to generate the network topology,
and find 1232 routers. Several heuristics are then applied

to reduce the number of routers. For example, if the last
8 hops of a traceroute record are not used by any other
flow, we aggregate the delays between them and remove
the 7 intermediate hops. After reductions, there are 438
nodes in this network topology. Note that the end hosts for
legitimate users and attackers are aggregated. For instance,
the 50 attack flows represent thousands of attackers from the
50 /24 subnets. All links are set to 100 Mbps.

Since the size of this topology is larger than the DETER
testbed, we use ns-2 to compare between the original and
the partitioned experiments. The 200 legitimate flows are
generated by the PackMime-HTTP module in ns-2 with 2
requests per second using both HTTP/1.0 and HTTP/1.1.
For each HTTP/1.0 session, the client requests a 36 kB
page, which is the size of the most popular page in our web
site, and terminates the TCP connection once it is received.
For HTTP/1.1 sessions, the client first requests the same
page as in HTTP/1.0, but continues requests up to two other
pages using the same persistent connection. This 3-page per
session is based on the fact that most of our site visitors
(85.89%) view at most three pages during their visit. Each
page contains several objects and the size and number of the
objects are generated by PackMime-HTTP. For the attack
flows, we send UDP packet bursts to the web server at
5 Mbps and exponential on and off time with mean set to 2
seconds.

We execute FSP on this scenario withmaxNodeset to
100 to generate sub-scenarios which can easily fit onto a
testbed like DETER. The large scenario with 438 nodes is
partitioned by FSP into 8 sub-scenarios where the largest
one contains 83 nodes – a reasonable size for DETER.

We use a user-perceived metric, the ratio of successful
HTTP sessions, in both the original and the partitioned
experiments. An HTTP session is successful if its duration is
less than 60 seconds or the delay between receiving objects
from the server is less than 4 seconds [22]. Fig. 6 and Fig. 7
give the percentage of successful HTTP/1.0 and HTTP/1.1
sessions in the 300-second period when the server is under
DoS. We also examined the download time distributions for
pages and objects. Clearly, results from the first iterationare
erroneous (100% success) since attack flows and legitimate
flows are mostly in separate partitions, while the results from
the second iteration reasonably match the original scenario.

A closer look at the results in Fig. 6 and Fig. 7 reveals
that a few flows (e.g., flow 9) have a lower success ratio in
the partitioned experiments. Comparing Fig. 6 and Fig. 7,
the success ratios for HTTP/1.1 sessions are lower than the
HTTP/1.0 ones, and the results from the second iteration
have a greater error for HTTP/1.1. This is because HTTP/1.1
uses persistent connections. The HTTP/1.1 session has more
objects and pages in the first iteration than in the original
scenario and the Tmix-injected TCP flows are thus more
aggressive. This is because when a requested page is dropped
in the original scenario, a client will not request the objects
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Figure 7. Percentage of successful HTTP/1.1 sessions. Onlythe first 25
flows are shown due to space constraints.

in that page. Since there are no dropped requests in the
first iteration (the horizontal line in the figure for iteration
1), a client will request more objects and pages in a con-
nection. Such changes in user behavior are hard to capture
by workload generators unless they have application-layer
knowledge, which is avoided by Tmix because it hinders
scalability and extensibility to new applications. Tmix [11],
Harpoon [13], and Swing [12] make different choices in
terms of the user, session, connection, and network charac-
teristics that they extract and model, and hence the fidelity
of the results obtained varies according to which of these
tools we use, and how we configure the selected tool. As
we extract and model more information, space and time
complexity increase, but fidelity also increases. This tradeoff
must be balanced according to the goals of the experiment to
be partitioned, and the time and space constraints. Readers
can refer to [20] for a detailed comparison between the three
tools and the comparison between FSP and a downscaling
technique.

VIII. R ELATED WORK

The experimental scalability problem has been studied
in the context of simulation, emulation, and testbed exper-
iments. The proposed approaches can be broadly classified

into two categories: (1) approaches that reduce the size or
events in a given experimental scenario, and (2) approaches
that perform intelligent resource allocation to map a given
scenario onto available resources.

The goal of the approaches in the first category is to
generate adownscaledversion of the original network
scenario that preserves important properties of the original
scenario. For example, Panet al. [23] propose Small-scale
Hi-fidelity Reproduction of Network Kinetics (SHRiNK).
Using SHRiNK, one can construct a downscaled network
replica by sampling flows, reducing link speeds, and down-
scaling buffer sizes and Active Queue Management (AQM)
parameters. Instead of sampling traffic flows, Kimet al.
propose TranSim [24] to slow down the simulation and
sampletime intervals(also referred to astime expansion). By
maintaining the bandwidth-delay product invariant, network
dynamics (such as queue sizes) and TCP dynamics (such
as congestion windows) remain unchanged in the process of
network transformation.

Another noteworthy approach in the first category is
DSCALE, proposed by Papadopouloset al. [25]. DSCALE
includes two methods, DSCALEd and DSCALEs, that prune
uncongested network links, based on earlier work on queu-
ing networks [26]. Petitet al. [27] investigate methods
similar to DSCALE, and point out that downscaling methods
are highly sensitive to network traffic, topology size, and
performance measures. This is consistent with our findings
in [28].

Approaches in the second category map an experimental
scenario onto available resources. These approaches include
the application of a range of parallel and distributed simu-
lation techniques such as in [6], [29]. For example, Walker
et al. [30] employ software virtualization to migrate running
node images from one switch to another, in order to maintain
the proximity of the nodes attached to each RF switch. An
important technique in this category is virtualization such
as in [7], [31], [32]. In contrast to FSP, approaches in this
second category typically map multiple nodes in the original
scenario to a single node in the experiment, potentially
introducing artifacts in experiments that overload resources,
such as DoS experiments [3].

Our approach is orthogonal to techniques in both cate-
gories, and can be easily combined with them. For example,
downscaling techniques can be applied to an experimen-
tal scenario before or after FSP to simplify the original
scenario or to speed up the execution of a sub-scenario.
Virtualization techniques can also be used on a sub-scenario
when appropriate, allowing it to be executed on a smaller
number of testbed machines. FSP is a simple platform-
independent approach for different types of experiments,
including DoS experiments that pose significant challenges
with other approaches [3], [28].



IX. CONCLUSIONS ANDFUTURE WORK

In this paper, we have proposed a platform-independent
mechanism, FSP, to partition flows in a large network
experiment into a set of smaller experiments that can be
sequentiallyexecuted in two iterations. The results of the
smaller experiments approximate the results of the original
experiment. FSP is platform-independent since it does not
require any modifications to the experimentation testbed.
Since the original large experiment and the partitioned
smaller experiments can be viewed as independent exper-
iments, our approach can be integrated with existing scaling
solutions. For example, we can use our tools to understand
or simplify a large network experiment before applying
virtualization or hybrid simulation techniques.

Our results from several simulation and DETER testbed
experiments indicate that FSP approximates application
performance under different levels of congestion and
open/closed-loop traffic. Our future work plans include opti-
mization of the partitioning process, and an in-depth analysis
of the granularity of modeling interacting partitions. We are
also experimenting with FSP on a variety of topologies and
flow mixes, including large CDNs and P2P systems. The
focus of these experiments is to further explore the funda-
mental tradeoff between experimental fidelity and space/time
complexity of the experimentation process. Finally, we are
examining the integration of hybrid simulation, emulation,
and experimentation techniques into FSP, in order to relax
the assumptions we made, especially regarding dynamic
route changes and route symmetry.
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