
Optimistic Load Balancing in a Distributed Virtual
Environment

Roman Chertov and Sonia Fahmy∗

ABSTRACT
Distributed virtual environments such as massive multi-player games
require multiple servers to balance computational load. This pa-
per investigates the architecture of a unified environment where the
virtual online world is not partitioned according to rigid bound-
aries, but according to an adaptive paradigm. Since it is difficult to
develop an optimal load balancing algorithm for a unified environ-
ment, we propose an optimistic scheme that quickly converges. The
cost of frequent migrations is reduced by following a push/push
data exchange model. We analyze the computational time costs of
such a system and give simulation results to gauge its performance.
The simulation results confirm that our load balancing scheme is
efficient and can support large numbers of clients.

1. INTRODUCTION
Many distributed virtual environments (DVEs) for collaborative

research, interaction, and entertainment are being deployed over
the Internet. These online interaction and gaming DVEs are be-
coming more popular, creating a multi-billion dollar industry. A
straightforward approach to set up a large scale DVE is to partition
the virtual space into fixed areas, where clients (e.g., gameplayers)
in one area cannot see what is occurring in the adjacent area until
they reach that area. This poses the architectural questionof how
to support thousands of clients connected to a singleunifiedvirtual
environment that isnot rigidly partitioned.

To address this question, we consider the DVE as a distributed
database where clients are remote sites with the server being a con-
currency and replication controller. A fundamental problem in dis-
tributed databases is the quality of the communication channel. In
environments requiring hand-eye coordination, latency isa key fac-
tor as it determines how many updates per second the DVE can
perform. Ideally, the DVE should sustain 30 updates per second or

∗Roman Chertov and Sonia Fahmy are with the Department of
Computer Science, Purdue University, 250 N. University St., West
Lafayette, IN 47907–2066, USA. Tel: +1-765-494-6183. Fax:
+1-765-494-0739, E-mail:{rchertov,fahmy}@cs.purdue.edu. This
work has been sponsored in part by NSF grant CNS-0238294 (CA-
REER).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’06 Newport, Rhode Island USA
Copyright 2006 ACM 1-59593-285-2/06/0005 ...$5.00.

higher, as otherwise clients will notice uneven motion in their own
as well as other client movements [4]. Although it is possible to
achieve acceptable performance with lower update rates by relying
on direction vectors and prediction [1], such schemes fail when the
client rapidly shifts direction.

A minimum Quality of Service (QoS) level is needed for high
DVE performance. Since integrated and differentiated services are
not widely deployed in the current Internet, our architecture em-
ploys application level routing/QoS. Each Internet service provider
(ISP) can provide one or moregatewaynodes [2] to which its cus-
tomers connect to participate in a DVE (similar to Akamai nodes
for WWW caching). Figure 1 depicts two gateways at two differ-
ent ISPs which connect to the sameserver core(or server cluster).
The gateways can act as client data aggregation points. In addi-
tion to providing fast access to the server, gateways can be prun-
ing/filtering points. Further, the gateways can act as synchronizers
to ensure that all clients receive updates at approximatelythe same
time to maintain fairness.

ISP2 Gateway

Game User

...

Load Balancing Server Core

...

Game User

ISP1 Gateway

Figure 1: System architecture

Creating and managing such gateways is only worthwhile if the
server core can support an extremely large number of clients. Cus-
tomers will be reluctant to pay subscription fees if most of the time
the server is too busy and they cannot participate. Therefore, the
server core must be a cluster of machines that performintelligent
load balancingto evenly share the client load in a scalable manner.
We employ a push/push data exchange model to reduce the cost of
client migration among servers.

This paper gives an architecture and algorithms for a DVE simi-
lar to the system depicted in Figure 1. The system allows the clients
to move with selected directions and speeds, with the assumption
that travel along the up/down axis is not significant, meaning that
the world can be examined from the top down as a 2D map. This
is well-suited for the majority of interactive systems on the market
today. We design and evaluate the performance of a novel adaptive
load balancing scheme for the server core that exploits the fact that
clientstend to cluster around points of interest.

The remainder of this paper is organized as follows. Section2
surveys related work. Section 3 gives an overview of the require-

ments and architecture of the system. Section 4 analyzes thecom-
putational cost. Section 5 explains our experimental setup. Sec-
tion 6 discusses our preliminary results. Finally, Section7 summa-
rizes our conclusions and planned future work.

2. RELATED WORK
Large scale virtual environments cannot be effectively managed

on a single server, even with advent of multi-core CPUs. Thisis
because a large scale environment can include thousands of clients
and the processing power of a single powerful machine can still
be inadequate. To address this scalability requirement, three ap-
proaches are dominant: (i) peer-to-peer [12, 5, 13], (ii) server clus-
ter [8, 16, 11, 2, 7, 6], and (iii) distributed servers [5, 15,17]. Out of
the three approaches, the server cluster may be the most expensive
to implement, and can be a point of failure. However, the cluster
approach can offer much better latency guarantees when coupled
with application specific routing, traffic engineering, andgateway
nodes [2]. From the business point of view, such a setup allows eas-
ier accounting and can deliver guaranteed performance to clients.

A straightforward approach to divide load among servers in a
cluster is to use a grid where each server manages a collection of
cells [17, 11, 8, 7]. The servers migrate cells to distributethe load.
The cell size is configurable and can be set to be equal to the field of
view (FOV) of a client, as suggested in [8]. However, if the DVE
is very large and has large regions of empty space, then the load
balancing scheme can be extremely sub-optimal. An alternative
approach to the problem is to subdivide the virtual space into evenly
sized cells and then transfer cell contents to arbitrary servers to
balance the load [19]. Our approach is more adaptive, as cells need
not be evenly sized.

Peer-to-Peer approaches such as [15, 12, 13] rely on clientsto
compute the adjacency lists, thus removing the need for a server
to perform such computations. However, these approaches cannot
satisfy latency requirements and can suffer if client densities are
high and client movements are fast. Use of TCP connections as
discussed in [12] is prohibitive in highly dynamic environments, as
frequent connection setup and tear-down will significantlydegrade
performance.

Lossless data delivery is not a strict requirement of many DVEs.
Presence of some loss has been shown to be acceptable by [4, 5,9].
As long as loss is not too frequent and important events are only
rarely lost, clients are likely to find the DVE performance more
than adequate. Analysis of a first person shooter game, Counter-
strike, revealed that the worst tolerable loss is between 1-2% and
the game generates highly periodic traffic [9].

3. SYSTEM OVERVIEW
DVE clients do not typically move according to a random walk [18]:

there is always some structure to the overall position of clients. Our
system exploits the fact that clients tend to cluster aroundpoints of
interest which vary from one virtual environment to another. The
points of interest can bedynamicand unknown ahead of time, mak-
ing it hard if not impossible to partition the game space ahead of
time, e.g., [7]. Hence, a highly dynamic load balancer is required.
A good load balancer must satisfy the following properties:(i)
achieve even load distribution, (ii) efficiently handle sparse envi-
ronments, and (iii) allow dynamic points of interest.

Figure 2 illustrates a DVE with 8 clients. The dotted circles
around the clients represent the field of vision (FOV) range.The
arrows represent the client direction vectors. Given threeservers,
it is possible to construct rectangular regions that dividethe client
processing evenly among the servers. We have chosen rectangles

Server 2

Server 3

Server 1

Figure 2: Ideal client partitioning

as it is fast to perform geometric operations on them, compared
to more complex polygons. The rectangular coverage regionscan
change in size as the clients travel, but as long as clients stay in the
proximity of the point of interest, there is no need to changeserver-
client assignments. Until the coverages of servers intersect or are
in a client FOV proximity of each other, the servers do not need to
interact extensively to determine if the clients in their domain can
see other clients.

Server 1

Server 2

Server 3

Figure 3: Coverage overlap due to using a rectangle as a bound

Clearly, perfect partitioning cannot always be maintained. Clients
typically remain near a point of interest for some time, but then
choose to move to another point, causing overlap. Figure 3 depicts
a scenario where a client at Server2 can see a client at Server3 and
vice versa. This can be easily checked by keeping track of which
client FOVs go outside the coverage area. The case when Server1
and Server3 overlap is more problematic. Searches have to becon-
ducted inside the coverage areas, and this can become expensive if
the number of clients is large or if overlaps are frequent. Wediscuss
this problem further later in this section.

In the remainder of this section, we describe the complete archi-
tecture of the load balancing algorithm, server core, and gateways.

3.1 Load Balancer
Individual servers in the server core perform greedy local actions

to resolve overlap problems such as those shown in Figure 3. The
optimism in the system is derived from the fact that we quickly
reach a good global state which we predict will remain stablefor
several cycles. The load balancer has two modes of operation. In
the first mode, the balancer attempts to balance the load. Thesec-
ond mode is needed to resolve any overlap inefficiencies.

Each server uses aclient thresholdvalue to determine the num-
ber of clients it is willing to serve. Ifclient thresholdis exceeded,
the server attempts to migrate part of the load to a nearby server. In
certain situations, a server can accept more clients than specified by
client threshold, but it will not accept any more whenmax clients
is reached. Figure 4 demonstrates migration in action. The number
of clients on Server2 exceeds theclient thresholdvalue of 3 and
Server2 starts migration. The server selects a server that is closest

Server 1

Server 2

(a) Before

Server 1

Server 2

(b) After

Figure 4: Client migration when number of clients exceeds the
client threshold of 3

and has not reached its maximum capacity. Then the client that is
closest to that server coverage area is transferred. We haveplaced
a condition on the transfer to avoid excessive overlap: the transfer
will not occur if the new area of the server will exceedmaxarea,
which is configurable. This keeps the system in check, so thata
server cannot begin a rapid massively overlapping expansion.

Server 1

Server 2

(a) Before

Server 1

Server 2

(b) After

Figure 5: Coverage intersection resolution

Migrations and client movements will inevitably produce cases
where coverage areas overlap. Figure 5 illustrates a scenario when
a client from Server1 moves into the coverage area of Server2.
To resolve this situation, each server examines servers that over-
lap with it and attempts to transfer all of its own clients that are in
the overlapping region to the other server, provided that maximum
capacity has not been reached. One heuristic that we apply inthis
case is a random scan of the intersecting servers. This is important
in situations when the same region is in the coverage of more than
two servers. Random scan ensures that various combinationsof in-
tersection resolution are carried out until a good solutionis found.

To further reduce coverage overlap, we introduce one additional
rule. If the area of coverage of the server exceedsmaxarea, then
client thresholdis set to 0 so that migrations will occur. This is
necessary to avoid cases when the coverage area of ServerX be-
gins to grow causing increasing overlap, and servers that were not
previously neighbors ofX start performing transfers to it, further
compounding the problem.

The algorithm parameters thus allow atradeoff betweenload
variance reductionandoverlaps. If the value ofmax clientsis close
to client threshold, load variance among servers will be low; how-
ever, this will leave little room for coverage intersectionresolution,
resulting in a larger number of overlaps.

3.2 Server Core
The server core serves as an aggregation point of all client data,

and employs the load balancing algorithm described above. In ad-
dition, the server core can process client data by running a limited
version of the DVE engine with all the graphics routines stripped.
By running this engine on the server core, cheaters [3] can bede-
tected since client and server calculations would deviate in that
case. In an alternate setup, the server core can run the DVE en-
gine and the clients only process input and display functions. This

is useful in situations where clients have limited CPU capacity, e.g.,
clients are handheld devices.

To reduce the cost of client migration within the server core, we
employ astatelessmode, meaning that individual servers do not
store client information locally. This eliminates the needfor com-
plex data migration architectures as in [7]. It also eliminates migra-
tion delay. Our stateless approach is suited to cases when a signif-
icant portion of the client state will change with each update, and
the state can be compactly represented (since the DVE type/rules
are known). The server maintainsa pool of client slotsto fill with
information as updates and inserts occur. The slot pool eliminates
memory fragmentation problems. Observe, however, that if the up-
date to player state ratio is low, the stateless mode may be unde-
sirable since traffic volume will be too high. This can be mitigated
by using different levels of detail such that full state is not required
until the last possible moment.

The server core communicates withgatewaysthat perform ap-
plication level routing. Stateful connections are avoided: UDP
packets are routed by simply looking up the server unique iden-
tifier (ID). Efficient application level routing can be accomplished
by a modular software router like Click [14] or a network proces-
sor. Hardekopf et. al. [10] report that increasing number ofmicro-
engines in network processors will allow handling application spe-
cific classification and routing at line speeds.

The gateways firstpushclient update data to the servers. Each
client has a gateway ID and a server ID associated with it. If a
client migration occurs, the server core willpushnew data towards
the gateways reflecting the new server to client relationship. This
forms the basis of our statelesspush/pushdata exchange model.

3.3 Gateways
Each gateway acts as a high speed connection point to the server

core from a particular ISP. A gateway can be a fast server or a col-
lection of network processors [2] that are optimized to handle the
specifics of the DVE. The gateway synchronizes with the server
core, ensuring that clients use the same global time. This isnec-
essary to compensate for latency effects when using prediction and
direction vectors [1]. The gateway can also delay packets destined
to clients to ensure that all clients receive packets at the same time.
This prevents cases when some clients can see events before the
other clients can. Although the clients can adhere to equal cycle
times, the gateway should not be forced to wait for all the client
data to arrive before it pushes it to the server core, in orderto avoid
slow down due to ill performing clients. This can result in incom-
plete updates, but as long as clients do not miss their scheduled
sending times too often, this problem will not be noticeable[9, 5].

Each gateway receives data from the server core only regarding
the clients that belong to it and what they can see. This filters out
significant irrelevant information, reducing processing and band-
width costs. The gateway must also filter the data that is relevant to
each client, as it would be inefficient to forward the entire dataset to
all its clients. Filtering can be performed based on the client FOV.
If the client has no possible way of seeing an object, then there is
no need to pass that information along.

4. COMPUTATION TIME ANALYSIS
We first consider the case of a single server, then a naive ap-

proach with multiple servers, and then our optimized approach.

4.1 Single Server
In the case of a single server that uses the gateway model de-

scribed earlier, the server must compute the DVE physics foreach
client, and then compute which clients can see each other so that

it can prune the information the gateways receive. LetN be the
number of clients. LetPi be the time required to process physics
and cheat detection forClienti. Let Ci,j be the time required to
compute ifClienti andClientj can see each other and if they have
collided. In a naive single server system performing pair-wise com-
parisons, the total time,Ts, can be computed asTs =

PN

i=0
Pi +

PN

i=0

PN

j=0
Ci,j . If we assume thatPi = P for all i, and since

eachCi,j operation is constant time, we getTs = NP + N2.

4.2 Multiple Servers
Consider a system withM servers andN clients. Assume that

Ni is the number of clients forServeri, and (as above) thatP is
the time required to process physics and cheat detection forany
client. The cost of tasks to be performed by serveri, Ti, includes:

1. NiP to process the physics and cheat detection for its own
clients.

2. N2

i to search for local client interactions.

3. M − 1 to determine theK intersecting and adjacent rectan-
gles (within client FOV) that are managed by other servers.

4. Ni

PK

k=0
Nk to determine the clients that potentially can in-

teract with its clients.

5. Ni + K to determine the client that is closest to the closest
server if migration is required.

6. KNi to determine which current clients are within other servers’
coverage so that they can be migrated there, provided the
maximum capacity has not been reached.

The total time of the system is computed asTtotal = max(T0, · · · , TM).

4.3 Optimized Cost
The simple analysis above shows that ifK is large or client load

distribution (Ni is large for somei) is uneven, the multi-server
system will perform worse than the single server system.K is
highly dependent on the number of overlapping rectangles, because
if there was no overlap and all servers covered disjoint spaces, there
would be at most 8 neighbor rectangles to check. Hence,K de-
pends on the distribution of clients and the performance of the load
balancer.

The cost of client proximity searches can be reduced to a worst
case ofO(N2N0.5) if a point quad tree is used. It also takes
O(NlnN) to build the tree if approximately random insertion is
assumed. Therefore, it would be faster to build a tree from scratch
and perform proximity searches than doing pair-wise comparisons.
Modifying the steps in Section 4.2, we now obtain the follow-
ing equation for the time of each server:Ti = NiP + 2N1.5

i +
NilnNi + M − 1 + (2Ni

PK

k=0
Nk) × (Ni

PK

k=0
Nk)0.5+

(Ni

PK

k=0
Nk)ln(Ni

PK

k=0
Nk) + Ni + K + KNi. The com-

putational complexity is thus:O(N1.5
i + (Ni

PK

k=0
Nk)1.5) if we

assume constant timeP . When using the same optimization (and
again assuming constant timeP), the complexity of a single server
system isO(N1.5). Hence, it is clear that it isessentialto minimize
K, and keepNi as close toN/M as possible. For a large value of
N , the main cost is governed by the client interaction algorithm,
andnot the physics processing.

5. EXPERIMENTAL SETUP
We have implemented a simulator of the entire system1 to evalu-

ate the load balancer performance. The current version of the simu-
lator consists of only a single gateway to which all clients connect.
The gateway is connected to the server core as in Figure 1. Thecore
consists of a number of servers that perform the load balancing op-
erations described in Section 3.1. The system was fixed to runat
30 updates per second, meaning that data exchange and load bal-
ancing occurs thirty times a second. A real system may not be able
to run as fast. If the average latency to the server core is 100ms for
example, then only 10 updates per second is feasible.

We increase the number of clients in increments of 100 from
100 to 2000. Each experiment was run 10 times with the same
settings but different seeds and the results were averaged.To gauge
the effectiveness of the system, we measure the total area covered,
server loads, number of overlaps, and overlap area.

5.1 DVE Environment
We use a ten by ten kilometer map that has 64 points of inter-

est evenly distributed on the map in a grid-like fashion. We use
a core composed of 64 servers. The values ofclient threshold,
maxclients, andmax areawere computed asnumberof clients/64,
1.5× client threshold, and10 Km×10 Km/60 respectively. This
is akin to a large “Battlefield 1942” map with 64 control points. Ad-
ditionally, the servers were allowed a maximum of 3 migrations per
cycle. The experiment duration was 30 minutes to simulate DVEs
where map rotation occurs frequently.

5.2 Client Behavior
We considered two models for client mobility. In the first model,

the clients are uniformly and randomly spawned. Each clientper-
forms a random walk with a random speed, direction, and dis-
tance. The client then travels along the chosen path and whenthe
selected distance is traversed, the client chooses a new setof pa-
rameters and continues. This leads to scenarios where the density
of clients throughout the entire region is close to uniform.Since
such behavior is unrealistic for DVE clients, we have devised a
second more sophisticated model which we used in all experiments
reported below. Just as in the previous case, the clients areran-
domly spawned. However, the map now includes points of interest
to which clients will flock. A client randomly chooses a pointof
interest in amap length

3
radius and goes there. While en-route, it

can change its mind with a small probability of 0.001 and select an-
other destination. Clients are allowed to move at a maximum speed
of 5 m/s which corresponds to human jogging speed. Upon arriv-
ing at the destination, the client performs a random walk around the
point of interest (i.e., stays within a 50 m× 50 m region). When it
has walked for 300 meters, it selects a new destination and repeats
the process. Such waypoint-like behavior is more realisticas clients
tend to gather near points of interest (resources, battles,etc.), and
then go elsewhere. Since in our model (i) clients prefer waypoints
that are closer, (ii) clients can change direction while en-route, and
(iii) the map has no geographical barriers, our model addresses the
shortcomings of the basic “Random Waypoint Model” as discussed
in [18].

6. PRELIMINARY RESULTS
The prime measure of a load balancer is how evenly it distributes

the load. Thus, we measure the average load per server throughout
the experiment duration and then average the final results. We also

1The simulator can be freely downloaded from
http://www.cs.purdue.edu/homes/rchertov/.

compute the standard deviation to gauge variability. Figure 6(a)
shows how close the results are to the ideal (precisely even)bal-
ancer. We also observe that the standard deviation steadilyin-
creases with larger number of clients, meaning that the loadbal-
ancer allows for more load variance as density increases. The vari-
ance is highly dependent on themax clientsparameter. Ifmaxclients
is too low, then variance is reduced but the number of overlaps
increases, as it becomes more difficult to perform overlap resolu-
tion. This is the tradeoff discussed in Section 3.1. We selected
max clients to be1.5× client threshold, accepting an increase in
variance in return for fewer overlaps. However, even with the cur-
rent settings, the system approximately satisfies property(i) in Sec-
tion 3 (achieve even load distribution).

 0

 5

 10

 15

 20

 25

 30

 35

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
lie

nt
s

pe
r

S
er

ve
r

Number of Clients

Average Client Number per Server
Sim

Ideal

(a) Average load per server

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
td

. D
ev

ia
tio

n

Number of Clients

Client Number Std. Deviation

(b) Load standard deviation

Figure 6: Server load results

In addition to achieving good load balancing properties, our sys-
tem must efficiently handle sparse areas, avoiding the drawbacks
of grid-based systems. To compute the areas of overlap, we find all
intersecting pairs and then sum the overlapping areas. The result-
ing sum can be larger than the geometric overlap area when more
than two servers overlap. This allows estimating the performance
of the intersection resolution algorithm more accurately.Figure 7
shows that our balancer performs well. As the client densityin
the environment increases, so does the total area covered byall of
the servers. This means that if the size of the environment isvery
large, then empty regions can be ignored. This satisfies property
(ii) (efficiently handle sparse environments).

To validate that property (iii) (allow dynamic points of interest)
is achieved, we conduct experiments with 2000 clients wherethe
points of interest are randomly chosen on the map. We studied
10 different runs with the same parameters but different seeds and
found the average standard deviation to be 8.6 and average server

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

%
 o

f T
ot

al
 M

ap
 A

re
a

Number of Clients

Average Coverage Area of the Map

(a) Total covered area

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
%

 o
f T

ot
al

 M
ap

 A
re

a
Number of Clients

Server Average Coverage Area

(b) Average area covered per server

Figure 7: Area coverage results

overlap count (number of servers with overlapping coverage) to be
1.83, with small variance between the runs. This fact highlights
the ability of the system to deal with dynamic clustering of clients,
as there is no requirement for clusters to be uniformly spaced or
known ahead of time.

Another key property of a good dynamic load balancer is the
ability to minimize intersection of server coverage areas,as over-
lap entails that servers query other servers regarding their clients.
Figure 8 shows that the average overlap count for each individual
server only increases by 2.5 from 100 to 2000 clients; however, the
average area of the overlapping regions increases by a factor of 8.
The reason for this is that when only 100 clients are on the map,
there are 64 servers which can very efficiently partition thespace.
As the number of clients per server increases, so does the coverage
area, leading to an increasing area of overlaps, as discussed above.
It is important to note that the server overlap count in this section is
the same as the variableK in Section 4.2. The figure shows that it
is slowly increasing with the number of clients, and good load dis-
tribution is achieved. This supports our conclusion in Section 4.3
that a multi-server approach will outperform a single server system
as long asK is small and server load is close to even.

Observe that the clients in the above experiments moved at 5 m/s
which corresponds to human jogging speed. We have conducted
several experiments when the maximum speed was set at 50 m/s (or
180 Km/h), corresponding to vehicle speed. As expected, overlap
increased, but by only a small margin. In another test, we reduced
the number of servers to 25 but kept the points of interest at 64.
As expected, this led to an increase in overlap area but the average
overlap count per server was slightly lower than in the fast client
experiment (1.95 versus 2.20).

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

N
um

be
r

of
 O

ve
rla

ps

Number of Clients

Average Server Overlap Count

(a) Average overlap count per server

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

%
 o

f T
ot

al
 M

ap
 A

re
a

Number of Clients

Average Overlap Area

(b) Average overlap area size

Figure 8: Overlap results

Finally, we conducted experiments with 10000 clients, 100 servers,
and 100 points of interest. We obtained a load standard deviation of
35.2 and an average overlap count of 2.67, proving that our system
has the potential to scale to a very large number of clients.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have investigated the architecture of a unified

environment where the virtual online world is not partitioned ac-
cording to rigid boundaries, but according to an adaptive paradigm.
Our analytical and simulation results indicate that our load balancer
satisfies the three load balancing properties outlined in Section 3:
(i) achieves even load distribution, (ii) efficiently handles sparse
environments, and (iii) allows dynamic points of interest.

Our system can be extended in several ways. Representation of
the core as a single server at a top level can lead to good hierar-
chical scaling properties, allowing the system to support thousands
of clients seamlessly in a joint virtual world. A more flexible load
balancer can dynamically allocate/deallocate servers depending on
the load. Adjusting theclient thresholdandmaxclientsvalues of
individual servers can balance the load distribution tradeoff, and
take into account different underlying sever machine speeds.

8. REFERENCES
[1] S. Aggarwal, H. Banavar, A. Khandelwal, S. Mukherjee, and

S. Rangarajan. Accuracy in dead-reckoning based distributed
multi-player games. InNetGames ’04, pages 161–165, 2004.

[2] D. Bauer, S. Rooney, and P. Scotton. Network infrastructure
for massively distributed games. InNetGames ’02, pages
36–43, 2002.

[3] N. Baughman and B. Levine. Cheat-proof playout for
centralized and distributed online games. InINFOCOM
2001, volume 1, pages 104–113, 2001.

[4] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu,
and M. Claypool. The effects of loss and latency on user
performance in unreal tournament 2003. InNetGames ’04,
pages 144–151, 2004.

[5] A. Bharambe, J. Pang, and S. Seshan. A distributed
architecture for interactive multiplayer games. Technical
Report CMU-CS-05-112, Department of Computer Science,
Carnegie Mellon University, January 2005.

[6] David Brandt. Networking and scalability in EVE online.
NetGames ’05 Keynote, 2005.

[7] Glen Deen. Making quake II massively multiplayer with
optimalgrid. ICPP ’05 Keynote, 2005.

[8] T. Duong and S. Zhou. A dynamic load sharing algorithm for
massively multiplayer online games. InICON 2003, pages
131–136, October 2003.

[9] W. Feng, F. Chang, W. Feng, and J. Walpole. Provisioning
on-line games: A traffic analysis of a busy counter-strike
server. InIMW ’02, pages 151–156, 2002.

[10] B. Hardekopf, T. Riche, J. Kaur, J. Mudigonda, M. Dahlin,
and H. Vin. Impact of network protocols on programmable
router architectures. Technical report, University of Texas,
Austin, November 2002.

[11] M. Hori, T. Iseri, K. Fujikawa, S. Shimojo, and H. Miyahara.
Scalability issues of dynamic space management for
multiple-server networked virtual environments.PACRIM
2001, 1:200–203, August 2001.

[12] S. Hu and G. Liao. Scalable peer-to-peer networked virtual
environment. InNetGames ’04, pages 129–133, 2004.

[13] T. Iimura, H. Hazeyama, and Y. Kadobayashi. Zoned
federation of game servers: A peer-to-peer approach to
scalable multi-player online games. InNetGames ’04, pages
116–120, 2004.

[14] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click modular router.ACM Transactions on
Computer Systems, 18(3):263–297, August 2000.

[15] J. Lui and M. F. Chan. An efficient partitioning algorithm for
distributed virtual environment systems.IEEE Trans.
Parallel Distrib. Syst., 13(3):193–211, 2002.

[16] D. Min, D. Lee, B. Park, and E. Choi. A load balancing
algorithm for a distributed multimedia game server
architecture. InICMCS’99, volume 2, page 882, 1999.

[17] B. Ng, R. Lau, A. Si, and F. Li. Multiserver support for
large-scale distributed virtual environments.IEEE
Transactions on Multimedia, 7(6):1054–1065, December
2005.

[18] S. Tan, W. Lau, and A. Loh. Networked game mobility
model for first-person-shooter games. InNetGames ’05,
pages 1–9, 2005.

[19] B. Vleeschauwer, B. Bossche, T. Verdickt, F. Turck,
B. Dhoedt, and P. Demeester. Dynamic microcell assignment
for massively multiplayer online gaming. InNetGames ’05,
pages 1–7, 2005.

