Optimistic Load Balancing in a Distributed Virtual
Environment

Roman Chertov and Sonia Fahmy*

ABSTRACT

Distributed virtual environments such as massive mukiypt games
require multiple servers to balance computational loadis Pha-
per investigates the architecture of a unified environmdrere the
virtual online world is not partitioned according to rigicimnd-
aries, but according to an adaptive paradigm. Since it feedif to
develop an optimal load balancing algorithm for a unifiediem¢
ment, we propose an optimistic scheme that quickly congerglee
cost of frequent migrations is reduced by following a pushklp
data exchange model. We analyze the computational time obst
such a system and give simulation results to gauge its peadgioce.
The simulation results confirm that our load balancing sahén
efficient and can support large numbers of clients.

1. INTRODUCTION

Many distributed virtual environments (DVESs) for collabtve
research, interaction, and entertainment are being degloyer
the Internet. These online interaction and gaming DVEs are b
coming more popular, creating a multi-billion dollar intys A
straightforward approach to set up a large scale DVE is ttitjosr
the virtual space into fixed areas, where clients (e.g., gaayers)
in one area cannot see what is occurring in the adjacent atéda u
they reach that area. This poses the architectural questibaw
to support thousands of clients connected to a singifedvirtual
environment that isiot rigidly partitioned

To address this question, we consider the DVE as a distdbute
database where clients are remote sites with the servey beion-
currency and replication controller. A fundamental probie dis-
tributed databases is the quality of the communication blarin
environments requiring hand-eye coordination, lateneykisy fac-

higher, as otherwise clients will notice uneven motion igitlown
as well as other client movements [4]. Although it is possitdl
achieve acceptable performance with lower update rateslipng
on direction vectors and prediction [1], such schemes fagmthe
client rapidly shifts direction.

A minimum Quality of Service (QoS) level is needed for high
DVE performance. Since integrated and differentiatedisesvare
not widely deployed in the current Internet, our architegtam-
ploys application level routing/QoS. Each Internet sexycovider
(ISP) can provide one or mogatewaynodes [2] to which its cus-
tomers connect to participate in a DVE (similar to Akamai esd
for WWW caching). Figure 1 depicts two gateways at two differ
ent ISPs which connect to the sas®rver corgor server cluster).
The gateways can act as client data aggregation points. din ad
tion to providing fast access to the server, gateways carrloe p
ing/filtering points. Further, the gateways can act as syrihers
to ensure that all clients receive updates at approximételgame
time to maintain fairness.

Game User Game Use

Load Balancing Server Core

Figure 1: System architecture

Creating and managing such gateways is only worthwhilegf th

tor as it determines how many updates per second the DVE canServer core can support an extremely large number of cli€hts-

perform. Ideally, the DVE should sustain 30 updates perrsoo

tomers will be reluctant to pay subscription fees if mostaf time
the server is too busy and they cannot participate. Therefbe

“Roman Chertov and Sonia Fahmy are with the Department of server core must be a cluster of machines that perfoteiligent
Computer Science, Purdue University, 250 N. University \8fest load balancingto evenly share the client load in a scalable manner.

Lafayette, IN 47907—2066, USA. Tel: +1-765-494-6183. Fax:
+1-765-494-0739, E-maikrchertov,fahmy@cs.purdue.edu. This We employ a push/push data exchange model to reduce thefcost o

work has been sponsored in part by NSF grant CNS-0238294 (CA- Client migration among servers. . .
REER). This paper gives an architecture and algorithms for a DVHE-sim

lar to the system depicted in Figure 1. The system allowslibets
to move with selected directions and speeds, with the assump
that travel along the up/down axis is not significant, megrhat
the world can be examined from the top down as a 2D map. This
is well-suited for the majority of interactive systems og tharket
today. We design and evaluate the performance of a novetiaglap
load balancing scheme for the server core that exploitsattetiat
clientstend to cluster around points of interest

The remainder of this paper is organized as follows. Se@ion
surveys related work. Section 3 gives an overview of theiregqu

Permission to make digital or hard copies of all or part of tvork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

NOSSDAV06 Newport, Rhode Island USA

Copyright 2006 ACM 1-59593-285-2/06/000555.00.

ments and architecture of the system. Section 4 analyzethe
putational cost. Section 5 explains our experimental sefgc-
tion 6 discusses our preliminary results. Finally, Seci@umma-
rizes our conclusions and planned future work.

2. RELATED WORK

Large scale virtual environments cannot be effectively ageal
on a single server, even with advent of multi-core CPUs. This
because a large scale environment can include thousantisrasc
and the processing power of a single powerful machine céin sti
be inadequate. To address this scalability requiremerggethp-
proaches are dominant: (i) peer-to-peer [12, 5, 13], (iiyeeclus-
ter[8, 16, 11, 2, 7, 6], and (iii) distributed servers [5, 18]. Out of
the three approaches, the server cluster may be the mostsaxpe
to implement, and can be a point of failure. However, thetelus
approach can offer much better latency guarantees wherletbup
with application specific routing, traffic engineering, agateway
nodes [2]. From the business point of view, such a setup aléag-
ier accounting and can deliver guaranteed performanceetots!

A straightforward approach to divide load among servers in a
cluster is to use a grid where each server manages a cotlaitio
cells [17, 11, 8, 7]. The servers migrate cells to distrikib&eload.
The cell size is configurable and can be set to be equal to tHefie
view (FOV) of a client, as suggested in [8]. However, if the BV
is very large and has large regions of empty space, then #tke lo
balancing scheme can be extremely sub-optimal. An altemat
approach to the problem is to subdivide the virtual spaceanenly
sized cells and then transfer cell contents to arbitraryeserto
balance the load [19]. Our approach is more adaptive, asedd
not be evenly sized.

Peer-to-Peer approaches such as [15, 12, 13] rely on clients
compute the adjacency lists, thus removing the need for\eser
to perform such computations. However, these approachesta
satisfy latency requirements and can suffer if client disiare
high and client movements are fast. Use of TCP connections as
discussed in [12] is prohibitive in highly dynamic enviroents, as
frequent connection setup and tear-down will significaddgrade
performance.

Lossless data delivery is not a strict requirement of mangBV
Presence of some loss has been shown to be acceptable b9]J4, 5,
As long as loss is not too frequent and important events ae on
rarely lost, clients are likely to find the DVE performance rmno
than adequate. Analysis of a first person shooter game, @ount
strike, revealed that the worst tolerable loss is betwe@fbland
the game generates highly periodic traffic [9].

3. SYSTEM OVERVIEW

DVE clients do not typically move according to a random walg]f
there is always some structure to the overall position ehti. Our
system exploits the fact that clients tend to cluster arquoidts of
interest which vary from one virtual environment to anothehe
points of interest can bdynamicand unknown ahead of time, mak-
ing it hard if not impossible to partition the game space dhefa
time, e.g., [7]. Hence, a highly dynamic load balancer isieql.

A good load balancer must satisfy the following properti€s:
achieve even load distribution, (ii) efficiently handle sgaenvi-
ronments, and (iii) allow dynamic points of interest

Figure 2 illustrates a DVE with 8 clients. The dotted circles
around the clients represent the field of vision (FOV) rangke
arrows represent the client direction vectors. Given tlsexeers,
it is possible to construct rectangular regions that ditfdeclient
processing evenly among the servers. We have chosen rixgang

Figure 2: Ideal client partitioning

as it is fast to perform geometric operations on them, costpar
to more complex polygons. The rectangular coverage regians
change in size as the clients travel, but as long as cliemysisthe
proximity of the point of interest, there is no need to chasgeer-
client assignments. Until the coverages of servers intexseare
in a client FOV proximity of each other, the servers do notdhiee
interact extensively to determine if the clients in theindon can
see other clients.

= Server 2

Server 1

1
I
I
1
1
I
1
1

T U server3

Figure 3: Coverage overlap duetousing arectangleasabound

Clearly, perfect partitioning cannot always be maintair@ients
typically remain near a point of interest for some time, thert
choose to move to another point, causing overlap. FigurepRtie
a scenario where a client at Server2 can see a client at Sexmdr
vice versa. This can be easily checked by keeping track ofhwhi
client FOVs go outside the coverage area. The case whenr$erve
and Server3 overlap is more problematic. Searches havedorbe
ducted inside the coverage areas, and this can become &xpifns
the number of clients is large or if overlaps are frequent.diseuss
this problem further later in this section.

In the remainder of this section, we describe the completei-ar
tecture of the load balancing algorithm, server core, atevgsys.

3.1 Load Balancer

Individual servers in the server core perform greedy loctbas
to resolve overlap problems such as those shown in Figuré8. T
optimism in the system is derived from the fact that we qujickl
reach a good global state which we predict will remain stédte
several cycles. The load balancer has two modes of operdtion
the first mode, the balancer attempts to balance the loadsdtie
ond mode is needed to resolve any overlap inefficiencies.

Each server usesdient thresholdvalue to determine the num-
ber of clients it is willing to serve. IElientthresholdis exceeded,
the server attempts to migrate part of the load to a nearlygsdn
certain situations, a server can accept more clients tresifigd by
clientthreshold but it will not accept any more whemaxclients
is reached. Figure 4 demonstrates migration in action. Tineber
of clients on Server2 exceeds thkent thresholdvalue of 3 and
Server2 starts migration. The server selects a serverdiuiasest

e Server 2

Server 1

) (év)’ Before

Figure 4: Client migration when number of clients exceedsthe
client_threshold of 3

and has not reached its maximum capacity. Then the cliehigha
closest to that server coverage area is transferred. Wephaved

a condition on the transfer to avoid excessive overlap: rdmester
will not occur if the new area of the server will exceethxarea,
which is configurable. This keeps the system in check, soahat
server cannot begin a rapid massively overlapping expansio

_.Server2 o Sever2

i ZD P Server 1 3 f [3 Server 1

: ! Q_p— ‘r 777777777 ! R :

LT N © AN R
(a) Before (b) After

Figure5: Coverage intersection resolution

Migrations and client movements will inevitably producesesa
where coverage areas overlap. Figure 5 illustrates a soemben
a client from Serverl moves into the coverage area of Server2
To resolve this situation, each server examines servettiea-
lap with it and attempts to transfer all of its own clientstthee in
the overlapping region to the other server, provided thatimam
capacity has not been reached. One heuristic that we appiysin
case is a random scan of the intersecting servers. This iwrtend
in situations when the same region is in the coverage of niane t
two servers. Random scan ensures that various combinatiams
tersection resolution are carried out until a good soluigdiound.

To further reduce coverage overlap, we introduce one autditi
rule. If the area of coverage of the server excemds area then
clientthresholdis set to 0 so that migrations will occur. This is
necessary to avoid cases when the coverage area of S€rier
gins to grow causing increasing overlap, and servers thet nat
previously neighbors oK start performing transfers to it, further
compounding the problem.

The algorithm parameters thus allowtradeoff betweenload
variance reductiorandoverlaps If the value ofmaxclientsis close
to clientthreshold load variance among servers will be low; how-
ever, this will leave little room for coverage intersecti@solution,
resulting in a larger number of overlaps.

3.2 Server Core

The server core serves as an aggregation point of all clesat d
and employs the load balancing algorithm described abaovadd
dition, the server core can process client data by runningited
version of the DVE engine with all the graphics routinespgted.
By running this engine on the server core, cheaters [3] caebe
tected since client and server calculations would deviatéhat

is useful in situations where clients have limited CPU cépae.g.,
clients are handheld devices.

To reduce the cost of client migration within the server care
employ astatelesamode, meaning that individual servers do not
store client information locally. This eliminates the ndedcom-
plex data migration architectures as in [7]. It also elindésamigra-
tion delay. Our stateless approach is suited to cases whigni& s
icant portion of the client state will change with each updand
the state can be compactly represented (since the DVE tes/r
are known). The server maintaiagpool of client slotgo fill with
information as updates and inserts occur. The slot poolirsgites
memory fragmentation problems. Observe, however, thheitip-
date to player state ratio is low, the stateless mode may de-un
sirable since traffic volume will be too high. This can be gated
by using different levels of detail such that full state i$ required
until the last possible moment.

The server core communicates wightewaysthat perform ap-
plication level routing. Stateful connections are avoidétDP
packets are routed by simply looking up the server uniquae-ide
tifier (ID). Efficient application level routing can be accplished
by a modular software router like Click [14] or a network peee
sor. Hardekopf et. al. [10] report that increasing numbenifro-
engines in network processors will allow handling applamaspe-
cific classification and routing at line speeds.

The gateways firgpushclient update data to the servers. Each
client has a gateway ID and a server ID associated with it. If a
client migration occurs, the server core wilishnew data towards
the gateways reflecting the new server to client relatignshihis
forms the basis of our statelgsssh/pustdata exchange model.

3.3 Gateways

Each gateway acts as a high speed connection point to ther serv
core from a particular ISP. A gateway can be a fast server ot-a ¢
lection of network processors [2] that are optimized to heutide
specifics of the DVE. The gateway synchronizes with the serve
core, ensuring that clients use the same global time. Thigds
essary to compensate for latency effects when using piedighd
direction vectors [1]. The gateway can also delay packettirosl
to clients to ensure that all clients receive packets ataheegime.
This prevents cases when some clients can see events bafore t
other clients can. Although the clients can adhere to equaéc
times, the gateway should not be forced to wait for all thertli
data to arrive before it pushes it to the server core, in calavoid
slow down due to ill performing clients. This can result icdm-
plete updates, but as long as clients do not miss their stdebdu
sending times too often, this problem will not be noticedb|eb].

Each gateway receives data from the server core only regardi
the clients that belong to it and what they can see. Thisdilbeit
significant irrelevant information, reducing processimgl dand-
width costs. The gateway must also filter the data that isaeteo
each client, as it would be inefficient to forward the entiagedet to
all its clients. Filtering can be performed based on thentlOV.

If the client has no possible way of seeing an object, theretise
no need to pass that information along.

4. COMPUTATION TIME ANALYSIS

We first consider the case of a single server, then a naive ap-
proach with multiple servers, and then our optimized apgoa

4.1 Single Server

In the case of a single server that uses the gateway model de-

case. In an alternate setup, the server core can run the DVE en scribed earlier, the server must compute the DVE physicedoh

gine and the clients only process input and display funstidrnis

client, and then compute which clients can see each othdrago t

it can prune the information the gateways receive. Nebe the
number of clients. LeP; be the time required to process physics
and cheat detection farlient;. Let C; ; be the time required to
compute ifClient; andClient; can see each other and if they have
collided. In a naive single server system performing pageveom-
parisons, the total timg;, can be computed & = ZZZ.V:O P; +
S Ciy. If we assume thaP; = P for all i, and since
eachC; ; operation is constant time, we g&t = NP + N2

4.2 Multiple Servers

Consider a system with/ servers andV clients. Assume that
N; is the number of clients foServer;, and (as above) thd? is
the time required to process physics and cheat detectioarfpr
client. The cost of tasks to be performed by senyér;, includes:

1. N, P to process the physics and cheat detection for its own
clients.

2. N? to search for local client interactions.

. M — 1to determine theX intersecting and adjacent rectan-
gles (within client FOV) that are managed by other servers.

. N; S5, Ny to determine the clients that potentially can in-
teract with its clients.

5. N; + K to determine the client that is closest to the closest
server if migration is required.

5. EXPERIMENTAL SETUP

We have implemented a simulator of the entire systéorevalu-
ate the load balancer performance. The current versioredfithu-
lator consists of only a single gateway to which all clierdgamect.

The gateway is connected to the server core as in Figure 1cdrke
consists of a number of servers that perform the load balgragp-
erations described in Section 3.1. The system was fixed t@tun
30 updates per second, meaning that data exchange and lead ba
ancing occurs thirty times a second. A real system may noblee a

to run as fast. If the average latency to the server core isyiOfor
example, then only 10 updates per second is feasible.

We increase the number of clients in increments of 100 from
100 to 2000. Each experiment was run 10 times with the same
settings but different seeds and the results were averdgaeghuge
the effectiveness of the system, we measure the total aveasth
server loads, number of overlaps, and overlap area.

5.1 DVE Environment

We use a ten by ten kilometer map that has 64 points of inter-
est evenly distributed on the map in a grid-like fashion. We u
a core composed of 64 servers. The valuel@ntthreshold
maxclients andmaxareawere computed asumberof_clients/64,
1.5x clientthreshold and10 K'm x 10 K'm/60 respectively. This
is akin to a large “Battlefield 1942" map with 64 control p@nfd-
ditionally, the servers were allowed a maximum of 3 mignagiper
cycle. The experiment duration was 30 minutes to simulatE®V
where map rotation occurs frequently.

5.2 Client Behavior

We considered two models for client mobility. In the first rebd

6. K N; to determine which current clients are within other serversne clients are uniformly and randomly spawned. Each cjient
coverage so that they can be migrated there, provided the forms a random walk with a random speed, direction, and dis-

maximum capacity has not been reached.
The total time of the system is computedas:.; = max(To, - , T).

4.3 Optimized Cost

The simple analysis above shows thakifis large or client load
distribution (V; is large for somei) is uneven, the multi-server
system will perform worse than the single server systeR.is
highly dependent on the number of overlapping rectangksalse
if there was no overlap and all servers covered disjointespabere
would be at most 8 neighbor rectangles to check. Hehtele-
pends on the distribution of clients and the performancéefdad
balancer.

The cost of client proximity searches can be reduced to atwors
case of O(N2N°5) if a point quad tree is used. It also takes
O(NInN) to build the tree if approximately random insertion is
assumed. Therefore, it would be faster to build a tree fromatsl
and perform proximity searches than doing pair-wise coipas.
Modifying the steps in Section 4.2, we now obtain the follow-
ing equation for the time of each servel; = N;P + 2N}5 +
NilnN; + M — 14 (2N; Y5 Ni) x (N; 5 Np)*o+
(Ni Z?:o Ni)In(N; ZkKZO Ni) + N; + K + KN;. The com-
putational complexity is thusd(N;° + (N; S, Ni)™®) if we
assume constant tim@. When using the same optimization (and
again assuming constant tinid, the complexity of a single server
systemigD(N'-%). Hence, it is clear that it isssentiato minimize
K, and keepV; as close taV/M as possible. For a large value of
N, the main cost is governed by the client interaction alganit
andnotthe physics processing.

tance. The client then travels along the chosen path and tieen
selected distance is traversed, the client chooses a newi pat
rameters and continues. This leads to scenarios where tisétyde
of clients throughout the entire region is close to unifor8ince
such behavior is unrealistic for DVE clients, we have daVise
second more sophisticated model which we used in all exeertisn
reported below. Just as in the previous case, the clientsaare
domly spawned. However, the map now includes points of éster
to which clients will flock. A client randomly chooses a pooft
interest in aZe2-Lendth radiys and goes there. While en-route, it
can change its mind with a small probability of 0.001 andctede-
other destination. Clients are allowed to move at a maximpeed
of 5 m/s which corresponds to human jogging speed. Upon-arriv
ing at the destination, the client performs a random walkiaddhe
point of interest (i.e., stays within a 50 m50 m region). When it
has walked for 300 meters, it selects a new destination grehte
the process. Such waypoint-like behavior is more realisticlients
tend to gather near points of interest (resources, battes, and
then go elsewhere. Since in our model (i) clients prefer wayp
that are closer, (ii) clients can change direction while@me, and
(iii) the map has no geographical barriers, our model adeethe
shortcomings of the basic “Random Waypoint Model” as diseds
in [18].

6. PRELIMINARY RESULTS

The prime measure of a load balancer is how evenly it digiiu
the load. Thus, we measure the average load per server tooug
the experiment duration and then average the final resuksalgé

The simulator can be freely
http://www.cs.purdue.edu/homes/rchertov/.

downloaded from

compute the standard deviation to gauge variability. Fgb(a)
shows how close the results are to the ideal (precisely evain)
ancer. We also observe that the standard deviation stemdily
creases with larger number of clients, meaning that the bzdd
ancer allows for more load variance as density increasesvaii-
ance is highly dependent on thrax clientsparameter. Imaxclients
is too low, then variance is reduced but the number of overlap
increases, as it becomes more difficult to perform overlaplte
tion. This is the tradeoff discussed in Section 3.1. We setkc
maxclientsto be1.5x clientthreshold accepting an increase in
variance in return for fewer overlaps. However, even with¢hr-
rent settings, the system approximately satisfies proggiitySec-
tion 3 (achieve even load distribution).

35

30
C'E’ 25 -
Q
D 20t
[
o
»n 15 F
<]
L 4ot
(@)
5 L
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Clients
(a) Average load per server
Client Number Std. Deviation
10 T T T T T T T
9l
8 L
c 7r
S
8 6r
> 5f
[a)]
5 4
n 3}
ol
1 L
0

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Clients
(b) Load standard deviation

Figure6: Server load results

In addition to achieving good load balancing properties,sys-
tem must efficiently handle sparse areas, avoiding the diakeb
of grid-based systems. To compute the areas of overlap, @alffin
intersecting pairs and then sum the overlapping areas. 8hstr
ing sum can be larger than the geometric overlap area whea mor
than two servers overlap. This allows estimating the paeréorce
of the intersection resolution algorithm more accuratéligure 7
shows that our balancer performs well. As the client derisity
the environment increases, so does the total area coverali dfy
the servers. This means that if the size of the environmevirig
large, then empty regions can be ignored. This satisfiesepipop
(ii) (efficiently handle sparse environments).

To validate that property (iii) (allow dynamic points of émnest)
is achieved, we conduct experiments with 2000 clients wkteze

Average Coverage Area of the Map

09 r
0.8 |
0.7 r
06 r
05 r
04 r
0.3 |
02 r

0.1 e
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Clients

(a) Total covered area

% of Total Map Area

Server Average Coverage Area
0.016 T T T T T T T T T

0.014
0.012
0.01 -
0.008 -
0.006 -

% of Total Map Area

0.004 -

0.002 -

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Clients
(b) Average area covered per server

Figure 7. Area coverage results

overlap count (humber of servers with overlapping coverémbée

1.83, with small variance between the runs. This fact hidté

the ability of the system to deal with dynamic clustering ligmats,

as there is no requirement for clusters to be uniformly spare
known ahead of time.

Another key property of a good dynamic load balancer is the
ability to minimize intersection of server coverage areaspver-
lap entails that servers query other servers regarding thients.
Figure 8 shows that the average overlap count for each ohavi
server only increases by 2.5 from 100 to 2000 clients; how¢he
average area of the overlapping regions increases by & fafc8o
The reason for this is that when only 100 clients are on the, map
there are 64 servers which can very efficiently partitiongpace.

As the number of clients per server increases, so does tleeage/
area, leading to an increasing area of overlaps, as distabsve.

It is important to note that the server overlap count in teition is
the same as the variahl€ in Section 4.2. The figure shows that it
is slowly increasing with the number of clients, and goodlildés-
tribution is achieved. This supports our conclusion in Bect.3
that a multi-server approach will outperform a single sesystem
as long ag¥ is small and server load is close to even.

Observe that the clients in the above experiments moved &5 m
which corresponds to human jogging speed. We have conducted
several experiments when the maximum speed was set at 56m/s (
180 Km/h), corresponding to vehicle speed. As expected]ave
increased, but by only a small margin. In another test, waced
the number of servers to 25 but kept the points of interestélat 6

points of interest are randomly chosen on the map. We studied As expected, this led to an increase in overlap area but trage

10 different runs with the same parameters but differendisead
found the average standard deviation to be 8.6 and averaggr se

overlap count per server was slightly lower than in the féisnt
experiment (1.95 versus 2.20).

Average Server Overlap Count

Number of Overlaps

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Clients
(a) Average overlap count per server

Average Overlap Area
0.18 T T T T T T T
0.16
0.14 |
0.12
0.1+
0.08
0.06

% of Total Map Area

0.04 -
0.02 -

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Clients |
(b) Average overlap area size

Figure 8: Overlap results

Finally, we conducted experiments with 10000 clients, H9exs,
and 100 points of interest. We obtained a load standard titavief
35.2 and an average overlap count of 2.67, proving that miesy
has the potential to scale to a very large number of clients.

7. CONCLUSIONSAND FUTURE WORK

In this paper, we have investigated the architecture of fieghi
environment where the virtual online world is not partigohac-
cording to rigid boundaries, but according to an adaptivegigm.
Our analytical and simulation results indicate that oudlbalancer
satisfies the three load balancing properties outlined otiG@e 3:
(i) achieves even load distribution, (ii) efficiently haeslsparse
environments, and (iii) allows dynamic points of interest.

Our system can be extended in several ways. Representétion o
the core as a single server at a top level can lead to goodrhiera

chical scaling properties, allowing the system to supgwtsands
of clients seamlessly in a joint virtual world. A more flexedbad

balancer can dynamically allocate/deallocate serversru#ipg on
the load. Adjusting thelient.thresholdand maxclientsvalues of
individual servers can balance the load distribution toéfdeand

take into account different underlying sever machine speed

8. REFERENCES

[1] S. Aggarwal, H. Banavar, A. Khandelwal, S. Mukherjeed an
S. Rangarajan. Accuracy in dead-reckoning based distdbut
multi-player games. INetGames '0dpages 161-165, 2004.

[2] D. Bauer, S. Rooney, and P. Scotton. Network infrastmect
for massively distributed games. NetGames '02pages
36-43, 2002.

[3] N. Baughman and B. Levine. Cheat-proof playout for
centralized and distributed online gamesINiFOCOM
2001, volume 1, pages 104-113, 2001.

[4] T.Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu
and M. Claypool. The effects of loss and latency on user
performance in unreal tournament 2003NatGames '04
pages 144-151, 2004.

[5] A. Bharambe, J. Pang, and S. Seshan. A distributed
architecture for interactive multiplayer games. Techhica
Report CMU-CS-05-112, Department of Computer Science,
Carnegie Mellon University, January 2005.

[6] David Brandt. Networking and scalability in EVE online.
NetGames '05 Keynote, 2005.

[7] Glen Deen. Making quake Il massively multiplayer with
optimalgrid. ICPP '05 Keynote, 2005.

[8] T. Duong and S. Zhou. A dynamic load sharing algorithm for
massively multiplayer online games. IBON 2003 pages
131-136, October 2003.

[9] W. Feng, F. Chang, W. Feng, and J. Walpole. Provisioning
on-line games: A traffic analysis of a busy counter-strike
server. INNIMW 02, pages 151-156, 2002.

[10] B. Hardekopf, T. Riche, J. Kaur, J. Mudigonda, M. Dahlin

and H. Vin. Impact of network protocols on programmable
router architectures. Technical report, University of d&x
Austin, November 2002.

[11] M. Hori, T. Iseri, K. Fujikawa, S. Shimojo, and H. Miyatsa

Scalability issues of dynamic space management for
multiple-server networked virtual environmenBACRIM
2001, 1:200-203, August 2001.

[12] S. Hu and G. Liao. Scalable peer-to-peer networkediairt

environment. IMletGames '04pages 129-133, 2004.

[13] T. limura, H. Hazeyama, and Y. Kadobayashi. Zoned

federation of game servers: A peer-to-peer approach to
scalable multi-player online games.MetGames '04pages
116-120, 2004.

[14] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.

Kaashoek. The Click modular routé&fCM Transactions on
Computer System$8(3):263—297, August 2000.

[15] J. Lui and M. F. Chan. An efficient partitioning algonithfor

distributed virtual environment systemiBEE Trans.
Parallel Distrib. Syst. 13(3):193-211, 2002.

[16] D. Min, D. Lee, B. Park, and E. Choi. A load balancing

algorithm for a distributed multimedia game server
architecture. INCMCS’99 volume 2, page 882, 1999.

[17] B. Ng, R. Lau, A. Si, and F. Li. Multiserver support for

large-scale distributed virtual environmentSEE
Transactions on Multimedj& (6):1054-1065, December
2005.

[18] S. Tan, W. Lau, and A. Loh. Networked game mobility

model for first-person-shooter gamesNatGames '05
pages 1-9, 2005.

[19] B. Vleeschauwer, B. Bossche, T. Verdickt, F. Turck,

B. Dhoedt, and P. Demeester. Dynamic microcell assignment
for massively multiplayer online gaming. MetGames '05
pages 1-7, 2005.

