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Abstract—Network Function Virtualization (NFV) brings a
cloud service automation paradigm to demand-driven elastic
flexing of infrastructure resources. Thus, it is essential to charac-
terize the impact of hardware and virtualization options on the
virtual network function (VNF) performance, and on the load on
underlying infrastructure.

In this paper, we present VNF characterization case studies
with three sample open-source VNF platforms, the Clearwater
IMS VNF and two intrusion detection system VNFs (Snort and
Suricata). We demonstrate that VNF characterization is vital for
optimizing VNF performance, as well as efficient utilization of
infrastructure resources. We use the lessons learned from our
case studies to design and implement a VNF characterization
framework, NFV-VITAL, to characterize VNFs based on user
preferences and available resources. We demonstrate how NFV-
VITAL can automatically determine optimal configurations under
different workloads with the three sample VNFs.

I. INTRODUCTION

Driven by the requirements for faster provisioning of
network services, Communication Service Providers (CSPs)
have embarked on a major transformation of their network
infrastructure by adopting Network Function Virtualization
(NFV) [1]. NFV entails implementing network functions —
currently available on proprietary middleboxes and network
equipment hardware — in software. Such Virtual Network
Functions (VNFs) can be deployed on industry standard com-
modity servers, storage and switches. NFV allows CSPs to
leverage virtualization and cloud automation technologies. As
with the “Cloudification of IT services,” the NFV transfor-
mation not only enables agile network service deployment,
but also improves demand-driven elastic flexing for scale-out,
and breaks the hardware vendor lock-in as VNFs are portable
across different hardware platforms.

Several challenges need to be tackled for successful NFV
deployment. First, the network equipment providers should
keep the performance degradation from software implemen-
tation of network functions to a minimum. Second, the NFV
orchestration tools need to determine the virtualization se-
tups and configuration options to optimize VNF performance
and automatically scale the VNF resource allocation with
workload. Third, a unified interface for decoupling virtualized
instances from underlying hardware is needed. Although un-
derstanding the impact of virtualization on network functions
is of paramount importance for NFV to succeed, current
studies are driven by vendor efforts to demonstrate either
the overhead associated with their respective technologies,
or the performance of their respective VNF implementations.
Performance studies of NFV fall into three broad categories:

(i) Performance benchmarking of a single option, such as CPU
pinning, Intel DPDK, PF_RING, and SR-IOV, e.g., [2], [3], (ii)
Performance testing of a single VNF running on a hypervisor
in an isolated environment, e.g., [4], and (iii) Network perfor-
mance measurement, such as UDP/TCP throughput and delay,
of a VM or a public cloud deployment, e.g., [5].

One difficulty in creating an NFV characterization frame-
work is the large number of configuration knobs and hardware
settings (e.g., CPU pinning, c-states, and memory interleaving)
available in NFV deployments. Additionally, the compute
and network requirements of various VNFs vary significantly.
While VNFs such as virtual routers and firewalls are primarily
bounded by network throughput, others such as load balancers
are bounded by network and compute (or memory) for session
state management. Some VNFs may comprise multiple simpler
VNFs/components with a communication and dependency re-
lationship among them. Each of these components can exhibit
different virtualization impacts and scalability requirements.

This paper makes two key contributions. First, we conduct
a VNF case study on the Clearwater [6] cloud-based IP
Multimedia Subsystem (IMS) (section II). Motivated by this
case study, we propose NFV-VITAL (Virtualization Impact on
Throughput And Load) — a framework for performance char-
acterization of different types of VNFs in a real private cloud
deployment (OpenStack) with different options (e.g., CPU
pinning) (section III). We demonstrate the benefits of the NFV-
VITAL framework for analyzing optimal sizing and configura-
tion for the Clearwater, Snort, and Suricata VNFs. NFV-VITAL
can be used for automatically: (1) Estimating VNF capacity for
a given resource configuration, (2) Computing virtualization
and system overhead associated with resource flexing such as
scale-out and scale-up, (3) Determining the optimal resource
configuration for a given workload, (4) Evaluating different
virtualization and hardware options, and (5) Fine-tuning VNF
implementation and performance.

II. CASE STUDY

Before designing NFV-VITAL, we conduct a case study to
understand how different orchestration/scaling methods affect
the performance of a clustered VNF with different compo-
nents. We seek answers to questions such as (1) how VNF
performance varies when allocating the same resources in
different setups; (2) causes for the differences: load balancing,
inter-component synchronization or intra-component commu-
nication; (3) how to alleviate performance degradation with
different orchestration methods; (4) how to detect when a VNF
is approaching a performance bottleneck; and (5) how best to
scale the system to achieve the highest performance gain. With



these answers, we can derive the characterization framework
in section III.

We construct a testbed with 3 HP DL360p blade servers
and 2 HP Z420 workstations, connected by an HP ProCurve
3500yl Gigabit switch. Table I gives the basic configuration
of the testbed machines. We use the OpenStack [7] Icehouse
release as a cloud orchestrator to manage the compute and
network resources. The 3 DL360p blade servers are used as
compute nodes (CNs) and the two Z420 workstations are
used as controller and network nodes (NN), respectively. The
OpenStack networking component is configured with Modular
Layer 2 (ML2) GRE tunnels. All tests in this paper are
conducted on this testbed.

TABLE I: Blade server, workstation and VM configurations

PM/VM CPU Cores RAM
DL360p 2x Intel Xeon E5-2680 v2 20 212 GB
7420 1x Intel Xeon E5-1620 4 16 GB
cwl.small 1x vCPU 1 2 GB
cwl.medium 2x vCPU 2 4 GB
cwl.large 4x vCPU 4 8 GB

A. Clearwater: An IP Multimedia Subsystem VNF

Clearwater [6] is a real world, telco-grade IP Multimedia
Subsystem (IMS). ' It is a typical clustered VNF that com-
prises a number of components, each of which plays a unique
role in the system and exhibits unique resource utilization
patterns: Bono is the SIP edge proxy component, providing
both a SIP IMS Gm compliant interface and a WebRTC
interface to clients. Sprout serves as combined SIP registrar
and authoritative routing proxy, and handles client authenti-
cation and interfaces to other application servers. Homestead
is the home subscriber server with web interfaces provided to
Sprout for retrieving authentication credentials and user profile
information. Homer is a standard XML document management
server that stores multimedia telephony service settings for
each user. Ralf is used for offline billing. Ellis is a sample
web-based user provisioning portal for self sign-up, password
management, line management and control of service settings.

Our lab deployment of Clearwater excludes Ralf and Ellis,
since these two components are for billing and account man-
agement which are not key for our characterization case study.
Each of the deployed components consists of one or more VMs
of different sizes orchestrated by OpenStack. A separate VM
is used as a DNS server for internal communication and load
balancing in clustered deployments of Clearwater.

Sprout and Homestead use memcached [8] and cassan-
dra [9] to store registration state and user information, respec-
tively. Therefore, clustering these two components involves
synchronization of the datastore and timer service. As the SIP
edge proxy, each Bono node works independently without any
synchronization with other Bono nodes. All Clearwater VMs
are assigned to the same compute nodes of OpenStack and
each vCPU is pinned to a physical core to eliminate potential
effects of network and CPU dynamics.

B. Testing Methodology

We vary the workload and the deployment size of Clear-
water (scaling up/down, in/out) to understand the impact of

IClearwater is still under active development (released twice a month).
Different versions may exhibit different performance.

orchestration strategies. We collect the CPU, memory and
network usage of all instantiations for deeper analysis.

1) Workload Generation: We use the open source tool
SIPp [10] as the workload generator, and choose user registra-
tion and deregistration as a test scenario. Each SIPp reg-dereg
call contains three REGISTER requests — the first two are for
registration and authentication and the third is for deregistra-
tion. If any of the three requests yields an unexpected response
(e.g., 408 Request Timeout and 503 Service Unavailable), the
call is considered as “failed.” If a request does not receive any
response in 10 seconds, this call also fails due to timeout.

SIPp runs on a dedicated physical server. We change the
call rate with a granularity of 50 calls/sec from 200 calls/sec
to 1100 calls/sec depending on the deployment size. Each test
lasts 300 seconds and we repeat it 10 times to average the
results.

2) System Capacity Measurement: The definition of VNF
capacity may vary depending on the functionality of the VNF
and type of workload. In our study of the Clearwater IMS,
the most important metric is the maximum offered workload
at which it can provide the desired stable service. We measure
this by monitoring how closely the successful call rate (SCR)
reported by SIPp follows the input call rate (/CR) we specify
in SIPp. Both quantities are in units of calls per second.

Clearwater uses a token bucket mechanism [11] to control
the load. It accepts a request only if the token bucket is non-
empty. The token bucket is replenished based on a token rate
that is adjusted as follows. If current message queuing delay
has not reached a predefined threshold value, the token rate
increases additively; otherwise it decreases multiplicatively:

ICR 1T = message queuing time T = token rate |
= reject requests = SCR |

Therefore, we define Clearwater system cagacity with reg-
dereg traffic to be the maximum /C R when % > a specified
threshold, e.g., 0.8 or 0.9. In other words, when reg-dereg call
rate exceeds the system capacity, a certain percentage, say 10

or 20%, of the calls will fail.

C. Results

Based on our observations, Bono, Sprout and Homestead
are the three most heavily loaded Clearwater components
and they are all CPU-bound in single VM per component
instantiation. In our tests, we change the total number of
vCPUs assigned to the Clearwater cluster and evenly distribute
them among the three components. Homer uses one small
instance in all tests. Therefore, in the rest of the analysis, we
focus on CPU usage analysis of Clearwater instances. We did
not cluster Bono nodes due to the observation that Bono nodes
work independently without any synchronization overhead and
it is not the bottleneck in any of our tests.

Table II shows the dggloyment sizes we tested and the
R

maximum [CR when $z7 is 0.8 and 0.9. The column
% = 0.9 gives the system capacities. In the remainder

of this section, we discuss the results using different scaling
methods.



TABLE II: Clearwater system capacity using different scaling
methods. bnls-spls-hsls stands for one small instance
for Bono, 1 small instance for Sprout and 1 small instance for
Homestead

Clearwater Sizing vCPUs I(SJ’ 9})% I(OC 81?
bnls-spls-hsls 3 350 350
bnlm-splm-hslm 6 600 650
bnlm-sp2s-hs2s 6 300 350
bnll-spll-hsll 12 1000 1100
bnll-spll-hs2m 12 550 650
bnll-sp2m-hsll 12 650 650
bnll-sp2m-hs2m 12 450 500
bnll-spll-hsés 12 400 450
bnll-spd4s-hsll 12 500 500
bnll-spds-hsds 12 350 450

1) Scaling Up: To test Clearwater scaling up, we use one
instance per component and increase the size of instances from
small to large (e.g., bnls—-spls-hsls, bnlm-splm-hslm
and bnll-spll-hs1l in table II). Fig. 1 shows the SCR
changes as IC'R increases.
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Fig. 1: Clearwater: scaling up

For the same deployment size, SCR changes signifi-
cantly when ICR exceeds the system capacity point of
SCR = 0.9, which means that Clearwater can no longer
provide stable service beyond that point. Scaling up Clear-
water by doubling the CPU resource almost doubles the
system capacity. For instance, when Clearwater scales from
bnls-spls-hsls to bnlm-splm-hslm, the system ca-
pacity increases from 350 calls/sec to 600 calls/sec, and scaling
further to bnl1l-spll-hs11 boosts system capacity to 1000
calls/sec.

Fig. 2a shows SCR and CPU usage in test case
bnlm-splm-hslm collected from the SIPp report and uti-
lization traces at three different workload levels: underload,
system capacity and overload. Additional plots are available
in [12]. We found that both SC' R and CPU utilization oscillate
significantly when the workload exceeds the system capacity
point. This is due to the Clearwater load control mechanism
on the Sprout instance, which rejects requests when it detects
that the request queuing time exceeds a given latency (e.g.,
100 ms). CPU resources are freed during this load adjusting
period and SIP requests are not handled. This situation can
occur on all instances of Sprout and Homestead when the
CPU usage approaches 100%. In other words, this instance
may become the bottleneck of the entire Clearwater system.

2) Scaling Out: We investigate scaling out by increasing
the number of instances for different components. We com-
pared Clearwater deployment sizes from 1 small instance per
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Fig. 2: SIPp statistics and CPU utilization for bnlm-splm-
hslm and bnlm-sp2s-hs2s. Blue, red and green curves
stand for CPU usage of Bono instance, Sprout instances and
Homestead instances respectively.

component to 4 small instances per component or 2 medium
instances per component (e.g., bnls—spls-hsls, bnlm-
sp2s-hs2s, bnll-sp2m-hs2m and bnll-spd4s-hsds)
shown in fig. 3. Scaling out from bnls-spls-hsls to
bnlm-sp2s-hs2s does not improve the performance of
Clearwater even when the total CPU resource assigned to
Clearwater is doubled. Scaling out further to bnll-sp2m-
hs2mand bnll-sp4s-hs4s improves the performance, but
it is still significantly less than the base case bnll-spll-
hs11 with equivalent vCPU resources.
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Fig. 3: Clearwater: scaling out

Compared to scaling up, scaling out does not increase
Clearwater system capacity due to two key reasons: (1) Data
synchronization among nodes of the same component: In



Clearwater, this includes synchronization of chronos and mem-
cached on Sprout nodes and cassandra on Homestead nodes.
chronos is a synchronized timer service to track registration
expiry information on different Sprout nodes; and (2) Imperfect
load balancing: Bono creates 50 connections to all Sprout
instances, and these connections get refreshed every minute
following a Poisson distribution. If too many rejections (503
response) occur on one specific Sprout node, this Sprout node
is blacklisted by Bono for several periods. Therefore, this
Sprout node becomes idle. Hence we conclude that, Clearwater
does not always benefit from more CPU resources, which
results in the imbalance of CPU usage we observed on different
Sprout nodes in Fig. 2b. This does not occur when allocating
all CPU resources to one instance in the scaling up tests. The
blacklisting combined with per instance load control make load
balancing ineffective.

3) Hybrid Scaling: The goal of hybrid scaling is to iso-
late clustering impact from different components using the
same amount of CPU resources. For instance, Sprout clus-
ters memcached, while Homestead clusters cassandra. We
compared bnll-spll-hs2m to bnll-sp2m-hsll, and
bnll-sp4s-hsll tobnll-spds-hs4s, all of which use
12 vCPUs. As shown in fig. 4, Clearwater exhibits worse
performance when clustering more and smaller instances,
compared to fewer and larger instances. Clustering different
components changes the performance patterns as workload
increases. For instance, SCR shows flatter reduction when
clustering Homestead, while it drops suddenly after reaching
the system capacity point when clustering Sprout.

+—+ bnll_spll_hs2m
800}|+—+ bnll_sp2m_hs1l
+—+ bnll_spll_hs4s +
o +—+ bnll_sp4s_hsll +
& 650| |+ + Target 7
g -
2
2 500
i
S
E
a v
350
20, -
900 350 500 650 800

Input Call Rate

Fig. 4: Clearwater: hybrid scaling

III. FRAMEWORK DESIGN

Motivated by our case study in section II, we believe that
an NFV performance characterization framework should: (1)
accommodate different types of VNFs, (2) adapt the deploy-
ment size of a VNF, with awareness of VNF components,
(3) generate different VNF workloads, (4) collect resource
utilization traces of VNF instances, and (5) generate VNF
performance evaluation reports.

The aim of NFV-VITAL is to quickly determine the
configuration yielding maximum performance of a VNF. This
poses the following challenges: (1) how to handle different
types of VNFs, and (2) how to make practical and thorough
performance testing plans for a given VNF. To generalize to
different VNF types, NFV-VITAL allows users to plug in their
own scripts to deploy and configure a target VNF, run workload
generators, and specify high-level testing “hints” for different
testing modes. Metrics vary based on the VNF. Researchers

may evaluate intrusion detection system (IDS) software in
terms of accuracy, throughput, or additional latency. NFV-
VITAL computes the relationship between the offered load and
the system throughput when varying virtualization/platform
options and orchestration strategies. In other words, NFV-
VITAL computes the maximum workload a VNF can handle
before service quality degrades, using different deployment
sizes and virtualization options.

We leverage the proposed NFV architectural framework
from ETSI [1] and implement NFV-VITAL as shown in Fig. 5.
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Fig. 5: NFV-VITAL framework architecture

The framework consists of four components: VITAL or-
chestrator, VNF workload generator, VNF load monitor, and
user input.

User Input: As discussed above, VNFs are designed for
different purposes, making it difficult to unify their usage. For
testing purposes, we classify their differences into three types:
(1) installation/deployment, (2) workload generation, and (3)
evaluation metric. To bridge these differences, NFV-VITAL
allows users to provide their own deployment specification
and workload specification files, both of which are in json
format. Deployment specifications include VNF information
such as vnf_name, components, instances, flavors,
servers, install, and mode. flavors are the VM
sizes to test and server includes user preferences when
choosing hosts for VNF instances, such as the preferred
number of servers and virtualization features. mode gives the
testing mode for the target VNF, which we will discuss in
section III-A. The workload specification instructs the VNF
workload generator on different rates, stop, generator
and repeat values. Examples and detailed explanations of
user input can be found in [12].

VITAL Orchestrator: The VITAL orchestrator generates Heat
templates [13] that represent the deployment sizes that the
framework will test. The VITAL orchestrator uses each Heat
template to start all instances specified and then runs the given
installation script to bootstrap the VNF. After deployment is
complete, it invokes the VNF workload generator to initiate
the testing process.

The orchestrator also executes a daemon process to receive
and manage resource utilization traces from the VNF load
monitor, and VNF performance logs from the VNF workload
generator. After all tests complete, system performance and re-
source utilization plots are generated for each test. Comparison



plots can be produced for all deployment sizes tested. Based on
the testing mode, the VITAL orchestrator may scan resource
utilization traces immediately after testing each deployment
size.

VNF Workload Generator: The workload generator is in-
voked by the VITAL orchestrator once a test deployment
is complete. The generator reads a specification file, which
includes the name of an input script to run in order to generate
the workload(s) on the target VNFE. The users specify the
location of this script in the generator field. NFV-VITAL
relies on the users to specify the range in which the workload
generator operates and the type of traffic to use, e.g., SIPp
registration requests. The generator starts with the minimum
workload rate given in a range field, and linearly increases
the rate based on an increase field. The same test may be
repeated several times depending on the value of a repeat
field. The VNF workload generator also expects the user script
to return a performance indicator (e.g., SCR in Clearwater
tests) to describe system performance.

Since we use the same range to generate workloads for
all deployment sizes, it is possible that some target VNF
deployments with small sizes reach the system capacity point
ahead of reaching the maximum value in range. In this case,
increasing workload further is not useful. Thus, we provide an
optional feature for the user to define a stopping condition in
the st op field. The testing process for a given deployment size
terminates when the maximum rate is reached or the stopping
condition is satisfied.

VNF Load Monitor: Since users may not have access to
physical hosts on some platforms, the VNF load monitor runs
on all VNF instances to collect (i) CPU, (ii) memory, and (iii)
network utilization, and record them in a csv file during a
test. When a test is complete, the three utilization traces are
uploaded to the VITAL orchestrator. The users can decide to
use any of three utilization values for scaling.

A. Testing Modes

To make practical and thorough testing plans, NFV-VITAL
allows users to choose from three testing modes: custom sizing,
exhaustive search, and component-aware directed search.

Custom Sizing: In this mode, users can specify different
deployment sizes in the sizes field of the deployment
specification, e.g.., number and flavor of each VNF component.
The VITAL orchestrator directly translates these deployment
sizes into Heat templates. A user can use this mode to test the
maximum workload and the bottleneck components of specific
deployment sizes.

Exhaustive Search: Exhaustive search is ideal when a user
wants to test all possible deployment sizes for given resources.
With exhaustive search, the VITAL orchestrator first computes
all possible combinations based on the given flavors of each
VNF component that satisfy the resource requirements, then
translates all possible sizes into Heat templates. As with cus-
tom sizing, deployment sizes to test are determined beforehand
in an offline fashion.

Component-aware Directed Search: An important lesson we
learned from section II is that the performance of a VNF
deployment can be limited by a specific component. Thus, we

design a component-aware directed search system to determine
the optimal deployment size for a given workload, or the max-
imum performance that can be reached using given resources.
Unlike custom sizing and exhaustive search, the deployment
sizes in directed search are computed online during the testing
process.

The VITAL orchestrator starts with the minimal deploy-
ment size (e.g., one instance with minimum flavor per compo-
nent). After tests on this initial deployment size are complete,
the VITAL orchestrator analyzes the resource utilization traces
when the system capacity point is reached, and determines the
VNF component with highest resource usage. Directed search
then scales up or out. We are still investigating the integration
of hybrid scaling in directed search to increase the search
space. The testing process terminates either when the given
workload is reached or when the given resource is exhausted.

With exhaustive search and component-aware directed
search, the solution space may grow exponentially as the
resources and the number of components increase. However,
the available VM sizes are limited, which reduces the number
of possible solutions. For instance, we only use three different
VM sizes cwl.small, cwl.medium and cwl.large in
our demonstrations. For exhaustive search, since all possible
deployment sizes are computed offline, this problem does
not affect the performance at run time. For component-aware
directed search, we limit the users to use either scaling up or
scaling out in one set of tests. If the users choose scaling out,
only one VM size can be defined. Therefore, the users can
determine the optimal VM size of the VNF by scaling up and
the optimal number of VMs for each component by scaling
out. These strategies yield a reasonable solution space size in
our evaluation.

B. Framework Demonstrations

Using NFV-VITAL, we conduct three demonstrations on
Clearwater and two types of IDS software: Snort and Suricata.

1) Clearwater Demonstration: Unlike the Clearwater tests
in section II, we use component-aware directed search in this
demonstration. The user input file has a 6-vCPU resource
restriction, CPU core pinning, and scaling up. This input file
can be found on our webpage (denoted in the footnotes).

NFV-VITAL first tests bnls—spls—hsls and finds that
the bottleneck is CPU usage on the Sprout component. It
then scales up to bnls-splm-hsls adding one more vCPU
to Sprout. Now Homestead CPU usage becomes the system
bottleneck. NFV-VITAL then scales to bnls-splm-hslm.
Sprout becomes the bottleneck again. However, we cannot
scale up the Sprout instance to cwl.large because of the 6-
vCPU threshold we specified. NFV-VITAL then repeats the
same process using core pinning. Fig. 6 shows how SCR
changes when applying the same reg-dereg traffic. Based on
this result, we conclude that the optimal deployment size with
a 6-vCPU restriction is bnls—splm—hs1lm and the maximum
system capacity is 600 calls/second of reg-dereg traffic.

As shown in section II, different components of Clearwater
exhibit different CPU usage patterns: Sprout is the bottleneck
with twice the CPU usage of Bono when we assign them the
same resources. However, the optimal Clearwater deployment



size that NFV-VITAL finds in this demonstration yields similar
CPU usage for Sprout, Homestead, and Bono (75% to 85%).

We also tested with reg-invite traffic, with 21 requests
and responses in each call. The optimal deployment size that
NFV-VITAL finds is also bnls-splm—hslm. The maximum
system capacity is 150 calls/second, however. This confirms
that with different types of traffic, the same VNF can exhibit
significantly different system capacity.

In summary, NFV-VITAL can locate the performance bot-
tleneck of the entire VNF under different conditions. Given the
resources or workload, NFV-VITAL can determine the most
efficient deployment size in an automated fashion.
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Fig. 6: NFV-VITAL demonstration on Clearwater

2) IDS Demonstration: In this demonstration, we compute
the packet processing ability of Snort (version 2.9.7.3) and
Suricata (version 2.0.8) using custom sizing. Since both IDSs
are single VNF, we test them with three deployment sizes: one
small instance, one medium instance, and one large instance.

Similar to the baseline test in [14], we keep the default
configuration of both Snort and Suricata using the same VRT
rule set. The only change is that we enabled the “set-cpu-
affinity” option on Suricata. The test environment involves
four VMs in the same virtual subnet running hping3 [15] to
generate UDP traffic at the same rate with packet size 64
bytes. All traffic is mirrored to a separate VM running IDS
software. We add an additional rule to match UDP packets
with the keyword “malicious” in the payload. A VM that
generates traffic matching this rule is identified as a malicious
node. We vary the number of malicious nodes from 0 to 4
to generate five types of traffic: 0% malicious traffic, 25%
malicious traffic, 50% malicious traffic, 75% of malicious
traffic, and 100% malicious traffic. The workload is defined
by the packet generation speed from all four senders, and the
system performance is represented by the packet processing
speed of the IDS — both quantities are in kilo-packets per
second (kpps).

Fig. 7 shows how the packet processing speed on Snort
changes with increasing traffic. We observe that for the same
type of traffic, scaling the Snort instance from small to large
yields little improvement. Investigating the resource utilization
traces that our framework collected, we find that at a given
time, Snort only uses a single vCPU even with medium and
large instance sizes. The rest of the vCPUs have low utilization.
This confirms the fact that Snort scales poorly on multi-core
systems. A potential solution to this problem is to run multiple
instances of Snort and configure them to handle partial traffic
in the same VM. However, this may lead to false negatives

for some stateful attacks. When we increase the malicious
traffic proportion, we find that the processing speed of Snort
significantly decreases due to the rule matching overhead.
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Fig. 7: NFV-VITAL demonstration on Snort

Fig. 8 shows that Suricata exhibits very different behavior
from Snort in the same testing environment: increasing the pro-
portion of malicious traffic does not impact the packet process-
ing speed as much as on Snort. Suricata benefits from native
multi-threading support and decoupling of packet acquisition,
decoding, detection, and output into different modules. For
instance, when increasing malicious traffic, detection threads
consume more CPU cycles. Since they use different vCPUs,
this does not affect the performance of packet acquisition,
leading to better performance than Snort. With no malicious
traffic, multi-threading only boosts packet processing speed of
Suricata by 30% over Snort. However, scaling Suricata from a
medium to a large instance does not improve its performance.
This is because Suricata only uses 250 out of 400 (4x100) of
the CPU resources in a large instance. Further tuning of the
Suricata “threading” options may increase performance in the
case of large instances.

To conclude, with NFV-VITAL, users can compare the
performance of VNFs in a controlled environment with mul-
tiple types of workload. NFV-VITAL aids in understanding
performance differences and optimizing VNFs with different
configurations.
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Fig. 8: NFV-VITAL demonstration on Suricata

IV. RELATED WORK

The performance optimization of middleboxes long pre-
dates the recent interest in Network Functions Virtualization.
In addition to the work mentioned in the introduction, a
number of studies have applied clever techniques to enhance
the performance of middleboxes. Dobrescu et al [16] proposed
a general-purpose packet-processing system that combines
ease of programmability with predictable performance, while
supporting a diverse set of applications and serving multiple



clients with different needs. Anwer et al [17] describe the
design of Slick, a prototypical control plane for network
middleboxes. Martins et al [18] proposed a new middlebox
platform with a smaller size, shorter booting time, and strong
network processing ability.

Sekar et al [19] proposed CoMb to systematically explore
opportunities for consolidation, both at the level of building
individual middleboxes and managing a network of middle-
boxes. Using a prototype implementation in Click, they show
that CoMb reduces the network provisioning cost and the
load imbalance in the network. Gember et al [20] investigated
application deployment in the cloud from various perspec-
tives, including elasticity, network flow distribution, and vir-
tual machine placement. They also advocate mechanisms that
help exercise unified control over the key factors influencing
middlebox operations [21]. They realize a software-defined
middlebox networking framework to simplify management
of complex, diverse functionalities. More recently, they have
proposed a control plane called OpenNF to address race
conditions, bound overhead, and accommodate a variety of
network functions [22].

V. DISCUSSION AND CONCLUSIONS

This work has demonstrated the importance of VNF per-
formance characterization. Based on our extensive case study
of the Clearwater IMS VNF, and two IDS VNFs (Snort
and Suricata), we proposed NFV-VITAL, a general frame-
work for VNF characterization. We observe that scaling up
VM resources (vVCPU and memory) for different Clearwater
components results in almost linearly proportional increase in
system capacity. This is because a single VM per component
instantiation is compute-bound for registration-deregistration
workload. Since it is impossible to infinitely increase vCPU
and memory allocation to a single VM, NFV orchestration
controllers have to resort to scale out by instantiating mul-
tiple VM clusters for each component. However, comparing
different equivalent instantiations with the same vCPU and
memory resources, scaling out performs worse than scaling up.
This is due to clustering overhead associated with underlying
subsystems like memcached (for Sprout) and cassandra (for
Homestead). The clustering overhead is amortized as the size
(resource allocation) of individual VM instances increases.
We also characterized system performance with hybrid scaling
instantiations. Since different components are under different
loads, such characterization can be leveraged to design control
algorithms for selecting optimal VM sizing and clustering for
different components on the available infrastructure. Analysis
of performance degradation due to clustering enabled us to
detect deficiencies in the load balancing approach of Clear-
water. Similarly, we leveraged the NFV-VITAL framework
to validate the limitations of Snort compared to Suricata.
Scaling up Snort by allocating more vCPU resources is not an
effective option, whereas it is effective for Suricata. The NFV-
VITAL characterization framework can demystify unexpected
performance degradation.

We are currently completing the prototype implementation
of NFV-VITAL, and characterizing additional VNFs (e.g., [23],
[24]). Data collected will serve as input to our future work on
automated hybrid scaling and on the importance of different
configurations, such as SR-IOV and CPU pinning. NFV or-
chestration engines can optimize the scaling strategy for better

and more balanced overall system performance. In case of
complex VNFs like Clearwater, NFV-VITAL can be used for
preemptive resource flexing of different components before
individual components are overloaded. VNF characterization
can also form the analytic basis for capacity planning for given
workloads and infrastructure resources. Another application
of NFV-VITAL is to fine tune the VNF implementation and
performance with “devops” VNF development models enabled
by NFV adoption.
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