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Abstract—Rapid flooding is necessary for code updates and
routing tree formation in wireless sensor networks. Link
correlation-aware collective flooding (CF) is a recently proposed
technique that provides a substrate for efficiently disseminating
a single packet. Applying CF to multiple packet dissemination
poses several challenges, such as reliability degradation, re-
dundant transmissions, and increased contention among node
transmissions. The varying link correlation observed in real
networks makes the problem harder. In this paper, we propose
a multi-packet flooding protocol, SYREN, that exploits the syn-
ergy among link correlation and network coding. In particular,
SYREN exploits link correlation to eliminate the overhead of
explicit control packets in networks with high correlation, and
uses network coding to pipeline transmission of multiple packets
via a novel, single yet scalable timer per node. SYREN reduces the
number of redundant transmissions while achieving near-perfect
reliability, especially in networks with low link correlation.
Testbed experiments and simulations show that SYREN reduces
the average number of transmissions by 30% and dissemination
delay by more than 60% while achieving the same reliability as
state-of-the-art protocols.

I. INTRODUCTION

In wireless sensor networks, flooding is used for code
updates [1], [2], reconfiguration, and routing tree creation [3],
[4]. Flooding involves the dissemination of multiple packets
within an acceptable delay bound. Since these packets pertain
to a single operation, flooding algorithms must be designed
for efficiency and reliability.

Most current flooding protocols use an explicit ACK from
each receiver, causing collisions. To avoid the heavy ACK
load, Zhu et al. proposed a novel Collective Flooding (CF)
protocol [5] to exploit the link correlation among neighboring
nodes. The phenomenon of link correlation, which had previ-
ously been overlooked, allows a sender to infer the success of
a transmission to a receiver based on ACKs from correlated
neighbors. In other words, the traditional direct ACK per
receiver is transformed into collective ACKs. With collective
ACKs and an efficient forwarder selection mechanism, CF
greatly reduces dissemination delay while achieving the same
reliability as state-of-the-art solutions.

CF, however, was designed to flood a single packet at a
time and cannot be easily extended to support multi-packet
flooding. There are two obvious extensions to CF for the
multi-packet scenario: (i) packet transmissions at fixed time
intervals, or (ii) consecutive packet transmissions without
significant delay. Since CF requires ∼0.9-2.34 seconds on
average to disseminate a single packet, even for a small

network of 19-36 nodes, the total dissemination delay for
all packets will be exceedingly high in the first case. The
second approach allows successive transmissions with minimal
delay. However, it imposes these non-trivial challenges: (1)
Reliability degradation: Due to varying link correlation in a
neighborhood, different nodes may receive different subsets of
transmitted packets; (2) Redundant transmissions: To achieve
high reliability, the sender needs a per-packet reception record
for each neighbor and needs to retransmit all missing packets,
which leads to redundant transmissions; and (3) Increased
contention: Performance further degrades when the receivers
possessing different subsets of packets experience packet loss
due to contention and collision.

To quantify the extent of link correlation in wireless sensor
networks, we perform testbed experiments in different network
settings and environments [6]. Experimental results show that
the degree of link correlation varies in practical networks:
around 50-65% of the link pairs exhibit high (> 80%)
correlation, about 25-30% pairs see moderate (80 − 40%)
correlation, and the rest are poorly correlated (< 40%). Similar
observations have been reported in a recent empirical study [7].
These results suggest that network coding protocols work well
under low link correlation whereas CF [5] may not perform
well in networks with low or medium correlation.

Network coding is a well-known technique for addressing
the reliability, contention, and throughput concerns for multi-
packet flooding, and a number of network coding-based dis-
semination protocols have been proposed in the literature [8],
[9], [10]. However, these protocols are oblivious to spatial link
correlation; they do not take advantage of such link correlation
in estimating packet reception. Instead, they rely on explicit
acknowledgments which can incur significant overhead.

In this paper, we observe that network coding and link
correlation are synergistic techniques for effective multi-packet
flooding, and propose SYREN, a multi-packet flooding (or
data dissemination) protocol that exploits this synergy. While
collective ACKs with link correlation reduce the number
of transmissions, network coding coordinates the flooding
of multiple packets in short dissemination time and near-
perfect reliability. In addition, network coding provides robust
performance under different network conditions, e.g., when
link correlation is low.

SYREN seamlessly integrates network coding with link
correlation. It floods a large data object in the form of a
batch of packets, where a sender transmits a random linear



TABLE I
COMPARISON AMONG SYREN AND EXISTING FLOODING APPROACHES.

Properties Deluge Rateless Deluge ECD CF UFlood Glossy Splash SYREN
Multi-packet flooding Yes Yes Yes No Yes No Yes Yes
Exploits link correlation No No No Yes No No No Yes
Uses network/XOR coding No Yes No No Yes No Yes Yes
Control/ACK packet needed Yes Yes Yes No Yes No Yes No
Timer based sender selection No No Yes (Feedback needed) Yes Yes (Feedback needed) No No Yes
Pipelining in a batch No No No No No No Yes Yes
Hardware intervention No No No No No Yes Yes No

combination of packets (in a batch). A node is selected as a
sender to transmit a linear combination only if it wins a self-
organized competition among the neighbors. The competition
for transmission is controlled in a distributed fashion by a per-
node forwarding timer. The timer value reflects the broadcast
effectiveness of a node which is locally estimated based on: (i)
uncovered neighbors, i.e., the neighbors that have not received
the complete data, (ii) link quality, (iii) link correlation, and
(iv) received packets. The most effective node will start to re-
broadcast early to suppress transmissions from less effective
nodes, consequently reducing redundancy.

Our contributions are summarized as follows: (1) We design
SYREN, the first (to the best of our knowledge) multi-packet
flooding protocol that demonstrates how link correlation and
network coding can synergistically disseminate packets with
near-perfect reliability and low delay. We propose two novel
techniques in SYREN: (i) Pipelining the transmission of
packets within a batch and across batches to improve reliability
and reduce dissemination delay; (ii) Using a single timer
to manage all transmissions by a node, which makes the
protocol simple and scalable. The responsibilities of all nodes
are homogeneous, and the protocol has low overhead since
each node only needs to maintain per-batch per-neighbor state
information rather than per-packet per-neighbor statistics.

(2) We implement SYREN in TinyOS and evaluate its
performance through extensive TOSSIM simulations. The re-
sults demonstrate that SYREN reduces the average number of
transmissions by 30% and dissemination delay by 60%, while
achieving the same reliability as state-of-the-art protocols.

(3) We evaluate SYREN in a real-world testbed of 20 TelosB
motes and observe performance gains similar to the simulation
results. We have released the SYREN implementation for
TinyOS on github (https://github.com/smiftekhar/SYREN).

II. RELATED WORK

Table I contrasts the data dissemination protocols in a
wireless sensor network (WSN) proposed over the past few
years. Among these, Deluge [11] is the de facto standard
incorporated into TinyOS. Deluge divides a data object into
multiple batches. Each node then periodically advertises the
most recent version of the data object and the set of batches
available for transmission, based on which nodes request (and
receive) the needed batches.

To address the limitations of Deluge in sparse and lossy
networks, coding-based dissemination protocols such as Rate-
less Deluge [8], SYNAPSE [10], and AdapCode [9] have
been proposed. These protocols use network coding or erasure

coding to enhance reliability. However, none of them exploits
the link correlation present in the network, which can reduce
the overhead of control messages.

CF [5] was the first flooding protocol to exploit link corre-
lation in WSNs. It uses a Collective ACK to infer a successful
transmission, and dynamically selects the most effective node
as the next sender. However, CF is designed to flood a single
packet, and suffers from reliability degradation, redundant
transmissions, and increased contention when directly applied
to multi-packet flooding (details in Sec. III).

Like SYREN, ECD [12] uses a link quality-based forwarder
selection algorithm to mitigate contention over lossy links, but
it does not exploit spatial link correlation to estimate the packet
reception at neighboring nodes. Instead, it uses explicit ADV
(advertisement) and REQ (request) messages which incur high
overhead. It does not use network coding and hence suffers
from redundant packet transmissions.

The work closest to our work is UFlood [13], a recently
proposed data dissemination protocol for mesh networks. Like
SYREN, it exploits network coding and link quality-based
sender selection. SYREN differs from UFlood in two major
ways. First, UFlood uses explicit feedback messaging to update
the reception status of receivers whereas SYREN uses link
correlation-based implicit collective ACKs. A typical feedback
message in UFlood requires 80 bytes of payload which incurs
significant overhead in an energy-constrained sensor network.
Second, the timer design of UFlood does not allow pipelined
transmissions of packets in a batch, which we will show to be
a key advantage of SYREN.

Splash [14] is a data dissemination protocol built on
Glossy [15] for flooding a single packet. Splash exploits con-
structive interference which allows concurrent transmissions
of the same packet if the temporal displacement among these
transmissions is less than 0.5 µs. However, when correlated
loss is prevalent in the network, constructive interference can-
not work, rendering Splash unusable [14]. In contrast, SYREN
can work under different network conditions, exploiting link
correlation information (in the form of implicit ACKs) to
estimate packet reception. Further, to support pipelining a
batch of packets, Splash requires dynamic channel switching
and tight synchronization across nodes, requiring hardware
changes, whereas SYREN uses standard networking primitives
and supports pipelining through intelligent timer design.
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Fig. 1. Collective Flooding in an example sensor
network.
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Fig. 2. Reliability in flooding a batch (size = 2) of packets.

III. BACKGROUND

A. Link Correlation and Collective ACKs

In traditional explicit ACK-based flooding in WSNs, each
receiver sending a separate ACK causes contention and explo-
sion of ACK messages. To mitigate these problems, CF [5]
introduces the concept of collective ACKs that utilize link
correlation. Correlation among links is represented by the
Conditional Packet Reception Probability (CPRP). The CPRP
– denoted as PS(X|Y ) – is the probability that node X
receives a packet from sender node S, given that the same
packet is received by node Y . We discuss a practical method
to estimate CPRP values in Section V-F as part of SYREN.

To understand how this CPRP information allows collective
ACKs, consider the example network shown in Fig. 1. When
S broadcasts a packet and node 2 receives it, this transmission
serves to node 2 as: (i) a direct ACK that S has the packet
already, and (ii) a collective ACK that node 1 has received the
packet assuming probability PS(1|2) = 100%. Again, if node
2 re-broadcasts the packet and S overhears that re-broadcast,
S has a direct ACK from node 2, as well as an implicit
ACK for the reception at node 1 based on the assumption that
PS(1|2) = 100%. Since S considers all its neighboring nodes
as covered (i.e., all the neighbors have received the packet), it
decides to terminate its transmission. In contrast, in traditional
ACK-based solutions, S may redundantly transmit since ACKs
from node 1 to S are likely to be lost due the poor link quality
(15%) between them.

CF dynamically selects a node as forwarder based on the
number of uncovered neighbors and link quality among them.
For the example shown in Fig. 1, selecting node 1 as a fixed
forwarder creates unnecessary transmissions due to poor link
quality with its neighbors. In CF, if nodes 1 and 2 both receive
a packet, they compete to be a forwarder and node 2 wins the
competition due to better link quality with its neighbors.

CF nodes are initially in a “maintenance state” and peri-
odically exchange hello messages with their neighbors. The
record of all hello messages received from neighbors is used to
discover a node’s 1-hop neighbors, and to calculate link quality
and CPRP values with these neighbors. Thus, every node
u maintains the following information: (i) set of neighbors,
N(u), (ii) link quality with node v, L(u, v), ∀v ∈ N(u), and
(iii) CPRP value, Pv(k|u), ∀v,k ∈ N(u).

The CPRP information enables collective ACKs in a cumu-
lative manner. Using these collective ACKs, each node main-

tains the probability (called coverage probability) of a neigh-
boring node being covered in a broadcast that is performed or
overheard by that node. When a node u receives or overhears
a broadcast from node v, it enters the “receiver state” and
updates the coverage probability, CPu(k),∀k ∈ {N(u) − v}
as follows: CPu(k) = 1− (1− CPu(k)).(1− Pv(k|u)).

When the coverage probability CPu(k) reaches a certain
threshold (α), u considers k as covered. If u still has uncovered
neighbors, it joins the competition to be the next forwarder by
setting its back-off timer. The timer is calculated based on the
number of uncovered neighbors and link quality with them.

By winning the forwarder competition, node u enters the
“sender state” to send out the packet, and updates the cover-
age probabilities of every uncovered neighbor k as follows:
CPu(k) = 1− (1− CPu(k)).(1− L(u, k)).

B. Link Correlation in Real Networks

Recently, several measurement studies [7], [14] quantified
the link correlation present in wireless sensor networks. While
link correlation varies across networks and channels, there
are link pairs that have highly correlated reception in all
cases. Srinivasan et al. [7] presented results from two testbed
experiments where about 35-60% link pairs in one testbed
exhibited high correlation and about 20% link pairs in another
testbed showed similar correlation. The results of our own
testbed experiments [6] in different environments show that the
extent of link correlation varies in practical networks. Around
50-65% of the link pairs exhibit high (> 80%) correlation,
about 25-30% pairs see moderate (80 − 40%) correlation,
and the remainder are poorly correlated (< 40%). With such
variation in link correlation, it becomes challenging to exploit
link correlation-based ACKs for multi-packet dissemination,
as discussed next.

IV. CHALLENGES AND OPPORTUNITIES

Directly applying CF to flood multiple packets causes
reliability degradation, redundant transmissions, and increased
contention. These problems can be addressed by exploiting the
synergy between link correlation and network coding.

1) Reliability Degradation: Consider the scenario in
Fig. 2(a) where the source node S floods a batch (size = 2)
of packets {a, b} using the CF protocol. Since S has good
link quality with its neighbors, it estimates that nodes 1 and
2 have both received the transmitted packets. Upon receiving
each packet, nodes 1 and 2 estimate that the packet has been



received by each other since PS(1|2) = PS(2|1) = 100%.
Then, they compete to be the next forwarder for each of the
received packets by setting their respective per-packet back-off
timers. Since both nodes 1 and 2 have one uncovered neighbor
and the same link quality with that neighbor, they are equally
likely to win the competition.

Without loss of generality, we assume that node 1 is selected
as forwarder and broadcasts both packets {a, b} for which it
updates the coverage probability of node 3. However, due to
poor link quality between node 1 and 3, node 1’s estimated
coverage probability for node 3 does not exceed the specified
threshold (α). Again, as node 2 overhears the transmissions,
it updates the coverage probability of node 3 based on CPRP
value, P1(3|2), which also does not meet the threshold. Thus,
nodes 1 and 2 both consider node 3 as uncovered and compete
to be the forwarder. This time, we assume that node 2 wins
the competition and updates the coverage probability for node
3 after forwarding the packets {a, b}. Upon overhearing the
transmissions from node 2, node 1 also updates the coverage
probabilities of node 3. Since the coverage probabilities are
updated cumulatively, nodes 1 and 2 find that the coverage
probabilities of node 3 for both packets exceed the threshold.
However, only two transmissions (from nodes 1 and 2) of two
packets {a, b} result in four possible combinations of packet
receptions at node 3: {〈a, a〉, 〈b, b〉, 〈a, b〉, 〈b, a〉}. Thus CF
achieves only 50% reliability here, since a node should be
considered as covered only if it receives the complete batch
of packets.

Network coding can improve the reliability to 100% in
the above case. As shown in Fig. 2(b), after receiving two
independent combinations computed over packets {a, b} from
S, nodes 1 and 2 are always able to decode the original packets
and also to broadcast linearly independent combinations of
these packets. Assume that the combinations broadcast by
node 1 and node 2 are {a+ b, a+ 2b} and {a+ 3b, 2a+ 5b},
respectively. This yields four possible combinations of packets
received at node 3: {〈a + b, a + 3b〉, 〈a + 2b, 2a + 5b〉, 〈a +
b, 2a + 5b〉, 〈a + 3b, a + 2b〉}. This achieves 100% reliability
since the complete batch of packets can be recovered from
any of the combinations.

2) Redundant Transmissions: Consider the example in
Fig. 3 where source node S broadcasts a batch of packets,
{a, b}. Consider the case when node 1 only receives packet a,
and node 2 only receives packet b as illustrated in Fig. 3(a).
Both nodes 1 and 2 estimate each other as uncovered for their
received packets, since PS(2|1) < α and PS(1|2) < α. Now,
they compete to be forwarder by starting their respective back-
off timers. Assume that node 1 wins, i.e., re-broadcasts first,
which acts as a direct ACK to S that node 1 has packet a. S
also estimates the probability of node 2’s reception of packet
a and considers node 2 as uncovered for the packet a, since
P1(2|S) < α. When node 2 re-broadcasts its received packet,
S decides that node 2 has packet b. This time S considers node
1 as uncovered for the packet b, because P2(1|S) < α. Since
each neighbor misses a packet, S is required to re-transmit
both {a, b}. CF may thus cause redundant transmissions,
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Fig. 3. Redundant transmissions in flooding a batch (size = 2) of packets.
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Fig. 4. Contention issues while flooding a batch (size = 3) of packets.

increasing the overall dissemination delay.
With network coding (depicted in Fig. 3(b)), S transmits two

linearly independent combinations, a+2b and 2a+b computed
over packets {a, b}. After overhearing re-broadcasting from
nodes 1 and 2, S decides that both nodes have received at
least one of the two linear combinations. Thus, it suffices for
S to successfully transmit one more linear combination of the
original packets.

3) Timer Intricacies and Increased Contention: In the pres-
ence of links with little correlation, transmission of multiple
packets may result in the reception of different subsets of
packets at different neighboring nodes. A node that overhears
re-broadcasts from different nodes is required to maintain
per-packet per-neighbor reception statistics. If the node cal-
culates different back-off timer values for different packets
(since the number of uncovered neighbors may be different
for each packet), several timers will be required to ensure
timely transmission of these packets. Aggregation of different
transmissions using a single forwarding timer mitigates this
problem but introduces intricacies to the protocol.

The situation is aggravated by contention among neighbor-
ing nodes. Consider the example in Fig. 4(a) where S is trans-
mitting a batch (size = 3) of packets, {a, b, c}. With mediocre
link quality from S to nodes 1 and 2, the nodes receive two
different sets of packets, {a, b} and {a, c}, respectively. Now,
both nodes 1 and 2 become eligible to be forwarders and start
back-off timers to transmit the received packets. Assume that
node 1 wins the competition and starts transmitting packet
a. Even if node 2 overhears that transmission of packet a, it
does not stop the timer to transmit packet c. Moreover, node 2



cannot know that node 1 is going to transmit one more packet,
b. Thus, if the timer of node 2 fires before node 1 completes
the transmission of packet b, one of these two transmissions
will likely experience contention delay.

With network coding, each packet is a linear combination of
the original packets and a node considers one of its neighbors
as covered once it estimates that the neighboring node has
received sufficient linear combinations to decode the data. This
eliminates the need to track the per-packet reception records
of neighbors. Consider Fig. 4(b) where S transmits three inde-
pendent linear combinations, {a+b+c, a+2b+c, 3c}. Nodes
1 and 2 receive two different sets of linear combinations,
{a + b + c, a + 2b + c} and {a + b + c, 3c}, respectively.
Now, when node 2 overhears the transmission of a linear
combination from node 1, it resets its own back-off timer
after updating coverage probabilities for the neighbors. Thus,
the transmission of the next linear combination from node 1
is likely to pass through without experiencing collision with
transmissions from node 2.

V. SYREN: A DATA DISSEMINATION PROTOCOL

SYREN exploits link correlation-based implicit ACKs and
network coding to reduce redundant transmissions and im-
prove reliability of data dissemination. A node in SYREN
takes one of three roles: a source, a receiver, or a forwarder.
The source divides a data object into fixed-size batches,
generates network-coded packets per batch, and broadcasts
the coded packets. When a node overhears a broadcast, it up-
dates its per-neighbor reception records consisting of a coded
packet counter and coverage probability. The coded packet
counter represents the node’s estimate of packet receptions at
a particular neighbor, and the coverage probability indicates
the estimated reception probability of a coded packet at that
neighbor. The node considers a neighbor covered for a batch
when it estimates that the neighbor has received sufficient
packets to decode the original packets in that batch. If the node
has uncovered neighbors, it competes to be the next forwarder
by setting a local timer according to its broadcast effectiveness.
When the timer fires, the node sends out a coded packet and
updates the neighbors’ reception status. The node repeats the
process until all its neighbors are covered for the current batch.

A. Network Coding

In order to transmit multiple packets reliably, each node in
the network needs to track which packets have been received
by which neighboring nodes. By incorporating network cod-
ing, SYREN avoids maintaining such per-packet per-neighbor
reception statistics. Since all coded packets have similar sig-
nificance, it is sufficient for a node to receive any coded
packet instead of receiving a particular packet. In addition,
network coding helps SYREN reduce the number of redundant
transmissions, especially in networks with low link correlation
as discussed in Sec. IV-2.

To control the coding costs, SYREN divides a large data
object into batches of M packets, where M does not need to be
a fixed value. We refer to these M packets as original packets

that are mixed using network coding to produce coded packets
for a batch. Every packet transmitted by a node is a coded
packet, C =

∑
i aipi, where the ai’s are coefficients chosen

randomly by the node, and the pi’s are packets belonging to
a batch. The packet header contains four fields: (i) batch ID,
g, (ii) number of packets, M , in that batch, (iii) number of
linearly independent received packets, Mg , and (iv) a unique
identifier representing the coding coefficients. The batch ID
helps distinguish coded packets from two different batches.

B. State Management

Each node in our protocol maintains information about link
quality and link correlation among its neighboring nodes. A
node u maintains a list of its neighbors, N(u) and link quality,
L(u, k) for every k ∈ N(u). It also keeps information about
the conditional reception rate of a packet, Pv(k|u), where v ∈
N(u) is the sender of the packet and k ∈ {N(u)−v}. L(u, k)
and Pv(k|u) are calculated using periodic hello messages as
discussed in Sec. V-F.

The node also maintains information regarding transmission
and reception of coded packets in a batch: (1) A packet buffer
which stores the received coded packets that are linearly inde-
pendent. (2) A vector of unique identifiers, each representing
the set of coding coefficients for a received packet. (3) A
vector of coded packet counters, where counter C(u, k)(≤M ,
which maintains the node’s estimate of the number of packets
received at the neighboring node k ∈ N(u). (4) A coverage
probability vector, where coverage probability CPu(k) indi-
cates estimated probability that the neighbor k ∈ N(u) has
received a coded packet. (5) A forwarding timer value which
indicates the amount of time node u waits before transmitting
the next packet.

C. Exploiting Link Quality and Correlation

When a node transmits or receives a coded packet, it
exploits link quality and correlation information to estimate
the reception of the packet at its neighboring nodes. Fig. 5
depicts the processing steps of data transmission and reception
at a node for a particular batch.

Receiver: Whenever a node receives a broadcast coded
packet, it checks whether the packet is innovative with respect
to its packet buffer. Regardless of the innovativeness of the
received packet, the receiver updates the coverage probabilities
and coded packet counters of its neighbors. Assume u receives
a packet from v. Initially, for any node k ∈ N(u), CPu(k) = 0
and C(u, k) = 0. Node u retrieves Mv

g from the received
packet, where Mv

g refers to the number of linearly independent
packets received so far by v. Then, u sets C(u, v) = Mv

g

and updates the coverage probability for each neighbor k ∈
{N(u)− v}. CPu(k) is computed as in CF (Sec. III-A).

When CPu(k) reaches the threshold α, the node u estimates
that k has received one coded packet and resets CPu(k) to 0
after incrementing the counter C(u, k). When C(u, k) = M ,
node u considers k covered for the current batch and resets
C(u, k) to 0. Node u joins the competition to be a forwarder
by setting its timer until all of its neighbors are covered.
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Forwarder: The node whose timer fires first wins the
competition to be the next forwarder. The forwarder creates a
coded packet as a random linear combination of the packets
in the packet buffer and then broadcasts it. Assume that node
u becomes the forwarder. After broadcasting a coded packet,
u updates the coverage probability of each neighbor k, using
the same equation as in CF (Sec. III-A).

As in the receiver’s case, when CPu(k) exceeds a pre-
specified threshold α, the node u estimates that k has received
one coded packet and resets CPu(k) to 0 after incrementing
the coded packet counter for k, C(u, k). If C(u, k) reaches M ,
node u considers k as covered for the current batch and resets
C(u, k) to 0. Node u joins the competition to be a forwarder
by setting its timer as long as it has uncovered neighbors.

In CF, coverage probability is updated cumulatively for suc-
cessive transmissions of a particular original packet whereas
in SYREN, coverage probability is updated cumulatively for

any coded packet belonging to a particular batch. Considering
a small neighborhood consisting of 3 nodes u, v, and k, Fig. 6
shows how cumulative updates of coverage probabilities take
place at nodes u and v under SYREN.

D. Forwarder Selection

To reduce redundant transmissions, we aim at selecting the
best forwarder in terms of broadcast effectiveness. Thus, a
node having more uncovered neighbors with good link quality
is highly desirable as a forwarder. However, it is also important
to select a node that has the ability to generate more innovative
packets. A node with more packets is likely to generate more
innovative packets and thus offers higher innovation impact.
Considering both factors, a forwarder in SYREN is selected in
a distributed manner via a self-organized competition among
neighbors. Since the competition is governed by the locally
managed forwarding timers (a.k.a. back-off timers), we com-
pute the forwarding timer value at a node using its broadcast
effectiveness and innovation impact.

Broadcast effectiveness of a node u, BE(u), is a function
of its neighborhood size, link quality with neighbors, and the
probability of neighboring nodes being uncovered.

BE(u) ∝
∑

k∈N(u)
k is uncovered

L(u, k).(1− CP ∗u (k))

where, CP ∗u (k) =
{

0 if C(u, k) < M − 1
CPu(k) if C(u, k) = M − 1

Since a node is considered uncovered until it receives M
coded packets, the coverage probability for k, CP ∗u (k) is 0
for C(u, k) < M − 1. When u estimates that neighbor k has
received M − 1 packets, i.e., C(u, k) = M − 1, one more
successful transmission is sufficient to cover k. In that case,
the coverage probability for node k is the probability that k
receives one coded packet.

Innovation impact, II(u) is calculated as II(u) ∝ Mu
g

M ,
where Mu

g denotes the number of packets available in the
packet buffer of u. Then, the timer value is calculated based
on BE(u) and II(u) such that a node with higher broadcast
effectiveness and innovation impact has a lower timer value.
Timer(u) = c

(w1BE(u)+w2II(u)) , where c is some constant and
w1, w2 are weighting factors.

E. Pipelining in a Batch

Our timer design allows every node to be an eligible
forwarder as soon as it receives a coded packet. This enables
pipelined transmission of packets in a batch, thus reducing the
total dissemination delay. The traditional flooding protocols do
not support pipelining within a batch, and only allow a node
to forward once it receives the complete batch.

Fig. 7 illustrates the pipelining feature of SYREN, where
the transmission and reception of packets at different nodes
are marked along the timeline. The network considered is
shown inside the box in the figure. Assume that node S is
the source, which is disseminating a batch of packets. Upon
receiving a coded packet from S, node 1 can compete to be the
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Fig. 7. Illustration of pipelining in a batch.

forwarder and start packet transmission when its forwarding
timer fires. Transmission from node 1 helps S compensate any
overestimation of the number of packets received at node 1.
Additionally, node 2 becomes an eligible forwarder as soon as
it receives packets from node 1. When node 3 starts receiving
packets from node 2, further transmissions from S and node
3 continue concurrently which speeds up data dissemination.
However, our forwarding timer design prioritizes nodes that
have more coded packets over other neighbors in order to
reduce the redundant transmissions from the nodes having an
incomplete batch. In our example, if node 1 has two coded
packets and node 2 has one coded packet at a particular
moment, node 1 has a higher chance of winning the forwarder
competition.

F. Practical Considerations

1) Estimation of Link Quality and Correlation: In order
to estimate and exchange the link quality and link correlation
information, we implement the algorithm used in CF as a sepa-
rate library compliant with TinyOS Link Estimation Exchange
Protocol (LEEP) [16]. Since LEEP only provides interfaces
for link quality estimation, our implementation adds another
interface to estimate link correlation. In our implementation,
each node sends out hello messages every T seconds and
maintains statistics of the hello messages received from its
neighboring nodes. The record of hello messages received so
far is translated into a bit vector and always piggybacked
onto the next hello message. To compute the link quality
(L(u, k)) and link correlation (Pv(k|u)) for a neighbor k,
node u compares its own hello message reception records
with the reception records received in the last piggybacked
hello message from k. The metrics representing L(u, k) and
Pv(k|u) are:

L(u, k) =
Number of packets k received from u

Number of packets u sent to k

Pv(k|u) =
Number of packets both u and k received from v

Number of packets u alone received from v

where v is present as a sender in the reception records of both
u and k.

Due to the changing nature of links, this estimation process
must be performed periodically to keep link related infor-
mation up-to-date. Interestingly, standard routing protocols

exploit link quality information to choose next hop [4] and
since they are an essential part of a sensor network, data dis-
semination and routing operations can share such information.
Thus, the costs of estimating link quality and link correlation
are amortized over the data and control planes.

2) Coding Overhead: To reduce the size of the coded
packet header, we do not include the coefficients of linear com-
binations in the header. Instead, we include a unique identifier
representing coding coefficients which are generated based
on pre-defined pseudo-random functions. SYREN performs
network coding arithmetic in the finite Galois field Fq , where
q is the size of the field. We choose q = 28 which has a very
low probability of decoding failure for a reasonable batch size
(M ) of 24. To speed up the decoding process, we use a pre-
computed multiplication/inverse lookup table which takes 256
bytes of memory. We also only allow generation of coded
packets out of innovative packets since coding non-innovative
packets is not useful as they do not add any information
content [17].

VI. SIMULATIONS

We implement SYREN in TinyOS 2.x. We first conduct
TOSSIM [18] simulations under different network settings.
We compare the performance of SYREN with the following
flooding protocols: CF [5], Deluge [11], and Rateless Deluge
(R Deluge) [8]. We do not compare with two other state-
of-the-art protocols (UFlood [13] and Splash [14]) as their
TinyOS-compatible implementations are unavailable.

The source sends out a single batch consisting of 24 data
packets. Each data packet contains a 22-byte payload. The
reliability threshold α is set to 0.85 and 0.95 for SYREN and
CF, respectively. The results are averaged over 50 runs.

A. Performance Metrics

We evaluate: (1) Reliability: The percentage of nodes in a
network that receive the entire data object. (2) Dissemination
Delay: The time needed to disseminate the (entire data to
individual nodes or the time by which every node stops
(data transmission, relative to the first data or control packet
(transmission made by the source. For a fair comparison, we
do not consider the dissemination delay of CF since CF is
concerned with flooding a single packet and transmits a packet
every 10 seconds. (3) Number of Transmissions: The total
number of data and control packets transmitted by the time
every node stops data transmission. (4) Load Balance: The
standard deviation of the number of data and control packets
transmitted by a node.

B. Grid Network Topology

We vary the grid dimensions from 5×5 to 10×10, keeping
the nodes spaced 2.1 meters apart and the source at coordinate
(0,0). Since TOSSIM cannot simulate correlated links, we
implement support for link correlation. We configure each
node with two parameters: transmission loss and reception loss
probabilities. A sender drops packets with transmission loss
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Fig. 9. Forwarder selection in a 25-node network.

probability to ensure correlated reception or loss in its neigh-
borhood. A receiver drops received packets with reception loss
probability and adds some variability to the link correlation
introduced by the sender. Keeping the average link quality
(measured from the TOSSIM topology) within a neighborhood
intact, we make 60% of link pairs have correlation >85%
and the rest have moderate correlation according to the traces
collected from our testbed experiments [6].

1) Reliability: SYREN achieves complete data reception
and decoding at each node in the network whereas CF only
achieves 60-65% reliability even when its reliability threshold
α is set to 0.95. In CF, every packet in a batch is individually
disseminated and earlier packets have no effect on the coverage
probability for subsequent packets. Based on the α value, if the
sender overestimates the coverage probability for a particular
packet, the receiving nodes will not receive that packet. Hence
CF cannot ensure 99-100% reliability. In SYREN, all packets
are coded and overestimation for one packet is corrected by
subsequent packet transmissions. In addition, a node can be
an eligible forwarder upon receiving a coded packet from a
sender and if the node re-broadcasts the packet, the sender
can update the coverage counter of the forwarding node based
on its reception record (Mg) embedded in the packet. Thus,
the coverage probability and counter estimations are more
accurate in SYREN, which ensures perfect reliability. Deluge
and R Deluge also provide 100% reliability.

2) Number of Transmissions: As shown in Fig. 8(a), the
number of transmissions required in SYREN is 30-36% lower
than R Deluge. Both Deluge and R Deluge transmit data
based on explicit advertisements and requests, which increase
the overhead of control packet exchanges. However, unlike
Deluge and CF, both SYREN and R Deluge transmit network
coded data packets which reduces redundant data packet trans-
missions by eliminating the need for transmitting different sets
of missing packets for different nodes. In addition, SYREN
eliminates advertisement/request message overhead since the
presence of correlated links in a neighborhood allows a node
to estimate reception of packets at other neighbors.

3) Dissemination Delay: Compared to R Deluge, the dis-
semination delay in SYREN is more than 60% lower, as
shown in Fig. 8(b). In both Deluge and R Deluge, forwarder
nodes require reception of request packets before starting data
transmission. As a consequence, losses of such control pack-
ets make the propagation of packets slower. By eliminating
control packets and by selecting the most effective sender
in a neighborhood, SYREN reduces the overall dissemination

delay. In SYREN, data dissemination is further expedited since
a node is allowed to start forwarding upon receiving a packet.
In both Deluge and R Deluge, nodes wait until the reception
of a complete batch of packets to be a forwarder.

4) Load Balance: Fig. 8(c) shows the standard deviation
in transmissions per node for a 10×10 network. The standard
deviation of SYREN is slightly better than for Deluge and
R Deluge. This is because the presence of asymmetry in the
network causes some nodes to transmit a large number of
packets in case of Deluge and R Deluge.

C. Forwarder Selection

Our timer design ensures the most effective forwarder selec-
tion in a neighborhood, which reduces the number of transmis-
sions and dissemination delay. Fig. 9 shows the timeline when
a node, in a network of 25 randomly deployed nodes, receives
a full batch of packets for SYREN and R Deluge. Before
2 s, the same set of nodes receives a complete batch from the
source (node 1) in both SYREN and R Deluge. Between 2 s
and 4 s, 10 nodes are covered in SYREN whereas only 6 nodes
are covered in R Deluge. Further, SYREN covers 4 nodes
(red boxes in the figure) much earlier than R Deluge (red
triangles in the figure). This is because SYREN selects nodes
with more neighbors with good link quality, thus covering
more neighboring nodes with a lower number of transmissions
and reduced delay. In case of R Deluge, when any other
node is selected as sender, several rounds of DATA and REQ
transmissions among the neighboring nodes are required.
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Fig. 10. Evaluation with varying PRR and link correlation.

D. Varying Link Quality and Correlation

To understand the synergy between link correlation and
network coding in SYREN, we vary the packet reception ratio
(PRR) and the average link correlation in a controlled manner.
We perform this experiment in a 4×4 grid and vary average
link correlation from 0.35 to 1 for PRR values of 0.4 and 0.6.



As shown in Fig. 10(a), for a low PRR network with low
link correlation, both SYREN and R Deluge perform better
than Deluge and CF. Due to low link correlation, different
nodes in a neighborhood lose different sets of packets, causing
redundant transmissions for Deluge and CF. By using network
coding, both R Deluge and SYREN reduce these redundant
transmissions. As link correlation increases, SYREN performs
better than R Deluge and CF performs better than Deluge.
Since SYREN utilizes knowledge of link correlations, a node
can estimate packet receptions at its neighbors with higher
accuracy and avoid redundant transmissions. It is interesting
to note that when link correlation is high, R Deluge matches
Deluge in terms of packet transmissions. The reason is that
network coding offers nothing extra when packet losses are
correlated across different links in the neighborhood. By
exploiting link correlation information, SYREN outperforms
both Deluge and R Deluge in this case. Though CF improves
in terms of number of transmissions after a certain correlation
value, it never achieves 100% reliability. The number of
transmissions for CF, Deluge, R Deluge, and SYREN exhibit
similar trends in networks with PRR 0.6 as shown in the
Fig. 10(b).
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Fig. 11. Varying threshold in 7 × 7 grid.

E. Varying Reliability Threshold

To observe the impact of pipelining, we devise a non-
pipelined version of SYREN where a node becomes an eligible
sender only after receiving a complete batch. In a 7×7 grid
network, we vary the reliability threshold α from 0.55 to 0.95
and compare SYREN, SYREN without pipelining, and CF.
As shown in Fig. 11(a), SYREN achieves 100% reliability
beyond α = 0.6 whereas SYREN without pipelining achieves
100% reliability at α = 0.9. CF ensures 60% reliability even
with α set to 0.95. For lower α, sender nodes frequently
overestimate the reception of packets at their neighbors.
Pipelined transmissions from a node with an incomplete batch
of packets in SYREN allow senders to correct overestimation.
In SYREN without pipelining and in CF, it is impossible to
correct such overestimation. Though non-pipelined SYREN
improves reliability over CF, it still needs to set α to a higher
value to ensure 100% reliability, which increases the number
of transmissions. Interestingly, with low α, SYREN’s perfect
reliability comes at the expense of increased delay. Nodes
having an incomplete batch of packets have lower transmission
priority and so larger forwarding timer value. Thus sender
nodes have to wait longer to correct their overestimation which

increases overall dissemination delay. Fig. 11(b) shows that
the number of transmissions increases and dissemination delay
decreases as α increases for SYREN.
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VII. PROTOTYPE AND EVALUATION

We port the implementation of SYREN to the TelosB
platform. Our motes have an 8 MHz TI MSP430 micro
controller, 2.4 GHz radio, 10 kB RAM, and 1 MB flash for
data logging. Implementations of Deluge, Rateless Deluge,
and CF are also ported to this platform. We consider the same
performance metrics as in Sec. VI-A.

We place battery-powered TelosB motes in an indoor envi-
ronment and control transmission power to ensure multi-hop
communication. The source node sends out a single batch
of 24 data packets, each packet with a 22-byte payload.
The thresholds in SYREN and CF are set to 0.85 and 0.9,
respectively. The results are averaged over 10 runs.

A. Multi-hop Indoor Experiments

We construct a 9 m × 5 m topology consisting of 20 TelosB
sensors deployed randomly in a Purdue University classroom.
In order to ensure multi-hop communication, we used the
lowest power level 1. Fig. 12 shows the coordinates of the
nodes in the testbed, where nodes are labeled 2 to 21. Node 2 is
the source. We observed varying link quality and correlations
in the network as shown in Fig. 13.

Our experimental results show that CF cannot ensure
100% reliability. The reason is that the sender sometimes
overestimates packet reception at neighbors. Though SYREN
improves reliability with network coding, there is a low
probability that its reliability is affected by its threshold-based
estimation. In this case, pipelined transmissions from nodes
with incomplete batches of packets help their neighbors correct
any overestimation. Thus SYREN achieves 100% reliability
for the given threshold. Deluge and R Deluge achieve 100%
reliability as well.

Fig. 14(a) shows that SYREN reduces the number of trans-
missions with respect to R Deluge, Deluge, and CF by 25%,
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Fig. 14. Performance evaluation in an indoor multi-hop network.

36% and 43%, respectively. Due to varying link quality, CF
and Deluge require redundant transmissions. Network coding
helps SYREN and R Deluge reduce such transmissions. In
addition, SYREN reduces transmissions by selecting the most
effective sender. SYREN also avoids control/ACK packet
overhead by exploiting link correlation-based implicit ACKs.

Fig. 14(b) shows that SYREN and R Deluge have lower
standard deviation than CF and Deluge. For Deluge, asym-
metric bottleneck links (as discussed below) cause some extra
packet transmissions, increasing the standard deviation. Some
CF nodes also require a large number of transmissions due to
their poor link quality with neighboring nodes.

As shown in Fig. 14(c), SYREN reduces dissemination
delay by 35% and 40% compared to R Deluge and Deluge,
respectively. Though R Deluge requires fewer transmissions
than Deluge, it still incurs a significant dissemination delay
due to explicit REQ-ADV message exchanges and checking
independence of coded packets. SYREN achieves a low dis-
semination delay due to the selection of the most effective
sender and the pipelined transmission of packets. Further,
the time required to check independence of coded packets is
amortized over pipelined transmissions.

B. Effect of Asymmetric and Correlated Links

Fig. 14(d) shows the link quality among a partial set of
nodes in the testbed network. It is seen that node 10 has
asymmetric links with nodes 15 and 16. In both Deluge and
R Deluge, request messages from node 10 towards nodes
15 and 16 are lost, which increases overall dissemination
delay. However, in SYREN, node 15 estimates the recep-
tion of packets at node 10, based on its knowledge of the
quality of the link between 10 and itself. Further, node 16’s
transmission helps node 15 estimate packet reception at node
10 since P16(10|15) = 97% > α. Without exploiting this
link correlation information, any forwarder selection algorithm
(e.g., MNP, ECD) that uses explicit control messages to select
the most effective sender will suffer from repetitive control
messages and increased dissemination delay.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we present the design and implementation
of a multi-packet flooding protocol, SYREN, that exploits
the synergy among link correlation and network coding to
provide an efficient, reliable data dissemination service with
low complexity. We implement SYREN in TinyOS, and con-
duct simulations and testbed experiments to compare SYREN

with other link correlation-based and network coding-based
flooding protocols. Results show that SYREN is scalable with
low overhead, low dissemination delay, high reliability. We
plan to extend SYREN to flood multiple batches of packets.
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