
Experimental Comparison of Peer-to-Peer
Streaming Overlays: An Application Perspective

Jeff Seibert, David Zage, Sonia Fahmy, Cristina Nita-Rotaru
Department of Computer Science, Purdue University

E-mail: {jcseiber, zagedj, fahmy, crisn}@cs.purdue.edu

Abstract—We compare two representative streaming sys-
tems using mesh-based and multiple tree-based overlay routing
through deployments on the PlanetLab wide-area experimenta-
tion platform. To the best of our knowledge, this is the first
study to compare streaming overlay architectures in real Internet
settings, considering not only intuitive aspects such as scalability
and performance under churn, but also less studied factors such
as bandwidth and latency heterogeneity of overlay participants.
Overall, our study indicates that mesh-based systems are superior
for nodes with high bandwidth capabilities and low round trip
times, while multi-tree based systems currently cope better with
stringent real time deadlines under heterogeneous conditions.

I. I NTRODUCTION

In recent years, there has been an explosion of interest
in peer-to-peer (P2P) streaming of audio and video in real-
time [1]–[16]. Most streaming systems for IP Television
(IPTV) utilize an overlay (application-level) multicast group
where peers receiving a stream can serve as proxies that
forward content to other peers. A number of studies have
suggested and implemented a variety of overlay designs [17]–
[21] to meet the stringent demands of the commercial market,
replacing network-layer (IP) multicast.

Internet P2P streaming has different requirements [22] from
other P2P applications (e.g., file sharing, video-on-demand),
making the design of overlay networks for such applications
a challenging task. Streaming imposes stringent real-timere-
quirements on throughput and latency. Specifically, streaming
applications must sustain throughputs that ensure high quality
of video and audio, while providing simultaneous support for
a large number of participants with dynamic changes in group
membership. In addition, data has to meet deadlines to ensure
smooth playback of the content in real-time.

Two architectures for P2P streaming have emerged in re-
cent years: tree-based and mesh-based architectures. A tree-
based overlay constructs a tree rooted at the source which is
broadcasting the stream. An example of a tree-based overlayis
ESM [23]. In a single tree-based routing topology, leaf nodes
do not forward data, leading to an imbalance in the load on
the peers. Recent research has introduced multi-tree overlays
which distribute bandwidth costs across peers by disseminating
the data on multiple dissimilar trees. Examples of multi-tree
overlays are Chunkyspread [19] and SplitStream [17].

A mesh-based overlay enables data flow in a less structured
manner, by requiring peers to exchange data with a subset of
the nodes in the network. Examples of mesh-based multicast
overlays are Chainsaw [18] and CoolStreaming/DONet [20].

Several popular IPTV systems, such as PPLive [2] and PP-
Stream [3], extend ideas from the mesh-based BitTorrent [24]
for real-time streaming. Meshes are characteristically resilient
to churn and node failures, but exhibit high overhead.

While several design variants have been proposed for tree-
based and mesh-based overlays, there is a lack of clear
understanding of which design performs better in a real-world
setting. A concrete characterization of the conditions under
which each provides a better serviceto the application is
missing. Previous studies have compared overlay multicast
networks via simulations and limited Internet experiments,
including [25]–[28], but none focused on streaming applica-
tions. Two exceptions are the work in [18] which presents a
comparison of only the goodput of two systems – a mesh and
a multi-tree system – under only one streaming rate, and the
work in [29] which conducts a simulation comparison of a
multi-tree system similar to SplitStream and PRIME [30] – a
recently proposed overlay multicast system which combines
the advantages of mesh and tree designs.

In this paper, we evaluate two representative systems
through deployments on the PlanetLab wide-area experimen-
tation platform [31]. We select the mesh-based Chainsaw [18]
and the tree-based SplitStream [17] systems because their core
designs are based on a basic bidirectional mesh or a basic
multi-tree topology. Additionally, they are the latest systems
for which a complete implementation is publicly available.
We compare their scalability with increasing application-
prescribed streaming rates and number of users, amount of
unusable data, impact of bandwidth and latency heterogeneity,
system recovery when confronted with flash crowds, and
performance under churn. To the best of our knowledge, this
is the first comprehensive study to directly compare streaming
overlay architectures in real Internet settings. We identify the
pros and cons of mesh-based and multi-tree based overlay
multicast networks with respect to P2P streaming under a
variety of conditions. We consider not only intuitive aspects
such as scalability and performance under churn, but also less
studied factors such as bandwidth and latency heterogeneity
of overlay participants. We summarize our findings as follows:
• The mesh-based Chainsaw generally yields a higher good-
put to the streaming application than the multi-tree based
SplitStream. Although the difference between the two sys-
tems is small when streaming rates are low, or when the
number of nodes in the system is small, Chainsaw scales
better to higher streaming rates and larger overlays. Sur-

prisingly, we were not able to find any saturation point for
streaming rates varying from 400 kbps to 1 Mbps.
• When deployed in networks with heterogeneous latencies,
SplitStream is better able to cope with nodes that have higher
latencies to the remaining nodes, while Chainsaw has a
significant amount of late data and duplicate data in that
case. Nodes with limited access bandwidth also suffer more
with Chainsaw than with SplitStream. Based on these results,
we suggest that mesh-based systems use adaptive timeouts.
• Chainsaw is better able to deal with churn and with large
flash crowds since its overlay management is less complex.
SplitStream is more sensitive to flash crowds and particularly
churn, as the cost of constructing the trees is higher.

II. TAXONOMY OF OVERLAY MULTICAST APPROACHES

The earliest multicast overlays used a single-tree topol-
ogy, and did not specifically address real time streaming
requirements [23], [32]–[34]. For example, Overcast [33] was
designed for reliable communication, such as file distribution.
Later, some of the overlay multicast systems were extended for
the application of Internet streaming; for example, ESM [23]
was extended and deployed for streaming as discussed in [35].
Multi-tree systems such as CoopNet [36], SplitStream [17],
and Chunkyspread [19] were later proposed to distribute
bandwidth costs across overlay participants.

Mesh-based systems, e.g., CoolStreaming/DONet [20], and
Chainsaw [18], were proposed to address the inherent lack
of resilience of tree-based structures. Hybrid systems such as
Bullet [21] and mTreebone [37] have also been proposed: these
utilize a tree to initially send data and then use a mesh to
send the data that each node is missing. The first pure meshes
usedbidirectional links to send data back and forth between
neighbors. Later, mesh-based systems such as MeshCast [38]
and PRIME [30] used links unidirectionally, separating peers
into either sender or receiver groups.

We can also categorize overlays into push- or pull-based
systems. Characteristically, tree-based overlays are push-
based: every parent will automatically send all the data it
receives to each of its children without them requesting it.
Meshes are typically pull-based: participants must request
packets from their neighbors. This affects the control message
overhead required by each type of overlay. Push-based systems
typically exhibit lower overhead since they simply need to
maintain the overlay structure. Pull-based systems need to
continuously update peers concerning what parts of the stream
each node has, thus creating high control overhead.

Table I classifies several popular overlay multicast ap-
proaches according to the mechanisms they employ. In the
table, “peer discovery” refers to how each node finds new
neighbors after it has joined the overlay. RanSub [39] and
SwapLinks [40] are distributed algorithms that find nodes
to peer with. Based on this classification, we have selected
Chainsaw [18] and SplitStream [17] for our experiments,
because their core design reflects a basic bidirectional mesh
or multi-tree topology.

TABLE I
CLASSIFICATION OF OVERLAY MULTICAST SYSTEMS

System Peer Discovery Topology Push/Pull

ESM Underlying mesh
Overcast Source Single

NICE Bootstrap node
SplitStream Pastry Tree Push

CoopNet Source Multiple
Chunkyspread SwapLinks

mTreebone Source
Bullet RanSub Tree+mesh Both

MeshCast Bootstrap node
PRIME Bootstrap node Unidirectional

CoolStreaming Peers Mesh Pull
Chainsaw Bootstrap node Bidirectional

III. C OMPARING P2P STREAMING APPROACHES

We next discuss the two systems we have selected for our
study, and present the criteria by which we compare them.

A. Chainsaw

Chainsaw [18] is a single-source, multiple-receiver, mesh-
based overlay utilizing a pull-based approach in which nodes
request packets from a set of peer nodes, referred to as the
neighbor set. A new node obtains this set at join time by
contacting a bootstrap node. A node attempts to maintain a
minimum number of neighbors; if a peer disconnects, the node
requests more peers from the bootstrap node. Nodes never
refuse a connection request from any peer.

A node notifies its neighbors whenever he receives a new
packet. Each node maintains information about packets avail-
able for other peers, referred to aswindow of availability, i.e.,
a buffer that contains packets that have recently been received
and about which peers were notified. Nodes discard packets
after some time to prevent old data from being propagated in
the overlay. Each node also maintains a list of the packets it
is interested in, referred to aswindow of interest, by tracking
the notifications of available packets advertised by each ofits
neighbors. Based on the window of interest, a node randomly
selects packets to request from all available peers. Each node
requests packets from different neighbors to minimize the
number of missed packets.

B. SplitStream

SplitStream [17] is a single-source, multiple-receiver, multi-
tree overlay utilizing a push-based approach in which the
source disseminates data over several interior-node disjoint
trees. Since the root and all the other interior nodes will,
if possible, be different for every tree, the bandwidth cost
of relaying data is distributed among all participants. The
trees are constructed using Scribe [41], an application level
multicast infrastructure that is itself built on top of the Pastry
Distributed Hash Table (DHT) [42].

To join, a node contacts a bootstrap node that may not
necessarily be the source. Once a node is part of the overlay,
it subscribes to each tree from which it wishes to receive
content. A node can explicitly declare the maximum number
of children that it wishes to support. Each node maintains

information about each tree that it is part of. A node immedi-
ately forwards packets on to each of its children, assuming it
is an interior node for the tree which these packets were sent
on. The source splits the stream into packets and then sends
the data down each tree. SplitStream does not adapt its trees
unless a node fails or quits the overlay.

C. Comparison Criteria

P2P systems are expected to scale well with the number of
participants and take advantage of the resources contributed
by each participant. Internetstreaming applications have
also specific characteristics that place additional requirements
on P2P streaming overlays. They must be able to sustain
bandwidths in the range of 300 kbps to 1 Mbps [43], with
1 Mbps delivering “TV quality” audio and video [44], and
be able to provide uninterrupted service in the presence of
churn and flash crowds. They must also deliver data within a
given time, usually on the order of a few seconds, to ensure
smooth playback of video. As a result, data that arrives late
is not useful for the application and unnecessarily consumes
bandwidth. To meet these requirements, streaming overlays
often duplicate data in the network, resulting in traffic which
may not be useful from the application perspective.

Our comparison examines the following aspects that are
crucial from anapplication perspective:
(1) Scalability with application-prescribed streaming rates:
Obviously, the higher the bandwidth, the higher the quality
of the streaming video provided to the application. We study
the degree to which mesh and multi-tree based overlays can
sustain bandwidths needed or expected to be needed in the
future, seeking to identify any possible saturation points.
(2) Scalability with the number of overlay participants:
We investigate how well mesh and multi-tree based overlays
scale with increasing number of participants.
(3) Unusable data:Since streaming video over the Internet
requires stringent deadlines to be met, only data received be-
fore each deadline is useful. Unusable data therefore includes
both duplicates and data that arrived too late to be relevant.
Usable data constitutes the application goodput.
(4) Impact of bandwidth heterogeneity of overlay partici-
pants on system performance:Streaming overlays must be
able to operate under the diversified bandwidth capabilities of
users over the Internet. We examine which overlay strategy
better exploits this diversity and does not penalize nodes with
low-bandwidth connections. We note that although several
optimizations were recently proposed to better use available
bandwidth and not penalize nodes with low bandwidth [19],
[30], [45], we focus on studying which overlay strategy is
inherently better able to handle bandwidth heterogeneity.We
defer studying which optimization technique works best foran
overlay architecture (mesh-based or multi-tree) to futurework.
(5) Impact of latency heterogeneity of overlay participants
on system performance:Similar to the diversified bandwidth
capabilities, nodes also exhibit a diversified range of latencies
to other peers and to the broadcast source. We investigate

how the overlays we compare perform in a setting with nodes
having a mix of latency values.
(6) System recovery when confronted with flash crowds:
First experienced in web-based applications, flash crowds were
shown to occur frequently in Internet streaming [46]. Hence,
an overlay must be able to quickly integrate newcomers into
the overlay and ensure a small startup delay.
(7) System performance under high churn:Peers leaving
the system during a given period can adversely affect the
performance of the system, as some nodes may find themselves
disconnected or experience a temporary service interruption.
We investigate the performance of mesh and multi-tree based
overlays under high churn.

IV. EXPERIMENTAL RESULTS

A. Experimental Methodology

To study the two systems under real-world conditions,
we conducted our experiments on PlanetLab [31]. PlanetLab
provides a research platform for large scale distributed exper-
imentation of peer-to-peer systems over the Internet [47].In
order to mitigate the possible limitations of using a testbed,
such as those addressed in [47], we ran experiments at different
times of the day and different days of the week and found
there is little variability in the systems with respect to the
time or day the experiments were performed. Further, we
randomly selected nodes for different experiments (subject to
certain constraints as discussed later in this section) to validate
the statistical significance of results. Nodes were chosen to
span multiple operational and administrative domains. Each
experiment was repeated ten times and we show confidence
intervals and statically validate the significance of our results.

For both systems, the source sends streaming bit rates of
400 kbps to 1 Mbps, which are representative of the streaming
rates currently used in many video streaming applications [43].
The source was located on a host at Purdue University. We
configured the source to wait for 30 seconds before starting
to send data to allow for the application to stabilize.

Both systems use the TCP transport protocol. We consider
that a packet must arrive within 5 seconds to be considered
useful, according to the buffer times used in [48]–[50]. Our
experiments with 10 and 15 second thresholds revealed that
both systems perform only marginally better, so we omit these
results from the paper. We used a maximum of 280 nodes
in our experiments because that is the largest number of
PlanetLab nodes that were responsive and satisfied our band-
width and latency requirements discussed below. Although
this may not seem like a very large number, it still reveals
interesting real-life scenarios, while allowing us to control the
characteristics of the nodes [47].

In Chainsaw, each node uses a minimum of 15 neighbors
and assumes the request for a packet is lost after 1 second. The
source connects to twice as many neighbors as a regular node
and pushes two copies of every packet. We used a default
data “chunk” size of 2500 bytes for Chainsaw. We use the
terms “chunk” and “packet” interchangeably throughout the

paper. These parameters are identical to those used in previous
Chainsaw deployments [18], [51].

For SplitStream, the source sends one chunk of the data
stream down each tree every second, with each node forward-
ing that chunk onto each of its children as soon as possible.
Each SplitStream node is configured to accept between 16 and
48 children, depending on the available bandwidth of the node.
SplitStream uses 16 trees by default, and we show results with
16 trees in this paper. We have also experimented with 8 trees
and 32 trees, validating that 16 trees and 32 trees outperform
8 trees. The variability in the results significantly decreases
as the number of trees increases at the expense of increased
management overhead. Our results confirm that SplitStream
with 16 trees presents a good tradeoff. All parameters mirror
those used in previous SplitStream deployments [17].

We compare the systems based on the following metrics:
• Goodput is the average rate of data that was received before
the deadline (5 sec.), and that had not been received before.
• Late Data is the average rate of data that was received after
the deadline.
• Duplicate Data is the average rate of data that was received
before the deadline, but that had been received before.
• Throughput is the average rate at which all application
data is received. In other words,Throughput = Goodput+

LateData + DuplicateData.
• Continuity Index , defined by Zhanget al. [20], is used
to measure the effect of churn. It is equal to the goodput
divided by the total amount of data that could have possibly
been received while a peer participated in the overlay. This
is equivalent to Goodput

StreamingRate
. Ideally, a system should have

a continuity index of 1.

B. Scalability with Streaming Rates

We first compare how well each overlay scales with in-
creasing streaming rates. To decouple the scalability with
the streaming rate from the impact of heterogeneity, we use
nodes that have high access bandwidth (greater than 1 Mbps)
and low latency (with average Round Trip Times (RTTs) of
100 ms to the source). This amounted to a deployment of 280
nodes on PlanetLab that were responsive and met the stated
bandwidth and latency requirements. We vary the streaming
rate from 400 kbps to 1 Mbps. Figure 1 shows the mean system
performance with 90% confidence intervals.

Figure 1(a) depicts the average throughput of all nodes. In
an ideal case, the application data received would be identical
to the streaming rate. It can be seen that the throughput of
Chainsaw is close to the ideal. In contrast, the SplitStream
throughput is considerably less than the ideal, especiallyas the
streaming rate increases. As seen in Fig. 1(b), the goodput for
both overlays is less than the streaming rate, with SplitStream
suffering more for higher streaming rates. The confidence
intervals depicted on the figures are considerably wider for
SplitStream than for Chainsaw. The SplitStream performance
is more variable across multiple experiments, demonstrating
SplitStream is more sensitive to network conditions. We also
note that at lower streaming rates, there is a small overlap

between the error bars. We further investigate if the means of
the results for the two systems are different. We formulate the
null hypothesisH0 : µChainsaw = µSplitStream, which states
Chainsaw throughput (or goodput) and SplitStream throughput
(or goodput) have the same mean and distribution. Using a
two-sample t-test with pooled variance [52], we disprovedH0,
finding with high probability that the error results come from
distributions with different means.

The explanation behind the lower goodput of SplitStream
is depicted in Fig. 1(c). SplitStream receives a non-negligible
amount of late data (data received after the 5 sec. deadline),
which is higher than the late data received by Chainsaw. As
both systems use TCP, we attribute the difference to the fact
that Chainsaw is a pull-based system, where each peer decides
what pieces of information it needs, while SplitStream uses
a push-based approach in which nodes push data to their
children on different trees at different times. This, combined
with SplitStream’s lack of anymechanism for dropping late
data, results in unnecessary bandwidth consumption. The
unnecessary overhead is also amplified by the fact that Split-
Stream does not change its trees unless nodes leave the overlay.

We also note an increasing variability in the late data
for SplitStream. Further investigation reveals that the average
depth of SplitStream trees is not highly variable with a mean
depth of 3.5 and a standard deviation of 1. Therefore, this
variability stems from network conditions delaying data that
continues to be late as it propagates down the tree. In contrast,
Chainsaw is able to request missing data from neighbors, and
obtain the missing data in time. As in the case for throughput
and goodput, we validate that the means corresponding to the
experiments for the two systems are statistically different by
using a two-sample t-test with pooled variance.

Figure 1(d) shows the duplicate data for both overlays.
SplitStream, being tree-based, receives a negligible amount
of duplicate data, whereas Chainsaw suffers from a growing
amount of duplicate data as streaming rates increase. Split-
Stream received negligible amounts of duplicate data in all
the experiments presented in this paper.

In summary, our results demonstrate that Chainsaw outper-
forms SplitStream at higher streaming rates. Surprisingly, in
the range of 400 kbps to 1 Mbps, we found no saturation point,
meaning neither system has an inherent streaming rate below
1 Mbps where it cannot send any more data. In addition, we
found that SplitStream is more sensitive to network conditions,
generating a higher amount of late data.

C. Scalability with Overlay Size

Figure 2 shows the impact of the size of the multicast group
when using a streaming rate of 1 Mbps for 20 minutes, varying
the overlay size from 80 to 280 nodes. We also repeated the set
of experiments for a streaming rate of 500 kbps and the results
were similar (with SplitStream and Chainsaw being closer in
performance). We omit these results due to space limitations.

As the overlay size increases, Fig. 2(b) shows that the
goodput of Chainsaw slightly increases, without a correspond-
ing increase in throughput (Fig. 2(a)). This demonstrates

 0

 200

 400

 600

 800

 1000

 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

kb
ps

)

Streaming Rate (kbps)

Chainsaw
SplitStream

(a) Throughput

 0

 200

 400

 600

 800

 1000

 400 500 600 700 800 900 1000

G
oo

dp
ut

 (
kb

ps
)

Streaming Rate (kbps)

Chainsaw
SplitStream

(b) Goodput

 0

 50

 100

 150

 200

 400 500 600 700 800 900 1000

La
te

 D
at

a
(k

bp
s)

Streaming Rate (kbps)

Chainsaw
SplitStream

(c) Late Data

 0

 50

 100

 150

 200

 400 500 600 700 800 900 1000

D
up

lic
at

e
D

at
a

(k
bp

s)

Streaming Rate (kbps)

Chainsaw
SplitStream

(d) Duplicate Data
Fig. 1. Performance for different streaming rates using a configuration of 280 nodes with bandwidth greater than 1 Mbps

 0

 200

 400

 600

 800

 1000

 1200

 80 120 160 200 240 280

T
hr

ou
gh

pu
t (

kb
ps

)

Overlay Size (# of Nodes)

Chainsaw
SplitStream

(a) Throughput

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 80 120 160 200 240 280

G
oo

dp
ut

 (
kb

ps
)

Overlay Size (# of Nodes)

Chainsaw
SplitStream

(b) Goodput

 0

 100

 200

 300

 400

 500

 600

 80 120 160 200 240 280

La
te

 D
at

a
(k

bp
s)

Overlay Size (# of Nodes)

Chainsaw
SplitStream

(c) Late Data

 0

 100

 200

 300

 400

 500

 600

 80 120 160 200 240 280

D
up

lic
at

e
D

at
a

(k
bp

s)

Overlay Size (# of Nodes)

Chainsaw
SplitStream

(d) Duplicate Data
Fig. 2. Performance for different overlay sizes for a 1 Mbps streaming rate

 0

 200

 400

 600

 800

 1000

 1200

 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

kb
ps

)

Streaming Rate (kbps)

C 90%
C 70%
C 50%
S 90%
S 70%
S 50%

(a) Throughput

 0

 200

 400

 600

 800

 1000

 400 500 600 700 800 900 1000

G
oo

dp
ut

 (
kb

ps
)

Streaming Rate (kbps)

C 90%
C 70%
C 50%
S 90%
S 70%
S 50%

(b) Goodput

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 400 500 600 700 800 900 1000
La

te
 D

at
a

(k
bp

s)

Streaming Rate (kbps)

C 90%
C 70%
C 50%
S 90%
S 70%
S 50%

(c) Late Data

 0

 50

 100

 150

 200

 250

 400 500 600 700 800 900 1000

D
up

lic
at

e
D

at
a

(k
bp

s)

Streaming Rate (kbps)

C 90%
C 70%
C 50%
S 90%
S 70%
S 50%

(d) Duplicate Data
Fig. 3. Performance for different percentages of nodes withbandwidth of 1 Mbps or higher, using a configuration of 112 nodes with heterogeneous bandwidth
capabilities. In the figure, “C” denotes Chainsaw and “S” denotes SplitStream

that Chainsaw scales with the number of nodes and is able
to effectively use the available resources without increasing
the late or duplicate data. This is not the case with Split-
Stream. Although SplitStream performance is still acceptable,
(Fig. 2(a) and 2(b)), the throughput and goodput of the system
degrade as the number of nodes increases. Since all of the
nodes in these experiments have good bandwidth and latency
properties and we have shown that SplitStream performs well
at a streaming rate of 1 Mbps (Fig. 1(b)), we attribute the
goodput degradation to the increase in overlay size.

We can see from Fig. 2(c) and 2(d) that both systems’ ability
to maintain consistently low amounts of late data is invariant
of the overlay size. However, in general, Chainsaw is able to
outperform SplitStream under large group sizes, maintaining
a higher streaming rate and larger amount of useful data.

D. Impact of Bandwidth Heterogeneity

In order to study the effect of bandwidth heterogeneity on
the performance of the multicast systems we first group nodes
in two classes, nodes with low bandwidth (under 1 Mbps)
and high bandwidth (over 1 Mbps). In Fig. 3, we present the
results for deployments with different ratios of low-bandwidth
and high-bandwidth nodes. For example, the line denoted “C
70%” (or “S 70%”) represents a Chainsaw (or SplitStream)
experiment where 70% of nodes were high-bandwidth nodes
and 30% of the nodes were low-bandwidth nodes. Nodes for
each group were selected at random from nodes matching the
bandwidth criteria, with approximately 112 nodes participating
in each experiment. To expedite the experiments, the source

streamed data at rates between 400 kbps and 1 Mbps for 10
minutes. We omit confidence intervals from these graphs as
they become difficult to read otherwise.

As seen in Fig. 3(a), the throughput varies little for each
system, regardless of the percentage of bandwidth-constrained
nodes. However, Fig. 3(b) shows that the usefulness of the
data decreases as streaming rates and percentage of bandwidth-
constrained nodes increases. As seen in Fig. 3(c), as the per-
centage of bandwidth-constrained nodes increases, the amount
of late data increases considerably. This can be explained by
the fact that in both systems, bandwidth-constrained peers
become overwhelmed and fall behind on their duties to relay
data to their peers. The amount of late data is significantly
larger in Chainsaw than SplitStream because if a packet is
not received 1 second after the request, that same packet is
requested from another peer, which may yield yet another late
packet. Thus, it would be worthwhile for each mesh node
to keep track of an expected round-trip time between every
peer and itself and intelligently schedule packets based onthat
value. This would also decrease the amount of duplicate data
received. We have validated this hypothesis by experimenting
with timeouts of 2 seconds and 3 seconds, and found that the
late and duplicate data indeed decrease.

Figure 5 characterizes how individual nodes perform in each
system when 30% of the nodes are bandwidth-constrained
(for the 1 Mbps streaming rate scenario). In SplitStream, very
few nodes receive none of the stream and no nodes receive
the entire stream. This is due to the fact that in a tree, all
nodes are penalized if they have an ancestor that is bandwidth-

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

kb
ps

)

Streaming Rate (kbps)

Chainsaw
SplitStream

(a) Throughput

 0

 200

 400

 600

 800

 1000

 400 500 600 700 800 900 1000

G
oo

dp
ut

 (
kb

ps
)

Streaming Rate (kbps)

Chainsaw
SplitStream

(b) Goodput

 0

 50

 100

 150

 200

 250

 400 500 600 700 800 900 1000

La
te

 D
at

a
(k

bp
s)

Streaming Rate (kbps)

Chainsaw
SplitStream

(c) Late Data

 0

 100

 200

 300

 400

 500

 400 500 600 700 800 900 1000

D
up

lic
at

e
D

at
a

(k
bp

s)

Streaming Rate (kbps)

Chainsaw
SplitStream

(d) Duplicate Data
Fig. 4. Performance for a configuration of 20 nodes with heterogeneous latencies: 15 nodes are in close proximity to the source and each other, while the
remaining 5 have longer latencies to these 15 nodes and the source

constrained. In Chainsaw, approximately 70% of the nodes
receive most of the stream (almost vertical line between 0.4
and 1 at 1 Mbps), while the rest receive very little of the stream
(steep curve between 0 and 200 kbps). This demonstrates
that Chainsaw mitigates the impact of bandwidth-constrained
nodes on high bandwidth nodes, but penalizes low bandwidth
nodes since they receive little data.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

F
ra

ct
io

n
of

 N
od

es

Goodput (kbps)

Chainsaw
SplitStream

Fig. 5. Goodput CDF where the source streams 1 Mbps, using a configuration
of 112 nodes with heterogeneous bandwidth capabilities. 70% of the nodes
have bandwidth capabilities of 1 Mbps or higher.

E. Impact of Latency Heterogeneity

In order to study the impact of latency heterogeneity, we
group nodes in two classes, close-proximity nodes (RTTs
less than 50 ms) and low-proximity nodes (RTTs greater
than 150 ms), with respect to the source located at Purdue
University. We then consider overlay deployments in which we
vary the fraction of close-proximity and low-proximity nodes.
Figure 4 demonstrates the impact of latency heterogeneity on
the performance of Chainsaw and SplitStream when three-
quarters (15 of 20) of the nodes are close-proximity nodes
and one-quarter have high latency in relation to the closely
connected majority and the source. The source streamed rates
between 400 kbps and 1 Mbps for 10 minutes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

F
ra

ct
io

n
of

 N
od

es

Goodput (kbps)

Chainsaw
SplitStream

Fig. 6. Goodput CDF for a 1 Mbps streaming rate for a configuration of 20
nodes with heterogeneous latencies: 15 nodes are in close proximity to the
source and each other, while the remaining 5 have longer latencies to these
15 nodes and the source

Interestingly, as seen in Fig. 4(b), we find the SplitStream
and Chainsaw goodput results are quite similar to each other.

However, even though the goodput is very similar, the indi-
vidual node performance experienced when streaming 1 Mbps,
presented in Fig. 6, is quite dissimilar. Chainsaw exhibitstwo
sets of nodes achieving two performance extremes, very low
or very high throughput, while SplitStream nodes exhibit a
much broader range of performance, with the majority of the
nodes receiving between 600 kbps and 1 Mbps.

In contrast to the goodput, Fig. 4(a) shows that Chainsaw
throughput is appreciably higher than that of SplitStream,due
to a significant amount of late data (Fig. 4(c)) and duplicate
data (Fig. 4(d)). This indicates that SplitStream is better
able to push data to the nodes with longer RTTs within the
deadlines, whereas the pull mechanism of Chainsaw causes
packet deadlines for the high latency nodes to be missed.
This can be attributed to the fact that Chainsaw neighbor
sets are small and do not have highly disjoint data in these
cases, which also explains the high variability in Chainsawlate
and duplicate data. Further experiments where Chainsaw was
configured with a higher timeout value (3 sec.) to re-request
a packet showed increased variability in system performance,
while throughput and goodput decreased. This confirms the
high sensitivity of Chainsaw to the timeout to request packets,
particularly in latency heterogeneous networks.

We repeated our experiments with overlays of 70 and 220
nodes, with 60% of the nodes being in North America and
the rest in other continents. We found that as the overlay size
increases, the average performance of Chainsaw increases and
the average performance of SplitStream decreases, which is
consistent with the results in Section IV-C. These results are
omitted for space reasons, as they are similar to Fig. 1.

F. Flash Crowds

To determine the effect of flash crowds on the stability
and performance of the systems, we used overlays of 280
nodes and designated a percentage of the nodes to join
midway through the experiment lifetime. The duration of the
experiment was 6 minutes during which the source streamed
data at 500 kbps. The system was allowed to stabilize for
3 minutes before the flash crowd nodes joined to isolate the
effect of the crowd.

Figure 7 depicts the effect that two exemplar percentages
(flash crowds of 20% and 80% of the nodes) had on the
two systems. From Fig. 7(a) and 7(b), we can see that both
multicast systems quickly stabilize and return to performance
levels similar to before the flash crowd, even when the majority
of the nodes join after the experiment has begun. However, as

 0

 100

 200

 300

 400

 500

 600

 100 150 200 250
G

oo
dp

ut
 (

kb
ps

)
Time (s)

Chainsaw
SplitStream

(a) 20% Nodes in Flash Crowd

 0

 100

 200

 300

 400

 500

 600

 100 150 200 250

G
oo

dp
ut

 (
kb

ps
)

Time (s)

Chainsaw
SplitStream

(b) 80% Nodes in Flash Crowd

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

F
ra

ct
io

n
of

 N
od

es

Time (s)

Chainsaw
SplitStream

(c) CDF of 80% Nodes in Flash Crowd
Fig. 7. Performance for different percentages of flash crowds using a configuration of 280 nodes with bandwidth greater than 1 Mbps

seen from Fig. 7(b), the performance of SplitStream begins to
degrade with larger flash crowd sizes. This can be attributed
to SplitStream attempting to find parents for nodes in the flash
crowd, which can create a lengthy startup time for nodes.

We also examine the effects on the individual flash nodes
after joining the network in order to determine what a user
might experience. In Fig. 7(c), we can see both systems
are able to effectively integrate a majority of nodes into
the dissemination structure In both cases, over 90% of the
Chainsaw nodes and 75% of the SplitStream nodes achieve
good performance within 90% of the streaming rate. This
difference in individual performance also helps explain why
the average performance of SplitStream degrades with larger
flash crowd sizes, since SplitStream has a larger percentageof
nodes not receiving the desired bandwidth.

G. Churn

We began with an overlay of 80 nodes and model node
join behavior using a Poisson process and node stay time
using a Pareto distribution. These choices were motivated
by observations from real overlay multicast deployments [35]
and Mbone sessions [53] and have been previously used by
Bharambeet al. [54]. For the Pareto distribution, we assume a
minimum stay time of 90 seconds and anα of 1.42, resulting
in a mean stay time of 300 seconds. These parameters are
consistent with distributions found in other live streaming
applications on the Internet [35], [55]. We vary the mean inter-
arrival time (λ) between 5 and 15 seconds; for example, if the
mean inter-arrival time is set to 10, then on average, every
10 seconds a node joins. This leads to group sizes that vary
between 150 and 280 nodes. We use ungraceful departures,
i.e., nodes leave without informing their children, neighbors,
or the source about their intention to leave. Each experiment
ran for 1000 seconds and the source streamed data at 500 kbps.

TABLE II
CONTINUITY INDEX FOR BOTH SYSTEMS UNDER CHURN

System λ = 5 λ = 10 λ = 15

Chainsaw .94 .93 .94
SplitStream .66 .67 .70

As can be seen in Table II, under the highest join rate,
Chainsaw receives much more unique data than SplitStream,
achieving continuity indexes of .94 and .66 respectively .
Second and more importantly, a higher join rate has a lower
effect on Chainsaw than SplitStream. We find the continuity
index without churn for Chainsaw and SplitStream to be .95
and .88, respectively. The presence of churn decreases the
continuity index of SplitStream by .22 while the continuity

index of Chainsaw suffer almost no change. We conclude that
churn has a drastic effect on SplitStream. Since we have shown
that SplitStream deals well with flash crowds, we attribute this
to the time children need to detect the failure of the their parent
and then reinsert each child and its subtree somewhere else.
In contrast, Chainsaw nodes have many neighbors from whom
to request packets and can also simultaneously request more
neighbors from the bootstrap node.

V. RELATED WORK

Several studies [25]–[28] have compared overlay multicast
networks via simulations and on the Internet. These studies
focused on network-level metrics, such as the underlying
overlay structure, relative delay penalty over unicast andIP
multicast, and link stress. They did not consider application-
level metrics for streaming applications, unlike our work.

Other studies compared overlay networks for file-sharing
applications [56], [57]. These studies focus on comparing
unstructured networks similar in spirit to Gnutella, with struc-
tured overlay networks such as ones using distributed hash
tables. Unlike these studies, we use a variety of application-
specific metrics, since our focus is on streaming applications.

With the emergence of many, sometimes proprietary, com-
mercial streaming systems, another focus of recent research
has been understanding user behavior. There have been studies
that measured [43] the performance of the PPLive [2] system,
with the goal of quantifying user behavior and gaining insights
into the protocol underlying PPLive; analyzed [58] traces for
UUSee to characterize the mesh topology and understand
behavior with flash crowds; or quantified [59] the impact of
caching techniques to reduce duplicate packets in bandwidth-
constrained wireless LANs. Deployments of open source sys-
tems have also been studied [35].

Closest to our work is the work in [29], which presents
a simulation comparison of a multi-tree scheme similar to
SplitStream and the PRIME [30] overlay multicast. Our goal,
however, is to understand performance of existing and publicly
available streaming systems under a variety of real Internet
conditions, including latency and bandwidth heterogeneity.

VI. CONCLUSIONS

We have compared the performance of two representative
P2P streaming systems, SplitStream and Chainsaw, via Internet
experiments using PlanetLab. We summarize our findings:
• The mesh-based Chainsaw generally yielded a higher good-
put to the application than the multi-tree based SplitStream.
The difference between the two systems is small when
streaming rates are low, or when the number of nodes in

the system is small. However, Chainsaw scales better to
higher streaming rates and larger overlays. Performance of
SplitStream may be improved by making thetrees adapt to
network conditions to decrease the amount of late data.
• SplitStream coped better with nodes that had higher la-
tencies, while Chainsaw had a significant amount of late
and duplicate data. In cases with bandwidth-limited nodes,
Chainsaw performed better than SplitStream on the aver-
age, but bandwidth-limited nodes suffered. We suggest that
mesh-based systemsuse adaptive timeouts and intelligently
schedule packets based on expected round-trip times.
• As expected, Chainsaw dealt better with churn and with
large flash crowds as it requires less complex management
of the overlay and can easily accommodate these events.
SplitStream was more sensitive to flash crowds and particu-
larly churn, since the cost of changing the trees was higher.

REFERENCES

[1] SOPCast. http://www.sopcast.org/.
[2] PPLive. http://www.pplive.com.
[3] PPStream. http://www.ppstream.com.
[4] TVAnts. http://www.tvants-ppstream.com.
[5] QQLive. http://tv.qq.com.
[6] Feidian. http://www.feidian.com.
[7] Mysee. http://www.mysee.com.
[8] Pdbox. http://www.pdbox.co.kr.
[9] PPMate. http://www.ppmate.com.

[10] UUSee. http://www.uusee.com.
[11] VGO. http://vgo.21cn.com.
[12] CTV. http://www.tvoon.de/ctv.
[13] StreamerOne. http://www.streamerone.com.
[14] TVUnetworks. http://www.tvunetworks.com.
[15] Joost. http://www.joost.com.
[16] Zattoo. http://zattoo.com.
[17] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,

and A. Singh, “Splitstream: High-bandwidth multicast in cooperative
environments,” inSOSP, 2003.

[18] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. Mohr,
“Chainsaw: Eliminating trees from overlay multicast,” inIPTPS, 2005.

[19] V. Venkataraman, K. Yoshida, and P. Francis, “Chunkyspread: Hetero-
geneous unstructured tree-based peer-to-peer multicast,” in ICNP, 2006.

[20] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “CoolStreaming/DONet: A
data-driven overlay network for peer-to-peer live media streaming,” in
INFOCOM, 2005.

[21] D. Kostic, A. Rodriguez, J. Albrecht, , and A. Vahdat, “Bullet: High
bandwidth data dissemination using an overlay mesh,” inSOSP, 2003.

[22] C. Abad, W. Yurcik, and R. Campbell, “A survey and comparison of end-
system overlay multicast solutions suitable for network-centric warfare,”
in Proc. of SPIE, 2004.

[23] Y. Chu, S. G. Rao, and H. Zhang, “A case for end system multicast,”
in Proc. of ACM SIGMETRICS, 2000.

[24] B. Cohen, “Incentives build robustness in BitTorrent,” in Proc. of P2P
Economics, 2003.

[25] S. Fahmy and M. Kwon, “Characterizing overlay multicast networks and
their costs,”IEEE/ACM Trans. Netw., vol. 15, pp. 373–386, 2007.

[26] M. Castro, M. Jones, A.-M. Kermarrec, A. Rowstron, M. Theimer,
H. Wang, and A. Wolman, “An evaluation of scalable application-level
multicast built using peer-to-peer overlays,” inINFOCOM, 2003.

[27] L. Lao, J. Cui, M. Gerla, and D. Maggiorini, “A comparative study
of multicast protocols: top, bottom, or in the middle?,” inINFOCOM,
2005.

[28] S.-W. Tan, A. G. Waters, and J. S. Crawford, “A performance compar-
ison of self-organising application layer multicast overlay construction
techniques.,”Computer Communications, vol. 29, pp. 2322–2347, 2006.

[29] N. Magharei, R. Rejaie, and Y. Guo, “Mesh or multiple trees: A
comparative study of live P2P streaming approaches,” inINFOCOM,
2007.

[30] N. Magharei and R. Rejaie, “PRIME: Peer-to-peer receiver driven mesh-
based streaming,” inINFOCOM, 2007.

[31] PlanetLab. http://www.planetlab.org.
[32] S. Shi and J. Turner, “Routing in Overlay Multicast Networks,” in

INFOCOM, 2002.
[33] J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek, and J.O. Jr.,

“Overcast: Reliable multicasting with an overlay network,” in OSDI,
2000.

[34] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable applica-
tion layer multicast,” inProc. of ACM SIGCOMM, 2002.

[35] Y.-H. Chu, A. Ganjam, T. S. E. Ng, S. Rao, K. Sripanidkulchai, J. Zhan,
and H. Zhang, “Early experience with an internet broadcast system based
on overlay multicast,” inProc. of USENIX, 2004.

[36] V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai, “Distribut-
ing streaming media content using cooperative networking,” in Proc. of
ACM/IEEE NOSSDAV, 2002.

[37] F. Wang, Y. Xiong, and J. Liu, “mTreebone: A Hybrid Tree/Mesh
Overlay for Application-Layer Live Video Multicast,” inICDCS, 2007.

[38] B. Biskupski, R. Cunningham, J. Dowling, and R. Meier, “High-
bandwidth mesh-based overlay multicast in heterogeneous environ-
ments,” inProc. of AAA-IDEA, 2006.

[39] D. Kostic, A. Rodriguez, J. Albrecht, A. Bhirud, and A. Vahdat, “Using
random subsets to build scalable network services,” inUSITS, 2003.

[40] V. Vishnumurthy and P. Francis, “On Heterogeneous Overlay Construc-
tion and Random Node Selection in Unstructured P2P Networks,” in
INFOCOM, 2006.

[41] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel, “SCRIBE:
The design of a large-scale event notification infrastructure,” in Proc. of
NGC, 2001.

[42] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems,” in Proc. of
IFIP/ACM Middleware, 2001.

[43] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, “A measurement
study of a large-scale p2p iptv system,”IEEE Trans. on Multimedia,
vol. 9, pp. 1672 – 1687, 2007.

[44] R. Chung, “EdgeStream Network Latency and Its Effect onVideo
Streaming,” tech. rep., EdgeStream, 2004.

[45] M. Bishop, S. Rao, and K. Sripanidkulchai, “Considering priority in
overlay multicast protocols under heterogeneous environments.,” in
INFOCOM, 2006.

[46] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang, “The feasibil-
ity of supporting large-scale live streaming applicationswith dynamic
application end-points,”SIGCOMM Comput. Commun. Rev., vol. 34,
pp. 107–120, 2004.

[47] N. Spring, L. Peterson, A. Bavier, and V. Pait, “Using PlanetLab for
network research: Myths, realities, and best practices,”ACM SIGOPS
Operating Systems Review, vol. 40, pp. 17–24, 2006.

[48] A. Lo, G. Heijenk, and I. Niemegeers, “Evaluation of mpeg-4 video
streaming over umts/wcdma dedicated channels,” inWICON, 2005.

[49] L. Guo, E. Tan, S. Chen, Z. Xiao, O. Spatscheck, and X. Zhang,
“Delving into internet streaming media delivery: a qualityand resource
utilization perspective,” inProc. of IMC, 2006.

[50] “Buffer settings in windows media player.”
http://support.microsoft.com/kb/257535/.

[51] V. Pai and A. Mohr, “Improving robustness of peer-to-peer streaming
with incentives,” inProc. of NetEcon, 2006.

[52] D. Moore and G. McCabe,Introduction to the practice of statistics. WH
Freeman and Company, 2003.

[53] K. Almeroth and M. Ammar, “Characterization of mbone session
dynamics: Developing and applying a measurement tool,” Tech. Rep.
GIT-CC-95-22, Georgia Institute of Technology, 1995.

[54] A. Bharambey, S. Rao, V. Padmanabhan, S. Seshan, and H. Zhang, “The
impact of heterogeneous bandwidth constraints on DHT-based multicast
protocols,” inProc. of IPTPS, 2005.

[55] K. Sripanidkulchai, B. Maggs, and H. Zhang, “An analysis of live
streaming workloads on the internet,” inProc. of IMC, 2004.

[56] M. Castro, M. Costa, and A. Rowstron, “Debunking some myths about
structured and unstructured overlays,” inProc. of NSDI, 2005.

[57] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “Asurvey and
comparison of peer-to-peer overlay network schemes,”Communications
Surveys & Tutorials, IEEE, vol. 7, pp. 72–93, 2005.

[58] C. Wu, B. Li, and S. Zhao, “Magellan: Charting large-scale peer-to-peer
live streaming topologies,” inICDCS, 2007.

[59] E. Tan, L. Guo, S. Chen, and X. Zhang, “SCAP: Smart caching in
wireless access points to improve P2P streaming,” inICDCS, 2007.

