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Abstract—Shared measurement services offer key advantages
over conventional ad-hoc techniques for network monitoring. A
measurement service may receive measurement requests concur-
rently from different applications and network administrators.
These measurement requests are often served by injecting active
network measurement traffic between two hosts. Two active
measurements are said to interfere when the probe packets of
one measurement tool are viewed as network traffic by the other.
This may lead to faulty measurement readings.

In this paper, we model the measurement interference problem,
and show how to schedule measurement tasks to reduce inter-
ference and hence increase measurement accuracy. We propose
twelve computationally tractable algorithms that decrease the
total completion time (makespan) of measurement tasks, while
avoiding interference. Our evaluation shows that the algorithm
we refer to as Largest Area First, Busiest Node First - Earliest
Interval Schedule (LAFBNF-EIS) has a mean makespan of about
5% more than the theoretical lower bound over our set of
measurement workloads. 1

I. INTRODUCTION

Active measurements are frequently triggered by network
administrators and applications to monitor characteristics like
delay, loss, and available bandwidth between two nodes in
a network. The measurements can then be used to diagnose
failures or anomalies, select servers, adapt traffic rates, or
select overlay routes, e.g., in a cloud infrastructure or a P2P
application. Several network measurement services [14], [22]
are used by administrators and applications. A measurement
request is issued by the administrator or application to the
measurement service when it needs to take a measurement
(e.g., latency). The measurement service processes measure-
ment requests by triggering tools to measure network proper-
ties between measurement nodes. The measurement nodes are
the endpoints of a measurement.

Active measurement tools inject probe packets into the net-
work. For example, tools like Pathchirp [15] and Pathrate [7]
typically send a significant number of probe packets to
estimate available bandwidth and capacity, respectively. If
the measurement nodes are simultaneously taking multiple
measurements, the measurement readings can be faulty. This is
because probes of one tool can cause delay or loss of probes
belonging to another tool. In other words, the probe traffic
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of one measurement tool is misinterpreted as network data
by the other tools. For example, Pathchirp [15] measures the
available bandwidth by increasing the rate of probe packets
until congestion is detected. When two instances of Pathchirp
probes interfere, congestion is reached much earlier, causing
large errors in the measurement. Experiments in [4] suggest
that interference among bandwidth measurements is signif-
icant. Croce et al. [6] give evidence of strong interference
among available bandwidth tools.

Measurement services must schedule active measurement
tasks to reduce interference. For periodic network monitoring
that is pair-wise across a large number of nodes, the demand
on network resources can be significant. Consider the Pathrate
tool [7], which includes multiple phases, taking up to 30
minutes for completion. Assume a Pathrate measurement is
required every 4 hours between every pair of nodes, i.e.,
n(n−1)

2 measurements are needed, where n is the number of
nodes. To avoid interference at the nodes and their edge links
(ignoring potential bottlenecks within the network), suppose
that each node decides to take a single measurement at a
time. Every 30 minutes (duration of Pathrate), at most n
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measurements can be taken because each node can participate
in at most one measurement at a time. This implies that
the n(n−1)

2 measurements require that (n − 1) × 0.5 hour
≤ 4 hours. The maximum number of nodes that can satisfy
this scheduling criterion is n = 9. For larger n and other
measurement tools, resources required by active measurements
become a bottleneck. The measurement service must identify
measurements which interfere when taken simultaneously, and
create an efficient non-interfering measurement task schedule.

The objective of this paper is to tackle the interference
problem for measurement services by carefully scheduling
measurements. Intuitively, the bandwidth consumed by inter-
fering measurements at the bottleneck determines the extent of
measurement interference. Based on this interference model,
the problem of reducing the total scheduling time for non-
interfering measurement tasks can be transformed into a two-
resource constraint packing problem. We show that even
special cases of this packing problem are NP-hard, and we
propose and evaluate twelve heuristics to tackle the problem
under different measurement workloads.

The remainder of this paper is organized as follows. Sec-
tions II, III and IV give our model, assumptions and problem
definition. Section V proposes twelve algorithms to schedule
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measurement tasks. Section VI compares these algorithms un-
der several measurement workloads. Section VII summarizes
related work and Section VIII concludes the paper.

II. UNDERSTANDING MEASUREMENT INTERFERENCE

The problem of interference has been studied for several
decades in the context of wireless networks, e.g., [9]. Re-
searchers have proposed opportunistic scheduling approaches
to adapt to channel conditions. Our problem bears some
resemblance to the wireless scheduling problem, but with
key differences. In our problem, every active measurement
tool injects measurement probes into the network. These
probes are processed based on their arrival times to derive
requested properties. Accurate measurement of arrival times
of the probes is crucial. For example, Spruce [20] sends probe
pairs to a receiver and uses the increase in the gap between
the pair to determine available bandwidth. Measurements
are inaccurate if these probes are delayed or dropped due
to measurement probes from another measurement instance.
Thus, it is important to take active measurements at different
times. We say that a measurement probe packet A is interfering
with another measurement probe packet B if A is delayed
or dropped because of B. Measurement instances are said to
interfere if at least one of their probe packets interfere.

One method to avoid interference among measurement tools
is to check if the paths taken by measurement probes share
any router. In [4], [8], two measurements are considered
interfering when they share a common sub-path. On an Internet
scale, a common measurement sub-path can be difficult to
identify since the network topologies and routes are not always
available (some routers do not respond in trace-routes, and
alias resolution of interfaces of the same router remains a
difficult problem). Though techniques as in [17] can be used
to detect shared sub-paths, the overhead of using these tools is
high. Additionally, route changes necessitate periodic topology
inference.

The impact of interference is likely to be highest at a shared
bottleneck link. Today, the access links in edge networks are
typically where the bottleneck lies [12]. The degree of inter-
ference is thus related to the bandwidth consumed by other
measurement tools at the access link. We use this intuition
to build an interference model and develop measurement task
scheduling algorithms.

III. SYSTEM MODEL

Each measurement request Ri (where i is an integer that
ranges from 1 to the number of requests) can be expressed
as a vector Ri = (Srci, Dsti, Ci, Di). This indicates that
a measurement request Ri will use a measurement tool to
estimate a property (e.g., packet loss) between source node
Srci and destination node Dsti. This measurement tool is
estimated to take Di seconds to complete its task, at a cost
of Ci, which can represent the bandwidth consumed by the
measurement tool.

TABLE I
ESTIMATED COSTS (IN KBPS) AND DURATIONS (IN SECONDS) OF

MEASUREMENT TOOLS BASED ON BANDWIDTH CONSUMPTION FOR A

THRESHOLD Hn = 1, 000 KBPS.

Tool Bandwidth Duration Ci Di

Ping
< 1 Kbps per
probe

1 RTT 1 5

Pathrate
function of end-
to-end bandwidth

∼ 20 minutes 1,000 1,200

Pathchirp ∼ 1 Mbps peak ∼ 10 minutes 1,000 600

Tulip ∼ 20 Kbps peak linear function of
delay 20 300

A. Measurement Interference Model

Interference among measurement tools can be mitigated by
imposing a limit on the total measurement cost, e.g., total
bandwidth consumed by all measurement tools on the access
links of measurement nodes. This limit can be set by a network
administrator to bound the resources used by measurement
tools, as in our prior work [2]. Each measurement node n
therefore has a threshold, Hn, which represents the maximum
amount of measurement probe traffic tolerated on its access
link.

Cost assignment for different measurement instances of a
measurement tool can depend on the degree of interference
tolerated. For example, assigning a measurement cost Ci =
Hn for all measurement tools ensures that a node does not
run more than one measurement tool at a time. A measurement
cost of Ci = 0 accepts any kind of interference. Each instance
of a measurement tool is assumed to incur the same cost for
the same time duration at both the source and destination of
the measurement (as discussed below).

Our model is general enough to capture requirements for
admission control and interference mitigation for all types
of measurement tools based on cost (in terms of bandwidth
consumption). The model does not make any assumptions
on the nature of the measurement tools used, so that it can
accommodate future measurement tools.

B. Measurement Costs and Durations

An important component of the interference mitigation
problem is the cost and duration estimation for measurement
tools. In our previous work [2], we quantified the bandwidth
consumption and duration of several popular measurement
tools for several network configurations. Table I gives sample
assignments of cost (Ci) and duration (Di) based on our results
in [2]. For example, the Ci for Pathrate is Hn (e.g., 1 Mbps)
as it can use up the entire bandwidth limit. The cost values
of the remaining tools are based on their peak bandwidth
consumed. The threshold values, Hn, should be greater than
the maximum cost (Ci). The duration of ping of 5 seconds is
used to account for any timing inaccuracies due to clock drift
and latency during the measurement.

We can also include the effects of computation load, not
just bandwidth consumption, at end hosts to determine the
cost and duration values for a measurement instance. Song
et al. [18] studied the impact of end host load (due to
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multiple measurement instances) on the accuracy of results
from measurement tools.

When a measurement task is scheduled to start at a time
T , the exact times at which the source and destination nodes
actually participate will be different. To account for the delay
of the path between the measurement nodes, one should use
a slightly longer estimate of the measurement duration than
the actual value. Suppose that a measurement tool is invoked
almost simultaneously at time T1 between two measurement
nodes, Srci and Dsti. We assume that the probes sent by Srci
at time T1 will arrive at Dsti at a later time T1+δ, where δ is
mainly determined by the sum of the propagation and queuing
delays between the two nodes. A conservative estimate of δ
can be added to the duration Di.

C. Summary

Each measurement node is associated with a bottleneck
(typically at the access link) which is the primary location
of active measurement interference errors. Each measurement
tool instance has a cost Ci and duration Di. Scheduling a
measurement between two nodes Srci and Dsti incurs a
cost of Ci at both endpoints. Each measurement node has
configurable threshold Hn, which represents the maximum
total measurement cost acceptable to the endpoint at any time.
Measurements are assumed to be largely non-interfering if the
total cost of all measurement tools at an endpoint does not
exceed its threshold Hn.

IV. PROBLEM STATEMENT

Our aim is to find a feasible schedule that will rapidly
complete the required measurements without compromising
accuracy. Taking measurements in a serial order can be time-
consuming. Song et al. [18] reported that all pair Pathrate [7]
measurements between 500 PlanetLab nodes take 31 hours
when measurements are serialized. Thus, efficient scheduling
methods are required to incorporate parallelism in taking
multiple measurements without interference.

Given a set of measurement requests Ri, our objective
is to schedule measurements in order to minimize the time
to complete all measurements, makespan [5], such that the
cost incurred by measurements at every node n is within
the threshold Hn at all times. We call this the two-resource
constraint packing problem. There is no priority among the
tasks and the measurements cannot be preempted. Fig. 1 gives
an example schedule of measurements satisfying threshold
constraints. Note that the cost of a measurement is incurred
at both the source Srci and destination Dsti measurement
nodes. This is indicated by rectangles of the same fill shape.
The objective is to find an efficient schedule to complete the
measurement tasks.

Consider the special case of the problem when Ci = Hn =
H, ∀i, n and duration of all tasks Di = T, ∀i. The problem
of minimizing the makespan is equivalent to finding the
chromatic index (edge chromatic number) of the measurement
request graph [3] corresponding to the set of measurement
tasks to be scheduled. Each vertex in a measurement request
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Fig. 1. An example schedule of measurements among three measurement
nodes. Rectangles with the same fill shape correspond to the cost of a
measurement tool incurred on measurement nodes. The vertical axis represents
time and the horizontal axis is the cost of a measurement tool. The threshold
Hn represents the maximum measurement cost that can be accommodated at
a node.

graph corresponds to a measurement node, and a measurement
request between the nodes corresponds to an edge [3]. The
optimal makespan is equal to the chromatic index times T .
Even this special case of the problem is NP-complete [11].

The two-resource constraint packing problem is a general
case of the file transfer scheduling problem in [5], where
Hn corresponds to the limit on port numbers, and each
measurement task is analogous to a file transfer with all cost
values Ci = 1. The file transfer scheduling problem was shown
to be NP-hard [5].

Our problem is also related to the NP-hard multi-
dimensional vector packing problem [13]. The vector packing
problem is concerned with minimizing the number of unit
sized multi-dimensional bins which can accommodate vectors.
Our problem corresponds to the case of (n + 1) dimensions;
one dimension for time and a threshold dimension each of the
n nodes limited by the corresponding Hn (threshold) values.
Each measurement task has (n + 1) dimensions with three
non-zero dimensions. One time dimension corresponds to the
duration of the task and the other two dimensions indicate the
cost at the source and destination nodes. Our problem requires
that there is a single bin with infinite length across the time
dimension.

V. APPROXIMATION ALGORITHMS

We have implemented the optimal algorithm for the two-
resource constraint packing problem, generating all possible
schedules. The optimal schedule for a measurement request
graph of 5 end nodes and 10 measurement requests (i.e.,
measurement tasks or edges in the graph) takes more than
three days without coming to a halt on a 1.86 GHz processor.
In contrast, one of the best approximation algorithms we will
describe in this section (LAFBNF-EIS) only takes 54 seconds
for a measurement request graph with 500 nodes and 124, 750
requests.

We now propose two basic approximation algorithms and
extend them to reduce the makespan.

A. Earliest Interval Schedule (EIS)

In the first approximation algorithm, each node maintains
a resource utilization list. A resource utilization list is a
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list of contiguous time intervals with corresponding avail-
able resources for each interval. The available resources for
an interval determine the maximum cost task than can be
accommodated in that interval. Time intervals are said to
be contiguous when the end time of an interval is the start
time of the next interval in the list. The length of a time
interval determines the maximum duration of a task that can
be scheduled in that interval. The resource utilization list of
every node is initialized with a single element, corresponding
to the time interval [0,∞) with an available capacity equal
to the threshold (Hn) of the node. When a task is scheduled
during a time period at a given node, the available resources for
all intervals overlapping with this time period are updated to
reflect the resource consumption of this task. This process may
involve creation of at most two new intervals in the resource
utilization list of the node. Thus, there can be at most 2|V |
time intervals at any node, for the case when measurement
request graphs do not have multiple edges between vertices
(e.g., only Pathrate measurements). In the remainder of this
paper, we assume no multiple edges exist between the nodes.

To schedule a task between nodes Srci and Dsti, the
algorithm scans the resource utilization list at Srci, and
outputs a list of the longest non-contiguous compound time
intervals that can accommodate the task. A compound time
interval is the union of a set of contiguous time intervals with
each having an available resource more than the cost of the
task. A compound time interval should have an interval length
greater than the duration of the task. Similarly, a list of longest
non-contiguous compound time intervals is computed for the
destination node Dsti. Compound interval lists from both the
nodes are then processed to obtain an earliest common time
interval that can accommodate the task. The time complexity
of this algorithm is O(|V ||E|), where |E| is the number of
measurement requests.

B. Progressive Time Schedule (PTS)

In the second approximation algorithm, initially (at t = 0)
and after every task is scheduled to complete, the list of all
tasks is scanned for tasks that can be scheduled immediately.
When a feasible task is found, the task is scheduled to start
immediately. When a task cannot be scheduled at the current
time, the next task from the list is processed. If none of the
remaining tasks are feasible, the process is repeated at the
earliest time when a task is completed and resources are freed.
There is no point in time when resources are available and
a task is delayed (i.e., this is a work-conserving algorithm).
Algorithm 1 outlines the operations. The time complexity
of this algorithm is O(|E|2). Compared to EIS, the PTS
algorithm is more expensive and, in some sense, aggressive,
so we use it to compute worst case makespan bounds later in
this section.

C. Ordering Heuristics

The order of measurement tasks processed by the EIS and
PTS algorithms plays an important role in determining the
makespan of the schedule generated. Any given schedule of

Algorithm 1 Progressive Time Schedule (PTS)
TS ← Task Set ; S ← ∅
time← 0
while TS 6= ∅ do

for each τ ∈ TS do
if isFeasibleNow(τ) then
start(τ) ← time
end(τ)← start(τ) +Duration(τ)
TS ← TS − {τ}
S ← S ∪ {τ}

end if
end for
time← min

τ∈S
{end(τ) : end(τ) > time}

end while

tasks can be represented by a total order of tasks based on their
start times. For a given set of measurement requests, PTS may
not give an optimal solution, regardless of the order in which
the requests are given. This is due to its work-conserving
nature: the optimal schedule (total order) of tasks may be non-
work-conserving. An example can be found in [5]. In the case
of EIS, an enumeration of input order of tasks exists that will
result in an optimal total order of tasks. This motivates us to
consider several heuristics for the processing order of tasks.

Theoretical results in [5] indicate that the worst case
makespan bound is lower if the requests are processed in
increasing order of duration. Similarly, Corollary 2 below
suggests that processing measurement requests in decreasing
order of cost can reduce the makespan. Based on this intuition,
we propose to extend each of basic EIS and PTS algorithms
as follows:

1) “Costliest” Task First-Earliest Interval Schedule (CTF-
EIS): Process requests in decreasing order of costs.

2) Longest Task First-Earliest Interval Schedule (LTF-EIS):
Process requests in decreasing order of duration.

3) Largest Area First-Earliest Interval Schedule (LAF-EIS):
Process requests in decreasing order of the area of the
measurement request. The area is defined as the product
of cost and duration.

4) Busiest Node First-Earliest Interval Schedule (BNF-
EIS): Process requests in decreasing order of a metric,
busy. The value of busy of a node u is given by
(

∑

τi∈TS(u)

DiCi)/Hu, where TS(u) is the set of all tasks

(requests) that have node u as the source or destination.
The busy metric associated with a task is the maximum
value of the busy metrics of its source and destination
end nodes.

5) Largest Area First, Busiest Node First-Earliest Interval
Schedule (LAFBNF-EIS): Process requests in decreasing
order of area. When the areas of two tasks are equal, the
busy metric is used to to assign priority.

Similar to the above heuristics for EIS, we have CTF-PTS,
LTF-PTS, LAF-PTS, BNF-PTS, LAFBNF-PTS for the PTS
algorithm. We will consider offline scheduling (i.e., when the
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complete set of requests is available for processing at the time
the algorithm is triggered) in the remainder of this paper. The
algorithms can be easily adapted for online processing at the
cost of reduced performance.

D. Bounds on makespan

We first give a lower bound on the optimal makespan.

Lemma 1. Let OPT (G) be the optimal makespan for a given
measurement request graph G(V,E).

OPT (G) ≥ max
u∈V



















∑

τi∈TS(u)

DiCi

Hu



















,

where TS(u) is the set of all tasks that have node u as the
source or destination.

Proof: Let MS(u) denote the minimum finish time
of the last task scheduled at vertex u. OPT (G) ≥
maxu∈V {MS(u)}, where

MS(u) ≥

∑

τi∈TS(u)

DiCi

Hu

.

Equality occurs when the vertex u has the bandwidth threshold
Hu completely utilized for the entire duration. Thus, we have,

OPT (G) ≥ max
u∈V



















∑

τi∈TS(u)

DiCi

Hu



















.

Let PTS(G,S) denote the makespan of a Progressive Time
Schedule S for the measurement request graph G(V,E). Let
D, C, u, v be the duration, cost, source, and destination of
the last task τ of schedule S. A node u is said to be busy at
a given time when it does not have enough free resources to
schedule the last task τ . Since the task τ is scheduled last, at
least one of the nodes u and v must be busy until the task τ has
been initiated. Let Cbusy(u, S) denote the minimum occupied
resource at node u that does not let the last task have an earlier
start time. Note that when the node u is busy, the available
resource (Hu−Cbusy(u, S)) must be less than C. Otherwise,
the last task would have been scheduled at some earlier time
according to the PTS algorithm. We use the above notation to
derive the following upper bounds on the makespan for PTS
and CTF-PTS.

Theorem 1.

PTS(G,S) ≤

(

Hu

Cbusy(u, S)
+

Hv

Cbusy(v, S)

)

OPT (G)

+D

(

1−
C

Cbusy(u, S)
−

C

Cbusy(v, S)

)

.

Proof: From the definition of Cbusy(u, S), it follows that
the time period during which the task τ cannot be scheduled
because u is busy is at most

∑

τi∈TS(u)

DiCi −DC

Cbusy(u, S)
.

Similarly, the time period for which v is busy to schedule the
task τ is at most

∑

τi∈TS(v)

DiCi −DC

Cbusy(v, S)
.

Hence, the total time for which at least one of u and v is busy
can be at most their sum. Thus,

PTS(G,S) ≤ (
∑

τi∈TS(u)

DiCi −DC)/Cbusy(u, S)

+ (
∑

τi∈TS(v)

DiCi −DC)/Cbusy(v, S) +D.

PTS(G,S) ≤ Hu/Cbusy(u, S)











∑

τi∈TS(u)

DiCi

Hu











+Hv/Cbusy(v, S)











∑

τi∈TS(v)

DiCi

Hv











+D (1− C/Cbusy(u, S)− C/Cbusy(v, S)) .

Using lemma 1, we have

PTS(G,S) ≤

(

Hu

Cbusy(u, S)
+

Hv

Cbusy(v, S)

)

OPT (G)

+D

(

1−
C

Cbusy(u, S)
−

C

Cbusy(v, S)

)

.

Corollary 1. Let PTSCC(G,S) denote the makespan of a
schedule S computed using the PTS algorithm for a measure-
ment request graph G(V,E) when all the measurement tasks
have equal costs.

PTSCC(G,S) ≤ 2×OPT (G) +D.

In other words, the problem is simpler when the measurement
costs are equal and a tighter bound on the makespan provided
by PTS algorithm exists.

Proof: When all task costs are equal to C , the threshold
Hi of each node i can be replaced with H∗

i = C × bHi/Cc.
This is because the available resource of H − H∗

i at node i
cannot be utilized by any task. For a given node i to be busy,
we must have Cbusy(i, S) = H∗

i because the threshold H∗

i is
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filled in integral multiples of C. Thus, from Theorem 1, we
have,

PTSCC(G,S) ≤ 2×OPT (G) +D.

This is consistent with the result in [5] where all costs have
a value of 1.

Corollary 2. Let CTF -PTS(G,S) denote the makespan of
a schedule S computed using the CTF-PTS algorithm for a
measurement request graph G(V,E).

CTF -PTS(G,S) ≤ 4×OPT (G) +D.

In other words, for general task configurations with varying
cost metrics, processing measurement tasks in the decreasing
order of costs can reduce the makespan of the schedule.

Proof: As mentioned earlier, the available resources at u
must be less than the cost of the last task C when u is unable
to schedule the last task, i.e., Hu − Cbusy(u, S) < C.

Consider the cost of the first task Cf scheduled at u that
causes the node to become busy for the last task τ . Since
the tasks are scheduled according to the costliest task first,
we must have Cf ≥ C. After task Cf completes, there is
a possibility that the last task is scheduled, unless there is
another task at the node with cost higher than C. Thus, it can
be seen that whenever a node u is busy for the last task, there
is a task with cost higher than C scheduled. Hence we have,
Cbusy(u, S) ≥ C. Thus,

Cbusy(u, S) ≥ C > Hu − Cbusy(u, S),

which results in Cbusy(u, S) > Hu/2. Using a similar argu-
ment, the result holds for node v as well (i.e., Cbusy(v, S) >
Hv/2). Using these values in Theorem 1, we have

CTF -PTS(G,S) ≤ 4×OPT (G) +D.

VI. EVALUATION

A. Measurement Workloads and Thresholds

The workloads we use in our evaluation can be classified
based on (1) the structure of the measurement request graph,
(2) the distribution of cost thresholds at the measurement
end nodes, and (3) the distribution of costs and durations of
measurement task requests.
Measurement request graph:
(1) Complete graph: The set of measurement requests includes
all pair-wise measurements. This is a typical scenario for
network administrators who wish to evaluate all paths in their
network to detect any potential misconfigurations or failures.
(2) UUSee graphs: The measurement request graph is based
on peer connections among nodes in the UUSee live streaming
video service. The node degree distribution and clustering
properties of the UUSee service have been studied in [21].
These node properties were used to construct graphs with
2, 500 vertices and about 53, 000 edges. The clustering co-
efficient and the average path length in these graphs are close

Fig. 2. Extended wheel graph for 13 nodes and heterogeneity 0.25. The
degree of the center node is 12 and that of a non-center node is 7.

to 0.25 and 2.3 respectively. More information on the UUSee
graph generation can be found in [3]. This scenario represents
measurements conducted by a typical peer-to-peer application
to determine the best peers to download data from.
(3) Extended wheel graph: In this graph, there is an edge
between the center vertex and every other vertex (non-center
vertex). Additional edges are constructed between non-center
edges in the following manner. Each non-center node connects
to d(n−1)he non-center nodes along the circumference of the
wheel in an anti-clockwise manner, where h is the heterogene-
ity of the graph and n is the number of nodes in the graph.
The heterogeneity of an extended wheel graph is therefore a
measure of uneven degree distribution between the center node
and non-center nodes. Fig. 2 is an extended wheel graph for 13
vertices and heterogeneity 0.25. Note that when h = 0.5, this
becomes a complete graph (possibly with some double edges).
For a low value of h, it becomes a star graph or a wheel graph.
The extended wheel graph is used to represent measurement
request graphs which have a heterogeneous distribution of the
number of tasks (load) on the center node. This setup is typical
when a network administrator or application is predominantly
(but not necessarily exclusively) interested in properties to a
particular node.
Node cost threshold:
The values used for the threshold Hn can be divided into
the following categories: (1) Constant: The threshold values
for every node is the same. Hn = 1, 000 for all nodes. (2)
Random: Hn of each node is chosen uniformly randomly
among multiples of 1, 000 which lie between 999 and 5, 001.
Task cost and duration:
We use the following cost and duration configurations:

(1) Constant Cost-Constant Duration: The cost and duration
values for every task take a constant value. Ci = 1, 000 and
Di = 1, 800 for all tasks.

(2) Bandwidth-based: The cost and duration values are
based on bandwidth usage and duration of measurement tools.
Every task is assigned cost and duration values chosen from
one of the entries in Table I.

(3) Random Cost-Constant Duration: The duration of all
tasks is assigned the same value, while the cost takes random
values. Di = 1, 800 for all tasks. Ci is chosen uniformly
randomly between 10 and 1, 000.

(4) Constant Cost-Random Duration: The cost of every task
is assigned the same value while the duration takes random
values. Di is chosen uniformly randomly between 10 and
1, 000. Ci = 500 for all tasks.
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(5) Random Cost-Random Duration: Both the cost and
duration of every task are assigned random values. Di and
Ci are chosen uniformly randomly between 10 and 1, 000.

B. Performance of Scheduling Algorithms

It is important to conduct a fair comparison of the values
of makespan among the heuristics across multiple runs and
data sets. To achieve this, we normalize the makespan (MS)
with the lower bound (LB) for each experiment. Let OPT
denote the optimal makespan for a given task workload and
node configuration. Since MS/OPT ≤ MS/LB, if the
MS/LB values are close to 1, this is an indication that the
approximation algorithms are working well. The lower bound
of the makespan is computed using lemma 1. For each type
of data set, the experiments are repeated 30 times.

We find that most of our approximation algorithms gen-
erate schedules with low makespan. The mean, median, and
maximum values of MS/LB for one of the best heuristics
(LAFBNF-EIS) are 5%, 2% and 36% more than theoretical
lower bound values over all the workloads. In this section, any
reference to the ordering heuristics CTF, LTF, LAF, BNF, and
LAFBNF applies to both the EIS and PTS-based algorithms,
unless otherwise specified.

1) Complete Graph: When the workload is a complete
graph, the performance improvement of the ordering heuristics
LTF and CTF over the basic EIS and PTS algorithms depends
on the type of task workload. In the Constant Cost-Random
Duration task set, the tasks are distinguishable by their dura-
tion times. As expected, LTF performs better in this case, as
it gives preference to longer tasks. Similarly, CTF performs
better for the Random Cost-Constant Duration task set. The
LAF and LAFBNF heuristics which give preference to tasks
with a larger area (cost duration product) perform on par with
the CTF and LTF heuristics for both data sets. Further, when
both the cost and duration are random, LAF and LAFBNF
perform better than both CTF and LTF.

2) Extended Wheel Graph: Fig. 3 depicts the MS/LB
values for an extended wheel graph with 300 nodes and
heterogeneity 0.25 with constant node threshold values. The
figure illustrates the distribution of MS/LB values of different
algorithms using violin plots [10] from the lattice package [16]
in R. A violin plot is constructed using a box-plot with an
additional kernel density plot on each side of the box plot. The
widest part of a violin corresponds to a larger set of points in
that region. If the violins are unimodal and symmetric (as in
our case), the widest part also corresponds to the median.

When the task configuration is Constant Cost-Random Du-
ration, and Random Cost-Constant Duration, the LAF and
LAFBNF heuristics work well (better than CTF and LTF).
This is seen in Fig. 3 where the violins which signify the
distributions of MS/LB are closer to 1 compared to other
heuristics. However, when the task configuration is Constant
Cost-Constant Duration (not shown) and Bandwidth-based,
BNF and LAFBNF show improved performance over other
heuristics.

In extended wheel graphs, the center node is overloaded
with measurements. If the center node is kept busy (no
free available resources), all measurements among non-center
nodes typically complete before the center node becomes free.
If the center node waits for non-center nodes, the makespan
increases. The BNF and LAFBNF heuristics prioritize tasks
which have the center node as the measurement source or
destination. Thus, they work well with extended wheel graphs.
The LAFBNF heuristic, which incorporates the graph structure
of measurement requests (the busy metric), as well as the cost
and duration of tasks, in computing task priorities exhibits the
best performance for all workloads.

We also note that the MS/LB ratios of a given heuristic
vary across cost-duration configurations. When the configura-
tion is based on random cost, the ratios are higher, because
a larger number of “holes” (unused resource intervals) are
expected in the schedule. When the configuration is Constant
Cost-Random Duration, the MS/LB values are close to 1,
indicating that the heuristics yield the best performance in this
case. This behavior is consistent with the worst case bounds in
corollary 1 being lower than corollary 2 for the general case.

We also compute the average response times of the tasks in
a schedule. The response time of a task is defined as the time
taken to complete the task from the start of the schedule. Our
heuristics aim to reduce the makespan by giving preference to
longer and larger tasks, and tasks on busy nodes. As expected,
the algorithms that effectively reduce the makespan have
longer response times. Fig. 4 illustrates the response times for
different heuristics for the extended wheel data set. For a fair
comparison of the heuristics across different experiments, we
use the ratio of the average response time (ART) and the lower
bound (LB) as a comparison metric. Note that the basic BNF
heuristics, which do not deal with cost or duration of individual
tasks in assigning priority, have low response times. BNF also
has lower makespan schedules for the extended wheel graph,
making it preferable over LAFBNF in such graphs.

In the case of UUSee graphs, most heuristics perform
equally well when the workload is Bandwidth-based. For other
task configurations, the LAF and LAFBNF heuristics exhibit
the best performance. The plots are not shown due to space
constraints.

Table II lists the best heuristics for a given task type and
measurement request graph. It can be seen that the perfor-
mance of EIS and PTS-based heuristics is similar for most
of the workloads. EIS-based heuristics tend to perform better
with the Random Cost-Random Duration task configuration.
PTS-based heuristics tend to perform better with the Constant
Cost-Random Duration configuration. The LAFBNF-based
heuristics perform consistently well over all graph topologies
and task configurations. These results remained consistent in
our evaluation for measurement request graphs of other sizes
and node threshold configurations.

VII. RELATED WORK

Our problem boils down to a task scheduling problem,
where each measurement task consumes equal resources at the



8

Ratio of Makespan and Lower Bound (MS/LB)
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Fig. 3. Makespan comparison of different heuristics for different workloads following an extended wheel graph.

Ratio of Average Response Time and Lower Bound (ART/LB)
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Fig. 4. Average response time comparison of different heuristics for different workloads following an extended wheel graph.
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TABLE II
HEURISTICS GIVING SMALLEST MAKESPAN FOR DIFFERENT TASKS AND MEASUREMENT REQUEST GRAPHS. * INDICATES BOTH EIS AND PTS VERSIONS.

Task Type Complete (300 nodes) Extended Wheel (300 nodes) UUSee (2,500 nodes)

Constant Cost-Constant Duration ALL LAFBNF*, BNF* ALL
Bandwidth-based LAFBNF* , LAF*, LTF* LAFBNF*, BNF-EIS ALL except EIS, PTS, BNF-PTS

Random Cost-Constant Duration LAFBNF*, LAF*, CTF* LAFBNF*, LAF*, CTF* LAFBNF*, LAF*, CTF*
Constant Cost-Random Duration LAFBNF-PTS, LAF-PTS, LTF-PTS LAFBNF*, LAF*, LTF* LAFBNF*, LAF*, LTF*
Random Cost-Random Duration LAFBNF-EIS, LAF-EIS, CTF-EIS LAFBNF-EIS, LAF-EIS, CTF-EIS CTF*

two access links of the end points of a measurement during the
same time interval. Efficient data transfer among nodes using
a shared wireless medium is analogous. Each pair of nodes
wishing to communicate can be mapped to a measurement
request between a pair of nodes. However, wireless nodes
cannot receive messages from more than one node at a time
(unless there are multiple antennas), whereas it is possible for
a measurement node to take multiple measurements simulta-
neously.

In [4] and [8], a task conflict graph is constructed to
represent interference. A task (a measurement request) is
denoted by a vertex and a conflict is represented by an edge
between the tasks. Two measurement tasks are said to be
conflicting if the measurement paths share a common link or
node. In [4], the authors assume that the measurement tasks are
associated with deadlines. An earliest deadline first scheduling
algorithm (EDF-CE) is then used to schedule measurements.
In [8], the tasks are grouped into periods such that all tasks
within a period are non-conflicting. The tasks within the same
period are executed concurrently. The problem we are solving
is more general than the two above-mentioned studies in
that we assign different costs to each tool. Additionally, a
conflict graph is unsuitable for our case, since tasks can be
concurrently scheduled as long as they do not violate resource
constraints.

VIII. CONCLUSIONS

We have modeled the interference mitigation problem
among active measurements. We address the problem by lim-
iting the total bandwidth consumption of active measurement
tools over bottleneck links. We transform this problem of
scheduling measurement tasks within bandwidth constraints
into a two-resource constraint problem, and show that it is NP-
hard. We propose twelve approximation algorithms that aim
to reduce the completion time of the set of measurements. We
also derive theoretical upper and lower bounds for some of
our algorithms.

We conduct a detailed evaluation to compare our algorithms.
For most data sets, the time to complete all measurements
(makespan) is close to the lower bound. The LAFBNF-EIS
heuristic, which considers load on the nodes as well as cost
and duration of measurement tasks, consistently produces a
low makespan schedule. We also evaluate the response times
of measurement requests. We find that heuristics that consider
node load, BNF, yield the best results in this case. In our future
work, we plan to derive tighter upper bounds for all heuristics.
We will also integrate the scheduling mechanisms into the

S3 measurement service [22] deployed on ProtoGENI [1] and
PlanetLab [19].
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