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Abstract—The Border Gateway Protocol (BGP), the de-facto = We develop correlation coefficient metrics for comparing
Internet interdomain routing protocol, disseminates infamation  two prefixes in terms of their failure tendency (Section IV).
about Internet prefixes to Autonomous Systems (ASes). PreBs v consider a number of prefix characteristics to determine
are announced and withdrawn as routes and policies change, their relati hi ith th lati fficients (SeatV
making them unreachable from portions of the Internet for eir relationship wi ) e colrrealon. coeficien S( )'.
certain time periods. This paper aims to predict routing failures BGP molecules give us information about which prefixes
of prefixes in the Internet. We investigate the similarity ofprefixes are likely to be affected by a single event, which aids failur
in the Internet with respect to their propensity to fail, i.e., prediction and diagnosis algorithms. One can then develop
become unreachable. Given a prefix of interest, we define a5 reactive routing mechanism to route around failures [2].

“BGP molecule” — the prefixes in the Internet that are likely . . . .
to fail together with this prefix. We show that the AS paths O instance, iPlane Nano [3] showed that intelligently se-

to prefixes, coupled with knowledge of the prefix geographida lecting detours can improve the performance of routing. BGP
location, contribute to its failure tendency. The BGP moleales molecules also reveal similarity in failure tendency and ca

constructed are used in four failure prediction schemes amuy  pe used to study how to improve the reliability of web-based

which a hybrid scheme achieves 91% predictability of failues applications and cloud computing, so that the primary and
. 0, . . 1

with 99.3% coverage of prefixes in the Intemet. backup prefixes can be placed in different BGP molecules.

|. INTRODUCTION Il. BACKGROUND AND RELATED WORK

Autonomous Systems (ASes) in the Internet exchange rout-There has been a significant amount of research on diagnosis
ing information via the Border Gateway Protocol (BGP), byf BGP routing events [4], [5], [6]. Three dimensions areduse
advertising paths tgrefixes— which are aggregates of IPfor identifying the origin of a routing eventime, prefixes and
addresses. These paths can be withdrawn through routiigws Wu et al. [5] point out that grouping updates across
updates, due to several reasons like link failures or AScpoliprefixes reduces the number of trouble reports sent to the
changes, causing the prefixes to become unreachable froperators and aids diagnosis. Prior work only safely cates!
various portions of the Internet. The goal of this paper is wWpdates across prefixes when the number of prefixes updated
predict these routing failures. For each given prefix ofriedé exceeds a threshold, e.g., 100 [6]. Our work can enhance thes
we determine itBGP moleculewhich is a group of Internet diagnosis algorithms since we group prefixes by their failur
prefixes with similar failure characteristics. BGP molesul tendencies using well-formed metrics.
generalize the concept @GP atoms[1], which are prefix  Diagnosis is not the only goal of clustering prefixes; gajnin
clusters such that all BGP routers (peers) which can reaalbetter understanding of the the prefix address space stgila
prefixes in the same atom do so using the same AS paths. id/an important goal. Prior work [2], [7] has studied the eerr
consider similarity in AS paths to prefixes as just one pdssiliation of data plane failures, measured through active ipmb
metric in constructing molecules. The BGP molecules, enlikvith BGP routing updates, for predicting the data plane
BGP atoms, can consist of prefixes belonging to differeréachability failures of prefixes. The prediction is donedoe
ASes, just like a molecule can consist of atoms belongipgefix at a time using its updates, and some prefixes/portions
to different chemical elements. of the Internet are found to be more predictable than others.

While BGP atoms were introduced to aggregate BGP pra- better understanding of the similarity among prefixes in
fixes that are subject to the same policy [1], our goal ithe control plane would likely improve predictability. lac
forming BGP molecules is formulating a fundamental unilso lead to a better selection of prefix candidates for &irth
which can be used in effective diagnosis of routing problemisispection by data plane monitoring systems like Hubble [8]
ultimately improving the security and reliability of thetémnet and deeper insight into the behavior of subset and superset
control plane. We study the potential of BGP molecules jorefixes [9] in failure scenarios.
predicting failure of the prefix of interest by considerirauf
failure prediction algorithms, with and without the use &&B
molecules, in Section VI. We find that BGP molecules are easyThe routing tables and updates available from Route-
to compute and achieve higher failure prediction accuraagpt Views [10] from March 2009 are used to build BGP molecules
prediction schemes using BGP atoms. and for failure prediction. We selected this month since no

Ill. DATA SETS



known major routing event (such as an undersea cable cut) peefix pairs. Even if the correlation coefficient of a prefixrpa
curred, in order to produce unbiased results. This is ingmbrt takes one second to compute, it would take 1746 years to
because the BGP molecules will typically be used in normabmpute the coefficients for all the pairs on a single pramess
operation scenarios, as significant routing events are Ya#ee machine. Hence, we randomly choose 1% of the ASes (or
define a peer as any vantage point in our dataset which3is6 ASes) and only consider the 2353 prefixes originated by
present in any routing table entry and at least one update. Wese ASes. As Figure 1 shows, the frequency of prefixes
executed scripts (contributed by the authors of [11]) frém@ t originated by an AS in the 316 AS random sample is about
point of view of each of the 42 peers in our dataset to remottee same as that of the entire set of 31,576 ASes, indicating
spurious updates due to routing table transfers. We use thtst the prefix sample is a representative one for the prefixes
filtered updates for all further processing. of the entire Internet. Although we use this reduced dafaset

Each prefix announcement and each routing table entrytlie remainder of the paper, the randomness of our selection
associated with an AS path and a peer. The origin AS of tipeocess makes the results for correlation coefficientsaseoi.
prefix is the last AS on the AS path. We extracted 31,5Further, the construction of BGP molecules relies on finding
unique origin ASes out of the data visible for the month, argbme prefixes in the Internet which are similar in failure
stored the prefixes that they originate along with an array tfndency to the prefix of interest. Limiting the sample only
the times of prefix state changes. The state of a prefix canthakes our BGP molecule construction and the subsequent
Up (U) when the prefix is in an announced state or Down ([Prediction mechanism appear worse than if more powerful
when the prefix is in a withdrawn state. Each prefix has a statemputation mechanisms had been available.
change array for each of the peers that can reach this prefix.

We found that about 1.6% of the prefixes exhibited MOAS 0.45 AlASes o
conflicts, i.e., their origin could be attributed to two or rao oss | S1OAS sample =
ASes. Since our focus in this paper is not on resolving 0.3 |
MOAS conflicts, we attribute the prefix to all of the ASes oz

0.2

X0

Frequency

that appear to originate it. We change the states of the prefix 015 | =

to “Down” for all the ASes that originate this prefix on seeing oz [ B ok

a withdrawal. The origin AS of about 0.013% of the prefixes o T = =
is an AS SET [12], which we keep as a separate entity. The Number of Prefixes

number of prefixes originated by an AS ranges from 1 to 446#. 1. Comparison of partial histograms of the number ofixes in an
in our data. We had 329,658 prefixes in our dataset with 4 in the random sample vs. for all ASes
average of 10.44 prefixes originated by an AS. However, the

distribution is highly skewed with about 42% of the ASes The total number of prefix pairs for which failure correlatio
originating only 1 prefix and about 86.2% of the prefixegpefficients can be computed is 2.724 million vs. the 2.76
originating less than or equal to 10 prefixes. million pairs possible, as the pairs where both the prefixes
were up for the entire month w.r.t. every peer are omitted.
The failure correlation coefficient’s median is -0.9999%¢hw
We now define the correlation coefficient based metrics,riean -0.927647. This is because two arbitrary prefixes in the
high value of which indicates that the failure tendencies ajnternet are unlikely to have high tendency to fail together
close. For each prefix and each peer which can reach it, Wfiess they share common characteristics. It is our goal to
have state change sequences of the prefix recording the tiifg these characteristics. The results can be likened ttatite
when the state of the prefix goes from U to D or vice versgat two arbitrary chemical atoms in a large enough sample
We compare the state change arrays of two prefixes when thgyatoms are unlikely to be the same and hence an average

IV. METRICS

are viewed by the same peer. N oo up Similarity coefficient” would be close to -1.
We define .fa|Iure correlation coefficient a%m, V. C BGP M
where {xy} with z,y = U or D denotes the total time in the - LONSTRUCTING OLECULES

month long dataset when the first prefix staterisnd the  We now construct each BGP molecule, i.e., the set of
second prefix state ig. In our dataset of 329,659 prefixesprefixes in the Internet similar to the prefix of interest,
prefixes are ‘Up” for most of the time (92.37% of time on thevith the goal of failure prediction (which we demonstrate
average). Hence, we only consider the time when at least aneSection VI). We choose the prefix of interest, one each
of the prefixes has failed. This captures the correlatiowben from the 2353 prefixes of the 316 AS sample so that we
the failure tendencies of two prefixes more accurately,esindo not bias our results towards a specific AS/prefix group.
it evaluates whether one prefix has failed, given that therotiMe study correlation of the prefix originating AS with its
prefix has failed. We study other correlation coefficientmast failure correlation coefficient in [13] and find that it colates
in the extended version of this paper [13]. somewhat with the failure tendency. However, about 49.5% of
Unfortunately, computing the failure correlation coeffici the ASes have a negative failure coefficient, which is a drive
of all prefix pairs in our dataset is a virtually impossibleka for finding additional prefix characteristics that influerite
since we have 329,658 prefixes and hence about 54.3 billi@ilure tendency.



A. Using AS Paths tained into 20 bins and compute the average failure coroalat

In this subsection, we study the hypothesis that preﬁxggefﬁcient of each bin, the results of which are shown in Fig-
which have similar AS paths from one or more vantage poini¢e 2. This shows a clear positive correlation between thoe tw
are expected to have similar failure tendencies. This idea @efficients: as the AS path correlation coefficient between
using AS paths to group prefixes was initially proposed in [Hrefixes increases, their average failure correlationfioberft
where prefixes were grouped into BGP atoms if they hag@anges from negative to positive, changing signs at an AS
the same AS paths from every visible default router. ThRath coefficient = 0.55. This validates our hypothesis that A
definition necessitates that prefixes belonging to the saome a Path similarity is indeed a measure of prefix failure tengenc
belong to the same AS, since the last AS on the AS path is thel0 construct BGP molecules using AS path alone, we use
one which originates the prefix. We apply a broader definitignly the first routing table since the goal is to use them for
defining “AS path sequences” as the AS paths occurring figilure prediction. For each of the prefixes of interest, wel fi
the routing tables with thdirst AS, last AS, and AS pathits AS path sequences w.r.t. each peer, and then search for
prepending removed he first AS is of the vantage point whichother prefixes in the routing table which have the same AS
sees the prefix and is uninteresting when we aggregate da&h sequence w.r.t. the same peer and place them in its BGP
across vantage points, whereas the last AS is the originatiiolecule. We ignore AS path sequences which are just one
AS of the prefix. AS path prepending [12] is removed sinc®S long as that is too general a comparison.
that has no implication on the sequence of ASes traversed
between the vantage point and the prefix. B. On a Geographical Basis

We form a *routing table set” containing the largest table fo \ye yse MaxMind's GeoLiteCity application [15] to find the
each day in the dataset. This eliminates short and possibly Gatitude and longitude of the location of the dotted decimal
rupted routing tables and improves computational effigienGortion of the prefix, and then compute the distance between
Routing tables closely spaced in time are expected to hayg, prefixes of about 60,500 prefix pairs (Section V-A) using
significant overlap in the!r e_ntnes. We qbtamed 1_30 routinghe Haversine Formula [16] for computing the great-circle
tables for March 2009, yielding a “combined routing tablejjistance. We find that out of prefixes at the same location,
with 14.8 million entries. about 92.5% belong to the same AS, indicating that the ge-

We narrow down the group of 2.76 million failure correqq anhical distance between prefixes is a different dingensi

'atif’” coefﬁcients fc.>r. computational reasons by ChQOSm Sfrom their originating ASes. Zero distance between prefixes
of increasing coefficient values from 0 to 1 differing by af5esnot imply that the prefixes belong to the same AS. The
least 0.02 from the previous set and choosing no more thﬁ‘@rcentage of prefixes belonging to the same AS reduces to
1000 values for each set. This reduces our group t0 ab@, for prefixes with distance less than 150 miles and to 70%
60,500 prefix pairs and for each of those, we see if we haye jistance less than 600 miles.

AS paths.for both Og. thz pref.|xes IEI thsvpa;]r from at Ieasr: We now evaluate whether geographical distance correlates
one peer in our combined routing table. We then compare f&y, 6 fajlure correlation coefficient of prefixes. We have

AS paths from th‘? pe:ers, one a_t a time, to compute "AS Pahs of 50 miles each, and we place each of the 60,500 prefix
correlation coeflicient” (defined in the next paragraph)e3é pairs into one of the bins depending on their distance. We the

coefficients are then averaged across peers to determing anc’(A)‘mpute the average failure correlation coefficient of dznh

path correlation coefficient for the prefix pair. The results indicate that increasing distance corresptinds

I(; met IePgthf_of 2th§ AS path se?ui:rr:cel_for pr?fg Liis lower similarity in failure tendency. The results for thesfi600
an at of prefix < 19, we compute the Longest Lommon,;, ¢ [13] suggest that prefixes with distances 150 miles or

ﬁt%tﬁecﬂuarzﬁea(ri_(jcizzfil;lznt%etrfsdg:tin::lgrrperlggroanmcmog]fﬁc?eﬁ%és have a fairly high failure correlation coefficient, s
as LCShin(ly, I»). Thus, the coefficient can range from 0 to ose with greater distances have a negative coefficient.

L. C. Hybrid Scheme

= From the above discussion, AS paths to a prefix are a
€ o5l ] stronger dimension than its geographical location in corre
2 lating with its failure tendency. However, there are severa
k| © cases when AS paths alone do not yield any prefixes within
8 os W ] a molecule. This may be because (i) the prefix of interest
§ is not found in the routing table used, or (ii) the AS path
7 0 0102 03040506070805 1 sequences for finding similar prefixes are only one AS long,

AS Path correlation coefficient or (iii) there are no prefixes in the routing table with the

Fig. 2. Variation of average failure correlation coeffitieri each bin with sgme AS path sequences. Additionally, the number of prefixes
AS path correlation coefficient . . . L
in the molecule may be insufficient for prediction purposes
(Section VI-B). We therefore devise a hybrid scheme for
We divide the AS path coefficients for the prefix pairs obeonstructing BGP molecules. We find the prefixes which are



within a threshold distance (150 miles) of the prefix of ie#r unless specified otherwise. We use the training set to find the
and place them in the molecule constructed using AS pathgalue of v by counting the number of instances when the
alternative is true and dividing it by the number of instaice
where the null is true. Howevet, is chosen to be at least 1,
A. Failure Prediction Methodology because we do not want to reject the null unless the evidence
Our prediction methodology involves failure prediction ofn favor of the alternative exceeds that of the null. Aftee th
prefixes of interest given “similar” prefixes in some regang  value ofy is decided, we execute the same algorithm for the
select a set of 25 random “similar” prefixes for predictiom-putest set, computé and reject the null ifA > ~. Due to the
poses. The number 25 was selected to be large enough to gileerent randomness in selecting the training and test sets
a meaningful sample, but small enough for low computationae perform five predictions for each prefix of interest, with
overhead in an online prediction application. If the numbglifferent random seeds based on the current wall time.
of “similar” prefixes is less than 25, we typically do not It may not be possible to perform failure prediction for all
perform prediction except for evaluation reasons. Gehgralprefixes, for example because of an empty BGP molecule.
a failure of the prefix of interest is predicted if a majority oHence, we defineeoverageof the prediction mechanism to
the 25 prefixes fail during a time window, which is kept as he the percentage of the 2353 prefixes for which a decision
parameter. This prediction application can be easily degglo on predictability can be made. Out of the prefixes for which
in the real world if failures of prefixes can be observed (e.grediction is possible, the prediction methodology is eith
through a live update feed). The use case of ISPs will tyfyicalsuccessful or unsuccessful in predicting the failures @f th
have such a feed through peering, else they can be obtaipeefix of interest. We definpredictability as the percentage
from a public source like RouteViews [10]. We execute ouwf prefixes whose failures are predictable.
prediction experiments for all 2353 prefixes.
We now present an example, with t_he_prefix of interegt Nagve Prediction
210.143.240.0/20. Figure 3 shows the indices of 25 random
prefixes in its molecule (numbered 0 to 24) and their failure We first study a Naive prediction model which does not
time. Since 13 prefixes fail within 1 second of each othétse BGP molecules or any prefix characteristics for failure
(< time window t=300 seconds), we predict that the prefiprediction. It learns other prefixes that fail with the predix
of interest will fail within ¢ seconds beginning ag. Since it interest during a learning duration, and uses these prefixes
failed att,+ 1 within ¢ seconds of the failure of the first prefixto predict failure. It is computationally intensive: Forcea
out of 13 prefixes, we consider this failure predictable. prefix of interest among the 2353 prefix sample, we identify
prefixes in the sample, which fail within a time window of
| | | Time its failure during a day-long learning duration (MaraH,
| }g {J 2009). The window is selected to be 300 seconds to allow
{to, (3,23)Hto +1,(1,2,4,7,10, 11,13, 22, 24) -{to + 3, (0, 5)} gyfficient time for routing convergence, which has a median
Fig. 3. Example of failure prediction using BGP molecules;1235877308 time of about 3 minutes [17], delayed update visibility and
Unix time, Each label hagtime, (list of prefix indices which fail at that img) time synchronization issues. We find the predictability to
be 80.6%. While this is promising, the high computational
complexity of this prediction method makes it infeasible.

V1. PREDICTING FAILURES

B. Evaluating Prediction Quality

Let I denote the failure event of a prefix. We formulat®. Using BGP Atoms
the following hypotheses. Null Hypothesi,: F' happens ] )
within a time windowt when the application predicts a failure. FOr €ach of the 2353 prefixes of interest, we compute the
The alternative hypothesi&#, states the case thdt does sc_et of prefixes that.are in the same BGP atom [1]. The primary
not happen withint given the application predicts a failure disadvantage of this scheme is that for most cases, we do not

Any evidence in support of the null hypothesis favors th@hd any prefixes in the sameoatom since they also have to
success of our prediction application. We do not requireexd€ In the same AS. About 42% of the ASes have only one

time synchronization, since we evaluate the feasibilitthef Prefix (Section 1ll). Even if an AS has multiple prefixes, it
prediction application; our approach is similar to that2j.[ 1S difficult to find prefixes in the same BGP atom because
We form the likelihood ratio: multiple prefixes may be advertised with different policies

A = P(Hiistrue) _ load balancing, leading to different AS paths.
P (Ho 15 true) The average number of prefixes in non-zero-sized BGP
P(No F within t | Application predicts F) . g P R
P(F within t |Application predicts F) atoms is 2.88 vs 11.41 for molecules formed using AS paths.

A large value of the likelihood ratio indicates that thé'he maximum number of prefixes in a BGP atom is 23 which
alternative is true; hence we reject the null when- v where is less than 50. Thus, we randomly assign about half of the
~ is decided by using two disjoint but randomly selected sefsrefixes to the training and test sets in equal numbers, when
namely training and test sets of prefixes which are “similae have at least 2 prefixes in the atom. This still only gives
to the prefix of interest. These sets usually have 25 prefixes, a coverage of 1.66%, and a predictability of 87.2%.



E. Using BGP Molecules Constructed by AS Paths at least 2 buk 50 prefixes, we divide the prefixes into two

We now consider prefix failure prediction using BGnguaI parts of training _and test sets. The overall hybri@mm
molecules constructed using AS paths as in Section V- the best. It has a high coverage of 99.28% excluding only
Table | compares the performance of this AS path-baséa prefixes of interest and a predictability of about 91%.
prediction with the two other prediction schemes studied so VIl. CONCLUSIONS ANDFUTURE WORK
far in terms of failure predictability and coverage. Theules

. : - This work has focused on using prefix characteristics to
show that using BGP molecules is the best prediction SCh?%%struct a group of prefixes similar in failure tendency to a

studied so far with about 14% higher predictability thanwa . . ) o .
L o . prefix of interest (called a “BGP molecule”) with the primary
prediction. However, it still suffers from the disadvargabat o .
goal of predicting failures. To the best of our knowledge,

slgr;'ily dle?;mar;rhc?lf ngfoﬁrggﬁgfngri ?;E;dl]céa?lsee'cﬁgﬁhis is the first work which has evaluated the similarity of
we study ybrid predicti ! X : "prefixes in the Internet w.r.t. their failure tendency andveh

TABLE | its feasibility for prediction applications. We evaluateuf
FAILURE PREDICTABILITY PERFORMANCE OFBGPMOLECULES schemes to predict failures and show that a hybrid scheme
CONSTRUCTED USING THREE SCHEMES-AILURE PREDICTION based on AS paths and geographical location performs the
WINDOW=300SECONDS . . o
best with 91% predictability and 99.3% coverage.
Scheme Failure Coverage| Disadvantage As future work, we plan to develop an online tool for
Predictability (%) | (%) _ predicting control plane reachability failures, and cdesi
Prggi'gt’fon 80.62 100 COTHF;::]E‘Sti'\‘/’ga”V prefixes that are more specific versions of other prefixes.
ECP Aoms 577 166 Tow 7 of Finally, we plan to use our tool to further .study the inteypla
Coverage of data plane and control plane reachability.
BGP molecules 91.82 47.2 Moderate
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