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Abstract—The Border Gateway Protocol (BGP), the de-facto
Internet interdomain routing protocol, disseminates information
about Internet prefixes to Autonomous Systems (ASes). Prefixes
are announced and withdrawn as routes and policies change,
making them unreachable from portions of the Internet for
certain time periods. This paper aims to predict routing failures
of prefixes in the Internet. We investigate the similarity ofprefixes
in the Internet with respect to their propensity to fail, i.e.,
become unreachable. Given a prefix of interest, we define a
“BGP molecule” – the prefixes in the Internet that are likely
to fail together with this prefix. We show that the AS paths
to prefixes, coupled with knowledge of the prefix geographical
location, contribute to its failure tendency. The BGP molecules
constructed are used in four failure prediction schemes among
which a hybrid scheme achieves 91% predictability of failures
with 99.3% coverage of prefixes in the Internet.

I. I NTRODUCTION

Autonomous Systems (ASes) in the Internet exchange rout-
ing information via the Border Gateway Protocol (BGP), by
advertising paths toprefixes– which are aggregates of IP
addresses. These paths can be withdrawn through routing
updates, due to several reasons like link failures or AS policy
changes, causing the prefixes to become unreachable from
various portions of the Internet. The goal of this paper is to
predict these routing failures. For each given prefix of interest,
we determine itsBGP molecule, which is a group of Internet
prefixes with similar failure characteristics. BGP molecules
generalize the concept ofBGP atoms[1], which are prefix
clusters such that all BGP routers (peers) which can reach
prefixes in the same atom do so using the same AS paths. We
consider similarity in AS paths to prefixes as just one possible
metric in constructing molecules. The BGP molecules, unlike
BGP atoms, can consist of prefixes belonging to different
ASes, just like a molecule can consist of atoms belonging
to different chemical elements.

While BGP atoms were introduced to aggregate BGP pre-
fixes that are subject to the same policy [1], our goal in
forming BGP molecules is formulating a fundamental unit
which can be used in effective diagnosis of routing problems,
ultimately improving the security and reliability of the Internet
control plane. We study the potential of BGP molecules in
predicting failure of the prefix of interest by considering four
failure prediction algorithms, with and without the use of BGP
molecules, in Section VI. We find that BGP molecules are easy
to compute and achieve higher failure prediction accuracy than
prediction schemes using BGP atoms.

We develop correlation coefficient metrics for comparing
two prefixes in terms of their failure tendency (Section IV).
We consider a number of prefix characteristics to determine
their relationship with the correlation coefficients (Section V).

BGP molecules give us information about which prefixes
are likely to be affected by a single event, which aids failure
prediction and diagnosis algorithms. One can then develop
a reactive routing mechanism to route around failures [2].
For instance, iPlane Nano [3] showed that intelligently se-
lecting detours can improve the performance of routing. BGP
molecules also reveal similarity in failure tendency and can
be used to study how to improve the reliability of web-based
applications and cloud computing, so that the primary and
backup prefixes can be placed in different BGP molecules.

II. BACKGROUND AND RELATED WORK

There has been a significant amount of research on diagnosis
of BGP routing events [4], [5], [6]. Three dimensions are used
for identifying the origin of a routing event:time, prefixes, and
views. Wu et al. [5] point out that grouping updates across
prefixes reduces the number of trouble reports sent to the
operators and aids diagnosis. Prior work only safely correlates
updates across prefixes when the number of prefixes updated
exceeds a threshold, e.g., 100 [6]. Our work can enhance these
diagnosis algorithms since we group prefixes by their failure
tendencies using well-formed metrics.

Diagnosis is not the only goal of clustering prefixes; gaining
a better understanding of the the prefix address space similarity
is an important goal. Prior work [2], [7] has studied the corre-
lation of data plane failures, measured through active probing,
with BGP routing updates, for predicting the data plane
reachability failures of prefixes. The prediction is done for one
prefix at a time using its updates, and some prefixes/portions
of the Internet are found to be more predictable than others.
A better understanding of the similarity among prefixes in
the control plane would likely improve predictability. It can
also lead to a better selection of prefix candidates for further
inspection by data plane monitoring systems like Hubble [8],
and deeper insight into the behavior of subset and superset
prefixes [9] in failure scenarios.

III. D ATA SETS

The routing tables and updates available from Route-
Views [10] from March 2009 are used to build BGP molecules
and for failure prediction. We selected this month since no
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known major routing event (such as an undersea cable cut) oc-
curred, in order to produce unbiased results. This is important
because the BGP molecules will typically be used in normal
operation scenarios, as significant routing events are rare. We
define a peer as any vantage point in our dataset which is
present in any routing table entry and at least one update. We
executed scripts (contributed by the authors of [11]) from the
point of view of each of the 42 peers in our dataset to remove
spurious updates due to routing table transfers. We use these
filtered updates for all further processing.

Each prefix announcement and each routing table entry is
associated with an AS path and a peer. The origin AS of the
prefix is the last AS on the AS path. We extracted 31,576
unique origin ASes out of the data visible for the month, and
stored the prefixes that they originate along with an array of
the times of prefix state changes. The state of a prefix can be
Up (U) when the prefix is in an announced state or Down (D)
when the prefix is in a withdrawn state. Each prefix has a state
change array for each of the peers that can reach this prefix.

We found that about 1.6% of the prefixes exhibited MOAS
conflicts, i.e., their origin could be attributed to two or more
ASes. Since our focus in this paper is not on resolving
MOAS conflicts, we attribute the prefix to all of the ASes
that appear to originate it. We change the states of the prefix
to “Down” for all the ASes that originate this prefix on seeing
a withdrawal. The origin AS of about 0.013% of the prefixes
is an AS SET [12], which we keep as a separate entity. The
number of prefixes originated by an AS ranges from 1 to 4402
in our data. We had 329,658 prefixes in our dataset with an
average of 10.44 prefixes originated by an AS. However, the
distribution is highly skewed with about 42% of the ASes
originating only 1 prefix and about 86.2% of the prefixes
originating less than or equal to 10 prefixes.

IV. M ETRICS

We now define the correlation coefficient based metrics, a
high value of which indicates that the failure tendencies are
close. For each prefix and each peer which can reach it, we
have state change sequences of the prefix recording the time
when the state of the prefix goes from U to D or vice versa.
We compare the state change arrays of two prefixes when they
are viewed by the same peer.

We define “failure correlation coefficient” as:DD−DU−UD
DD+DU+UD

,
where{xy} with x, y = U or D denotes the total time in the
month long dataset when the first prefix state isx and the
second prefix state isy. In our dataset of 329,659 prefixes,
prefixes are ‘Up” for most of the time (92.37% of time on the
average). Hence, we only consider the time when at least one
of the prefixes has failed. This captures the correlation between
the failure tendencies of two prefixes more accurately, since
it evaluates whether one prefix has failed, given that the other
prefix has failed. We study other correlation coefficient metrics
in the extended version of this paper [13].

Unfortunately, computing the failure correlation coefficient
of all prefix pairs in our dataset is a virtually impossible task
since we have 329,658 prefixes and hence about 54.3 billion

prefix pairs. Even if the correlation coefficient of a prefix pair
takes one second to compute, it would take 1746 years to
compute the coefficients for all the pairs on a single processor
machine. Hence, we randomly choose 1% of the ASes (or
316 ASes) and only consider the 2353 prefixes originated by
those ASes. As Figure 1 shows, the frequency of prefixes
originated by an AS in the 316 AS random sample is about
the same as that of the entire set of 31,576 ASes, indicating
that the prefix sample is a representative one for the prefixes
of the entire Internet. Although we use this reduced datasetfor
the remainder of the paper, the randomness of our selection
process makes the results for correlation coefficients unbiased.
Further, the construction of BGP molecules relies on finding
some prefixes in the Internet which are similar in failure
tendency to the prefix of interest. Limiting the sample only
makes our BGP molecule construction and the subsequent
prediction mechanism appear worse than if more powerful
computation mechanisms had been available.
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Fig. 1. Comparison of partial histograms of the number of prefixes in an
AS in the random sample vs. for all ASes

The total number of prefix pairs for which failure correlation
coefficients can be computed is 2.724 million vs. the 2.76
million pairs possible, as the pairs where both the prefixes
were up for the entire month w.r.t. every peer are omitted.
The failure correlation coefficient’s median is -0.999999 with
mean -0.927647. This is because two arbitrary prefixes in the
Internet are unlikely to have high tendency to fail together
unless they share common characteristics. It is our goal to
find these characteristics. The results can be likened to thefact
that two arbitrary chemical atoms in a large enough sample
of atoms are unlikely to be the same and hence an average
“similarity coefficient” would be close to -1.

V. CONSTRUCTINGBGP MOLECULES

We now construct each BGP molecule, i.e., the set of
prefixes in the Internet similar to the prefix of interest,
with the goal of failure prediction (which we demonstrate
in Section VI). We choose the prefix of interest, one each
from the 2353 prefixes of the 316 AS sample so that we
do not bias our results towards a specific AS/prefix group.
We study correlation of the prefix originating AS with its
failure correlation coefficient in [13] and find that it correlates
somewhat with the failure tendency. However, about 49.5% of
the ASes have a negative failure coefficient, which is a driver
for finding additional prefix characteristics that influenceits
failure tendency.
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A. Using AS Paths

In this subsection, we study the hypothesis that prefixes
which have similar AS paths from one or more vantage points
are expected to have similar failure tendencies. This idea of
using AS paths to group prefixes was initially proposed in [1]
where prefixes were grouped into BGP atoms if they have
the same AS paths from every visible default router. This
definition necessitates that prefixes belonging to the same atom
belong to the same AS, since the last AS on the AS path is the
one which originates the prefix. We apply a broader definition
defining “AS path sequences” as the AS paths occurring in
the routing tables with thefirst AS, last AS, and AS path
prepending removed. The first AS is of the vantage point which
sees the prefix and is uninteresting when we aggregate data
across vantage points, whereas the last AS is the originating
AS of the prefix. AS path prepending [12] is removed since
that has no implication on the sequence of ASes traversed
between the vantage point and the prefix.

We form a “routing table set” containing the largest table for
each day in the dataset. This eliminates short and possibly cor-
rupted routing tables and improves computational efficiency.
Routing tables closely spaced in time are expected to have
significant overlap in their entries. We obtained 30 routing
tables for March 2009, yielding a “combined routing table”
with 14.8 million entries.

We narrow down the group of 2.76 million failure corre-
lation coefficients for computational reasons by choosing sets
of increasing coefficient values from 0 to 1 differing by at
least 0.02 from the previous set and choosing no more than
1000 values for each set. This reduces our group to about
60,500 prefix pairs and for each of those, we see if we have
AS paths for both of the prefixes in the pair from at least
one peer in our combined routing table. We then compare the
AS paths from the peers, one at a time, to compute “AS path
correlation coefficient” (defined in the next paragraph). These
coefficients are then averaged across peers to determine an AS
path correlation coefficient for the prefix pair.

If the length of the AS path sequence for prefix 1 isl1
and that of prefix 2 isl2, we compute the Longest Common
Subsequence (LCS) using the dynamic programming algo-
rithm of [14], and define the AS path correlation coefficient
as LCS/min(l1, l2). Thus, the coefficient can range from 0 to
1.
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Fig. 2. Variation of average failure correlation coefficient of each bin with
AS path correlation coefficient

We divide the AS path coefficients for the prefix pairs ob-

tained into 20 bins and compute the average failure correlation
coefficient of each bin, the results of which are shown in Fig-
ure 2. This shows a clear positive correlation between the two
coefficients: as the AS path correlation coefficient betweentwo
prefixes increases, their average failure correlation coefficient
changes from negative to positive, changing signs at an AS
path coefficient = 0.55. This validates our hypothesis that AS
path similarity is indeed a measure of prefix failure tendency.

To construct BGP molecules using AS path alone, we use
only the first routing table since the goal is to use them for
failure prediction. For each of the prefixes of interest, we find
its AS path sequences w.r.t. each peer, and then search for
other prefixes in the routing table which have the same AS
path sequence w.r.t. the same peer and place them in its BGP
molecule. We ignore AS path sequences which are just one
AS long as that is too general a comparison.

B. On a Geographical Basis

We use MaxMind’s GeoLiteCity application [15] to find the
latitude and longitude of the location of the dotted decimal
portion of the prefix, and then compute the distance between
two prefixes of about 60,500 prefix pairs (Section V-A) using
the Haversine Formula [16] for computing the great-circle
distance. We find that out of prefixes at the same location,
about 92.5% belong to the same AS, indicating that the ge-
ographical distance between prefixes is a different dimension
from their originating ASes. Zero distance between prefixes
doesnot imply that the prefixes belong to the same AS. The
percentage of prefixes belonging to the same AS reduces to
90% for prefixes with distance less than 150 miles and to 70%
for distance less than 600 miles.

We now evaluate whether geographical distance correlates
with the failure correlation coefficient of prefixes. We have
bins of 50 miles each, and we place each of the 60,500 prefix
pairs into one of the bins depending on their distance. We then
compute the average failure correlation coefficient of eachbin.
The results indicate that increasing distance correspondsto a
lower similarity in failure tendency. The results for the first 600
miles [13] suggest that prefixes with distances 150 miles or
less have a fairly high failure correlation coefficient, whereas
those with greater distances have a negative coefficient.

C. Hybrid Scheme

From the above discussion, AS paths to a prefix are a
stronger dimension than its geographical location in corre-
lating with its failure tendency. However, there are several
cases when AS paths alone do not yield any prefixes within
a molecule. This may be because (i) the prefix of interest
is not found in the routing table used, or (ii) the AS path
sequences for finding similar prefixes are only one AS long,
or (iii) there are no prefixes in the routing table with the
same AS path sequences. Additionally, the number of prefixes
in the molecule may be insufficient for prediction purposes
(Section VI-B). We therefore devise a hybrid scheme for
constructing BGP molecules. We find the prefixes which are
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within a threshold distance (150 miles) of the prefix of interest,
and place them in the molecule constructed using AS paths.

VI. PREDICTING FAILURES

A. Failure Prediction Methodology

Our prediction methodology involves failure prediction of
prefixes of interest given “similar” prefixes in some regard.We
select a set of 25 random “similar” prefixes for prediction pur-
poses. The number 25 was selected to be large enough to give
a meaningful sample, but small enough for low computational
overhead in an online prediction application. If the number
of “similar” prefixes is less than 25, we typically do not
perform prediction except for evaluation reasons. Generally,
a failure of the prefix of interest is predicted if a majority of
the 25 prefixes fail during a time window, which is kept as a
parameter. This prediction application can be easily deployed
in the real world if failures of prefixes can be observed (e.g.,
through a live update feed). The use case of ISPs will typically
have such a feed through peering, else they can be obtained
from a public source like RouteViews [10]. We execute our
prediction experiments for all 2353 prefixes.

We now present an example, with the prefix of interest
210.143.240.0/20. Figure 3 shows the indices of 25 random
prefixes in its molecule (numbered 0 to 24) and their failure
time. Since 13 prefixes fail within 1 second of each other
(< time window t=300 seconds), we predict that the prefix
of interest will fail within t seconds beginning att0. Since it
failed att0+1 within t seconds of the failure of the first prefix
out of 13 prefixes, we consider this failure predictable.

-
T ime

{t0, (3, 23)}{t0 + 1, (1, 2, 4, 7, 10, 11, 13, 22, 24)}{t0 + 3, (0, 5)}

Fig. 3. Example of failure prediction using BGP molecules,t0=1235877308
Unix time, Each label has{time,(list of prefix indices which fail at that time)}

B. Evaluating Prediction Quality

Let F denote the failure event of a prefix. We formulate
the following hypotheses. Null HypothesisH0: F happens
within a time windowt when the application predicts a failure.
The alternative hypothesisH1 states the case thatF does
not happen withint given the application predicts a failure.
Any evidence in support of the null hypothesis favors the
success of our prediction application. We do not require exact
time synchronization, since we evaluate the feasibility ofthe
prediction application; our approach is similar to that in [2].

We form the likelihood ratio:
Λ = P (H1 is true)

P (H0 is true) =
P (No F within t |Application predicts F )

P (F within t |Application predicts F )

A large value of the likelihood ratio indicates that the
alternative is true; hence we reject the null whenΛ > γ where
γ is decided by using two disjoint but randomly selected sets,
namely training and test sets of prefixes which are “similar”
to the prefix of interest. These sets usually have 25 prefixes,

unless specified otherwise. We use the training set to find the
value of γ by counting the number of instances when the
alternative is true and dividing it by the number of instances
where the null is true. However,γ is chosen to be at least 1,
because we do not want to reject the null unless the evidence
in favor of the alternative exceeds that of the null. After the
value ofγ is decided, we execute the same algorithm for the
test set, computeΛ and reject the null ifΛ > γ. Due to the
inherent randomness in selecting the training and test sets,
we perform five predictions for each prefix of interest, with
different random seeds based on the current wall time.

It may not be possible to perform failure prediction for all
prefixes, for example because of an empty BGP molecule.
Hence, we definecoverageof the prediction mechanism to
be the percentage of the 2353 prefixes for which a decision
on predictability can be made. Out of the prefixes for which
prediction is possible, the prediction methodology is either
successful or unsuccessful in predicting the failures of the
prefix of interest. We definepredictability as the percentage
of prefixes whose failures are predictable.

C. Näıve Prediction

We first study a Naı̈ve prediction model which does not
use BGP molecules or any prefix characteristics for failure
prediction. It learns other prefixes that fail with the prefixof
interest during a learning duration, and uses these prefixes
to predict failure. It is computationally intensive: For each
prefix of interest among the 2353 prefix sample, we identify
prefixes in the sample, which fail within a time window of
its failure during a day-long learning duration (March1st,
2009). The window is selected to be 300 seconds to allow
sufficient time for routing convergence, which has a median
time of about 3 minutes [17], delayed update visibility and
time synchronization issues. We find the predictability to
be 80.6%. While this is promising, the high computational
complexity of this prediction method makes it infeasible.

D. Using BGP Atoms

For each of the 2353 prefixes of interest, we compute the
set of prefixes that are in the same BGP atom [1]. The primary
disadvantage of this scheme is that for most cases, we do not
find any prefixes in the same atom since they also have to
be in the same AS. About 42% of the ASes have only one
prefix (Section III). Even if an AS has multiple prefixes, it
is difficult to find prefixes in the same BGP atom because
multiple prefixes may be advertised with different policiesfor
load balancing, leading to different AS paths.

The average number of prefixes in non-zero-sized BGP
atoms is 2.88 vs 11.41 for molecules formed using AS paths.
The maximum number of prefixes in a BGP atom is 23 which
is less than 50. Thus, we randomly assign about half of the
prefixes to the training and test sets in equal numbers, when
we have at least 2 prefixes in the atom. This still only gives
us a coverage of 1.66%, and a predictability of 87.2%.
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E. Using BGP Molecules Constructed by AS Paths

We now consider prefix failure prediction using BGP
molecules constructed using AS paths as in Section V-A.
Table I compares the performance of this AS path-based
prediction with the two other prediction schemes studied so
far in terms of failure predictability and coverage. The results
show that using BGP molecules is the best prediction scheme
studied so far with about 14% higher predictability than Na¨ıve
prediction. However, it still suffers from the disadvantage that
slightly less than half of the prefixes are predictable. Hence,
we study the hybrid prediction scheme in the next section.

TABLE I
FAILURE PREDICTABILITY PERFORMANCE OFBGPMOLECULES
CONSTRUCTED USING THREE SCHEMES; FAILURE PREDICTION

WINDOW=300SECONDS

Scheme Failure Coverage Disadvantage
Predictability (%) (%)

Naı̈ve 80.62 100 Computationally
Prediction Intensive

BGP Atoms 87.2 1.66 Low # of
Coverage

BGP molecules 91.82 47.2 Moderate
(AS paths) Coverage

F. Using BGP Molecules Constructed by Hybrid Scheme

To improve coverage, i.e., percentage of prefixes for which
a prediction can be made, we use a hybrid scheme (Sec-
tion V-C). The “hybrid prediction scheme” operates as fol-
lows: (1) Predict failures of the prefix of interest using BGP
molecules constructed using AS paths (Section V-A) if they
have at least 50 prefixes. (2) Otherwise, construct molecules
using geographical proximity and combine with the AS path
molecule to form a hybrid molecule. Predict using the hybrid
molecule if it has at least 50 prefixes.

TABLE II
PREDICTION RESULTS OF HYBRID PREDICTION SCHEME

Description Number Coverage Failure
of prefixes (%) Predictability (%)

AS path 1079 45.86 % -
molecules do not
have any prefix

AS path 164 6.97 % -
molecules have
< 50 prefixes

“Hybrid” 782 33.23 % 93.58
molecules having
≥ 50 prefixes

“Hybrid” 461 19.59 % 83.51
molecules having

< 50 prefixes
Hybrid prediction 2336 99.28 % 90.83

combining
all techniques

“Hybrid” 17 0.72 % -
molecules having

< 2 prefixes

Table II gives the coverage and predictability of this predic-
tion scheme. For the 461 cases where hybrid molecules have

at least 2 but< 50 prefixes, we divide the prefixes into two
equal parts of training and test sets. The overall hybrid scheme
is the best. It has a high coverage of 99.28% excluding only
17 prefixes of interest and a predictability of about 91%.

VII. C ONCLUSIONS ANDFUTURE WORK

This work has focused on using prefix characteristics to
construct a group of prefixes similar in failure tendency to a
prefix of interest (called a “BGP molecule”) with the primary
goal of predicting failures. To the best of our knowledge,
this is the first work which has evaluated the similarity of
prefixes in the Internet w.r.t. their failure tendency and shown
its feasibility for prediction applications. We evaluate four
schemes to predict failures and show that a hybrid scheme
based on AS paths and geographical location performs the
best with 91% predictability and 99.3% coverage.

As future work, we plan to develop an online tool for
predicting control plane reachability failures, and consider
prefixes that are more specific versions of other prefixes.
Finally, we plan to use our tool to further study the interplay
of data plane and control plane reachability.
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