A Device-Independent Router Model

Roman Chertov, Sonia Fahmy, Ness B. Shroff
E-mail: {rchertov, fahmy} @purdue.edu, shroff @ece.osu.edu

Abstract—Several popular simulation and emulation environ-
ments fail to account for realistic packet forwarding behaviors of
commercial switches and routers. Such simulation or emulation
inaccuracies can lead to dramatic and qualitative impacts on the
results. In this paper, we present a measurement-based model for
routers and other forwarding devices, which we use to simulate
two different Cisco routers under varying traffic conditions.
The structure of our model is device-independent, but requires
device-specific parameters. We construct a profiling tool and use
it to derive router parameter tables within a few hours. Our
preliminary results indicate that our model can approximate
the Cisco routers. The compactness of the parameter tables and
simplicity of the model makes it possible to use it for high-fidelity
simulations while preserving simulation scalability. *

I. INTRODUCTION

Critical properties of Internet forwarding devices such as
intra-device latencies, maximum packet forwarding rates, poli-
cies, and queue sizes are not accurately incorporated into
popular simulators and emulators such as ns-2 [4] and DE-
TER [10]. These properties are crucial when modeling low-
to-mid level routers. Compared to core routers, low-to-mid
level routers are performance-limited. Yet, due to cost consid-
erations, they constitute the majority of the forwarding devices
in Internet edges and enterprise networks, which is where most
packet losses in today’s Internet occur. Accurately modeling
these devices is especially important in experiments with
high resource utilization, since resource consumption models
used in simulators and emulators are not representative of
today’s commercial routers [5], [6]. Discrepancies between the
simulated and deployment behaviors can be large for security
experiments (e.g., denial of service), high bandwidth traffic
(e.g., IPTV) scenarios, and network planning/dimensioning ex-
periments (e.g., ISP upgrades). Our previous results with low-
rate TCP targeted denial of service attacks (reported in [5])
demonstrate that seemingly identical tests on various testbeds
and on the ns-2 simulator produce very different results. The
discrepancies in the results arise because routers and other
forwarding devices have complex architectures with multiple
queues and multiple bottlenecks (e.g., buses, CPUs) [2] that
change in complex ways according to the characteristics of
the workload they are subjected to.

In commercial simulators such as OPNET [19] and OM-
NeT++ [1], detailed models of routers, switches, servers,
protocols, links, and mainframes are provided. However, the
model base needs to be constantly updated and validated, and

1Roman Chertov and Sonia Fahmy are with the Department of Computer
Science, Purdue University. Ness B. Shroff is with the departments of ECE
and CSE, The Ohio State University. This research has been sponsored in part
by NSF/DHS grant 0335247 and NSF grant 0523249.

using complex models significantly increases computational
cost, hindering scalability.

We believe that in order for a model to be useful, it must
meet the following requirements: (i) the model derivation
process is the same regardless of the device; (ii) the model
is dynamic, reflecting behavior under changing workloads;
(iii) model parameters are derived without assuming any
knowledge about device internals; (iv) the model is accurate,
but is allowed to miss special cases for the sake of scalability;
and (v) the model is not computationally expensive.

The only recent study we found that has attempted to
model a router based on experimental observations was [14].
The authors created a Virtual Output Queuing (VOQ)-based
model that added delays to the packets prior to placing
them into a FIFO output queue. The delays were based on
empirical observations of a production Tier-1 router. However,
the VOQ-based model assumes no interactions among inputs,
no backplane contention, and no loss (uses infinite queues).
This was adequate for modeling a Tier-1 router under light
and medium load, but the model does not generalize to other
forwarding devices.

In this paper, we devise a novel model that differs from
the VOQ-based model in a number of key aspects, most
importantly the queue size and number of servers. Our model
is the same regardless of the router type, but the model
parameters make it unique for a specific type. Additionally,
we devise a parameter derivation process based on simple
measurements. To acquire the measurement data for each
router, we leverage our Black-Box Profiler or BBP [6]. BBP
is an SMP PC that serves as a traffic generator and a packet
logger. We use our measurements to model two low-to-mid
level Cisco routers: 3660 and 7206VXR. Our preliminary
experiments reveal that our model is capable of capturing
different router behaviors. We believe that this is a significant
step forward toward creating high-fidelity scalable simulations.

The remainder of this paper is structured as follows. Sec-
tion 11 explains our model and the model parameter derivation
process. Section Il gives an overview of our BBP system.
Section 1V describes a simple simulator that we developed
to compare our model predictions with actual observations.
Section V gives the details of our test setup. Section VI
discusses our results. Section VII summarizes related work.
We conclude in Section VIII.

Il. DEVICE-INDEPENDENT ROUTER MODEL

There is a multitude of router types with very different ar-
chitectures and performance. Designing a completely different
model for each type would be time-consuming and error prone.

However, regardless of the type, routers share a few critical
similarities:

1) Packets may get dropped or delayed within the router.

2) Routers have a number of input and output interfaces.

3) Routers can have intermediate buffers/queues.

4) Packet flow in a router is complex [2], and there can be
several queues and servers for each part of the path.

5) Packets can be split into parts while traveling between
the input and output ports (as in several devices that use
fixed-size “cells”) [8].

6) Shared components such as the backplane, routing
cache, and possibly a central processor can lead to
interference among flows that do not share the same
outputs.

The complexities of real router tasks introduce difficulties
in developing an accurate and comprehensive model. A real
router must deal with control packets such as ARP and ICMP,
as well as routing packets such as BGP, OSPF, and RIP. The
control/routing packets can have a profound impact on the
forwarding of regular packets. For instance, ARP can lead to
a significant delay until the right mapping between a packet’s
IP and MAC addresses is established. Routing packets can lead
to delays or losses of regular packets as routes are removed or
added. Routers can have interfaces with different speeds and
hardware (e.g., Ethernet/FastEthernet/SONET, etc.). Hence,
for the sake of simplicity, we will make a few assumptions
to create a general packet forwarding model:

1) We do not model control traffic (OSPF/BGP/ARP/ICMP
etc.).

2) We assume that all the interfaces have the same perfor-
mance.

3) We assume that data packets are treated equally (no
Quality of Service).

4) We assume full duplex operation.

We do not assume any knowledge of router internals or traffic
statistics, however.

A. Virtual Output Queue (VOQ)-Based Model

Fig. 1 depicts the Virtual Output Queue (VOQ)-based
router model suggested in [14]. The model is similar to the
classical output queue model, except that there is a constant
delay added to each packet based on its packet size. The
extra delay signifies additional router overhead required for
packet processing. This delay is derived from experimental
measurements. Each output port is modeled in this fashion,
ignoring any interactions at the inputs and the backplane. We
believe that this model is sufficiently accurate for core routers
which have a sophisticated switching fabric, but it can be
inaccurate for lower-end devices. For example, there was no
loss observed in the core router in [14], and hence the queues
have unlimited capacities. The VOQ model is quite attractive
due to its simplicity; however, it fails to account for details
that can lead to large deviations in the results with other types
of forwarding devices.

Port1 \ ~—Infinity—~
Min
: @9 Delay |~
PortN/

Fig. 1. Minimum delay queuing model with an unbounded queue per output
port. The service time is based on the packet transmission (TX) time.

Port K

—

Queue Service Time=TX

B. Multi-Server/Multi-Queue Model

We observe that traffic interactions in routers can play
a significant role in causing packet loss and delay. Fig. 2
demonstrates our device-independent model. The additional
complexity over the VOQ-based model allows modeling de-
vices with limited performance characteristics, in addition to

the Tier-1 router modeled in [14].
\ /Port1~>TX
(Classifier) .

N / Queuel \R e
Classifier Robm : -fler

-—Q

Portl

por — N poTx
QueueN
Service Time = DelayThl
Fig. 2. N router inputs are served by M servers. There is one queue per

port. Packets exit the router through one of the N output ports.
Based on the router similarities described above, in our
model:

1) Each output port has a fixed queue of size @ slots.
However, packets can occupy more than one slot in the
case of byte-based queues. Hence, a table QueueReq
will be used to specify how many slots a given packet
size occupies.

2) Traffic from N inputs is classified and queued by output
port, served by M servers and proceeds to N outputs
for transmission.

3) Servers process packets with the observed average pro-
cessing delay. A table, DelayT'bl, represents observed
router delays (excluding transmission delay), as de-
scribed in Section 111, for various packet sizes. This is
similar to “Min Delay” in Figure 1.

4) Packets can be served concurrently by different servers,
but packet transmissions on the same output link do not
overlap.

5) Since packets may be split into smaller units (cells)
internally within a router [8], some packets may need
more than one server to process them. Hence, another
table, ServReq, gives the number of servers required to
process packets of different sizes.

As previously stated, routers may have multiple queues on
the packet path from the input to the output. Modeling the
location of all the queues and their respective sizes would
require detailed knowledge of each router internals. Since this
is infeasible, we approximate all the internal queues as a single
aggregate queue of size @ slots per output port. We infer
Q@ and QueueReq from our measurements. When there is
backplane contention resulting in the slow drain of the input

queues in a device, queues in our model overflow causing
packet drops. If the contention occurs at the output queues of
a device, then this contention also propagates from the servers
to the queues in our model causing packet drop.

We utilize multiple internal servers. In a routing or forward-
ing device, input/output queues are served by the processors
on the network cards, while intermediate queues might be
served by a central processor(s) or specialized switching fabric
processors. Since it is difficult to determine the exact number
of servers, we derive the number of servers, M, based on
measurements. Varying M from one to infinity allows us to
model the entire range of routers from those with severe
contention to those with none at all. The service delay is
composed of two parts. First, there is the router delay due
to internal processing, as discussed above. Second, there is
delay due to the actual packet transmission. Multiple servers
in our model allow packets on the same path to be served
in parallel. Of course, transmission delays cannot overlap for
packets going out of the same port. Fig. 3 demonstrates this
scenario.

\ RouterDelay0 | TX0 |
X1
| RouterDelay2 | [TX2 |
TO ™ T2

Fig. 3. Three packets destined to the same output are concurrently served by
three servers. A packet is not transmitted on the output link until the previous
packet is sent out.

Finally, based on the fact that packets can be split into small
units within a router, we allow cases where a packet requires
more than one server through the table ServReq.

C. Derivation of Model Parameters

As discussed above, our model has parameters that are
unique to each routing or forwarding device: (1) M represents
the number of servers. (2) @ represents the size of the
aggregate queue per interface (recall that we assume equivalent
interfaces). (3) DelayTbl denotes the processing delays for
various packet sizes. (4) QueueReq denotes the number of
queue slots occupied by a given packet size. (5) ServReq
denotes the number of required servers for a given packet size.

The model parameters can be derived experimentally by
subjecting a router to a series of simple tests. Before describing
the derivation process, we need to give some notation:

1) N is the total number of device interfaces.

2) TX_Capacity is the maximum transmission capacity

of an interface.

3) LowRate is a rate at which queuing delay does not
occur but that allows sufficient (say 1000-2000) samples
to be collected in a short time (e.g., 50 pps).

4) p is a packet path between two interfaces.

5) P is the set of all the possible paths p during the test.

6) |P| = N(N —1) is the number of all paths.

7) S is a set of packet sizes s = {64, ... 1500} bytes.

8) R is a set of packet rates r (in packets per second),
including rates that induce packet loss.
9) Ds.rp is the measured average packet delay from input
to output for packets of size s at rate » on the path
p. The minimum of these average delay values for a
specific packet size is denoted by d.
DepartGaps. ., is the measured average gap between
the packets when leaving the router, while ArriveGap,.
is the gap between arriving packets for rate r.
Algorithm 1 is used to compute DelayTbl, Q, M,
QueueReq, and ServReq. The first step is to determine the
values of Dy, , in order to create the DelayT'bl for various
packet sizes. Injecting Constant Bit Rate (CBR) flows through
the router is a simple and efficient way to do so.

10)

Algorithm 1 Parameter Derivation Algorithm
Input: Any forwarding device with NV interfaces.
Output: DelayTbl, M, Q, QueueReq, ServReq.
1: Determine D, ,, for all packet size s and rate r =
LowRate on path p

20 if Dgypp1 = Dy po Vs € S, and Vpl, p2 € P then

3 ds =avg(Dsy 1, Doy p))

4: else

5. exit

6. end if

7. for each s € S do

8: VN, find max. rate r s.t. no loss

9 ArriveGap, = §-

10 NumServ, = TrriveGans

11: end for

12: for each s € S do

13: find min. rate r s.t. when N — 1 ports send to one port
at rate r each, rs(N — 1) > TX_Capacity

14 QSizes = Depaﬁ’;&;‘g:g;fw

15: end for

16: DelayTbl = set of ds,Vs € S

17: M = max(NumServy, ..., NumServg|)
18: Q = min(QSizey,...,QSize|g))

19: ServReq = M/NumServ,,Vs € S

20: QueueReq = Q/QSizes, Vs € S

The intuition behind the algorithm is as follows. DelayTbl
is constructed by taking an average of the packet delays across
different ports when the sending rate is very low. This is com-
puted for a variety of packet sizes to construct a comprehensive
table. If the delay differences between the interfaces are large,
then we cannot continue, as our assumption that interfaces
are approximately similar becomes invalid. Otherwise, we
compute the maximum number of concurrent servers for each
packet size just before loss starts occurring. This is done by
utilizing all ports to transmit packets, such that flows do not
create conflicts on the output ports. For example, suppose N is
four, then flows port0-to-portl, portl-to-port0, port2-to-port3,
and port3-to-port2 are non-interfering on their output. M is
set to the largest number of servers estimated for all packet

sizes. ServReq can also be constructed based on the resulting
values.

To estimate @ and QueueReq, we must create a high loss
scenario to ensure queue build-up. We send flows from several
ports into the output queue of another port. The DepartGap
between the packets in this case will indicate the maximum
drain rate, meaning that the size of the queue can be estimated
as the observed delay divided by DepartGap. The observed
queue size is recorded in @ (we record the minimum size in
units of maximum-sized packets).

I1l. MEASUREMENT SYSTEM OVERVIEW

The model derivation in Section 11-C is primarily based on
packet delay and loss data. Acquiring such data at sufficiently
high precision requires a high-fidelity measurement system.
We have created such a system called the Black Box Profiler
(BBP) [6]. In this section, we give a brief overview of BBP,
and the updates we have made to it since [6] was published.

Fig. 4 demonstrates the layout of our BBP infrastruc-
ture connected to a 2-port commercial router. A Symmetric
Multiprocessing (SMP) multi-NIC PC is used to emulate
subnets that multiple flows can traverse. The router that is
being profiled, e.g., a commercial Cisco or Juniper router or
a programmable router, is configured to route between the
subnets. To minimize the measurement error, the BBP system
is directly connected to the router.

NetNode0

N —1n5—2 = : ﬁ
-] TAPL /”}} UserToClick .

Node0 N

DATA

B —

] YNy 1
] IP1o |<-1 ClickToUser w
ACK__--T| TAP2 |< ns-2 J<

NetNodel

v

TePsink [|

Nodel NS-2: Kernel

Fig. 4. Example of a single TCP flow from the simulator into the network
and vice versa.

To create responsive (i.e., closed-loop) traffic, we lever-
age the ns-2 simulator which provides various TCP stacks
and traffic workload models. We plan to extend our traffic
generation capabilities by reproducing application workloads
based on real-life traces as in [22], [23]. Our custom additions
to ns-2 allow packets from ns-2 to be injected into the test
network and vice versa. Since all packets originate and ter-
minate on the SMP PC, we can embed arrival/departure time-
stamps into the packet payloads with micro-second precision,
without worrying about clock skew/synchronization. The time-
stamping of packets occurs in the network device driver to
obtain an accurate estimate of the delay. Additionally, we can
provide highly accurate accounting per-packet and per-flow to
determine delay, loss, reordering, and corruption.

Fig. 5 displays the components of measured packet delay.
The measured delay is composed of the NIC send/receive
overheads, two packet transmissions, and the router delay. A
calibration phase is required to infer the NIC overheads and the

packet transmission delay. Knowing the NIC overheads allows
the computation of the router delay. During initial calibration,
our setup is similar to Fig. 5, except that the NICs are directly
connected with a cable and there is no router.

B —

TX Packet

=

RX Packet
NIC overhead + TX TX

Router Delay

Fig. 5. Measured packet delay consists of NIC send overhead, NIC receive
overhead, router overhead, and two transmit delays.

Traffi c Generator. We use the ns-2 simulator [4] for traffic
generation, since it provides several TCP implementations that
have been validated by the research community. Further, ns-
2 provides excellent capabilities for logging and debugging.
We had to make several changes to ns-2, described in [6], to
allow us to send and receive packets at extremely high rates, as
well as send and receive spoofed IPs. These changes make it
possible to have many flows with distinct IPs enter and depart
from the simulator. From the router point of view, the BBP
appears as a collection of various subnets with unique flows
between them.

The version of BBP described in [6] had two shortcomings.
First, we could not create a CBR UDP flow of more than
90 Kpackets/s as the scheduler and the TCL subsystem became
limiting factors. To overcome this issue, we have created a
stand-alone tool called udp_gen which is a stripped down ver-
sion of the BBP ns-2. The new tool allows sending/receiving
around 200 Kpackets/s, with disk logging now being the
bottleneck factor.

Second, we reduced the size of the measurement payload to
12 bytes. This allows us to embed the measurement payload as
a TCP option. This new arrangement allows creating correct
TCP packets that do not have an extended payload when there
should be none (e.g., SYN/ACKI/FIN). Since there is limited
space for TCP options, our measurement payload option can
only be combined with a time-stamp or a three-block SACK
option. For UDP and other IP packets, the measurement
payload remains in the data portion.

Click Modular Router. The default Linux IP stack was
unsuitable for our purposes for two reasons. First, the default
stack was not designed to efficiently handle sending/receiving
non-existent IPs to/from a user-level application. Second, the
default stack has several features that we do not need, which
add overhead. Hence, we use the Click modular router [16]
kernel module. In Click, it is easy to create a mapping of IPs
to real devices as shown in Fig. 4. In order to attach virtual
subnets to a particular device, we use a UserToClick element
per device, and the user application writes IP packets into the
correct UserToClick element depending on the configuration.

In the latest version of BBP, we modified Click’s ToDevice
element to avoid transmit buffer drops. The default Click

ToDevice element can schedule packets faster than the device
can transmit. Instead, we hold the packets until the transmit
buffer starts draining.

Device Driver. Since we aim to measure packet delays in
the router under test and not in our system, we must instrument
the device driver. This is as close as we can get to the point
where the packets get transmitted or received without requiring
a specialty card. Fig. 6 demonstrates the steps we take to time-
stamp packets in the device driver.

Data

TS out é (sec, nsec) = TimeOfDay
TS in

Chksum] 2

3
Headers <—— ChkSum Fix(...)

4

PCI_DMA _Transfer
\L 5

6 TX Pkt

Fig. 6. Time-stamping of packets during a transmit. Time-stamping during a
receive is similar, except the flow is reversed with checksum correction being
the last step.

When a packet arrives, we time-stamp it just before it is
sent to the device via a bus transfer. Since changing the packet
payload will result in a corrupted TCP or UDP checksum, we
recompute a new checksum. We compute incremental check-
sums to avoid computing an entire checksum from scratch.
Packet reception is done in a similar fashion.

IV. THE QUEUE SIMULATOR

In order to evaluate the fidelity of our model, we have
devised a simulator of the model, which we call QSim. The
simulator mimics the Multi-Server/Multi-Queue model exactly
as in Fig. 2. We use the derivation algorithm in Section 11-C
to compute the model parameters. The simulator then replays
the packet trace and compares the delays and losses with
the simulator against the observed delays and losses. If, for
a particular packet size, there is no data in the DelayTbl,
QueueReq, or ServReq tables, the simulator performs a
linear interpolation between the two adjacent packet sizes
which are in the tables. Since the observed delays include
the NIC overheads (Fig. 5), we subtract the delays we obtain
during calibration runs from the observed delays to make an
accurate comparison.

V. EXPERIMENTAL SETUP

This section explains the network setup for our experiments
as well as the BBP configuration.

A. Network Setup

Fig. 7 demonstrates our test setup. In the experiments,
Node0, Nodel, Node2, and Node3 are logical nodes on the
same PC, while the “Router” node is either a pair of cross-
over cables that connect four cards on the PC running BBP,
a Cisco 3660 router, or a Cisco 7206V XR router. The Cisco

routers under test in our experiments have four Fast Ethernet
ports. The Cisco 3660 has two identical cards on the main
data plane and a dual port swappable module, while the Cisco
7206V XR has one main card and three swappable modules.
The Cisco routers were configured with minimal settings to
ensure that forwarding between the ports would happen on
a fast path without special processing. Additionally, we have
enabled the Cisco Express Forwarding (CEF) option [9] on
both routers. The cross-over cable configuration is used solely
for calibration, in order to determine the latencies due to the
network cards. The queue size for all the links in the traffic
generator was set to 50 slots. The queue sizes on the physical
link are dictated by the particulars of the hardware.

Nodel Node2

i 00Mbps 100M bp; Traff_icAgents
- \{)ms 10mi/ Sinks

/Kmps

Traffic Agents
Sinks

Node3

Traffic Agents
L Sinks

Test topology with different subnets

100Mbp

Traffic Agents 10ms

Sinks

10ms

Fig. 7.

B. BBP Configuration

We use a PC with two quad 1.8 GHz Xeon CPUs and PCI-
E Intel Pro cards to run BBP on. Naturally, the measurement
process must allow several tasks to execute concurrently to
achieve the highest precision. Fig. 8 demonstrates the main
tasks that must run concurrently in order for the BBP to give
precise results.

CPUO CpU1 CPU2 CPU3 CPU4 CPU5 CPUG

ns-2 Traffic ns—2 Packet Main Click 2nd Click 3rd Click 4th Click 5th Click
Generation Reception/ Thread PollDevice0 PollDevicel PollDevice2 PollDevice3
Logging TX Device0 TX Devicel TX Device2 TX Device3

Fig. 8. Concurrent threads of execution

The traffic generation component must have at least two
threads of concurrent execution to achieve high packet rates.
The main ns-2 thread runs all of the simulation agents and
writes packets to UserToClick elements. Auxiliary ns-2 threads
are required for reception of packets and logging data to
disk; otherwise, the main simulation thread would become 1/0
blocked.

The Click modular router must also have at least two
threads of concurrent execution. The main Click thread is
responsible for all the elements in the Click configuration
except for packet reception and transmission. If the elements
in the main thread are delayed in scheduling, no measurement
error will occur. This is because the main elements are not
responsible for reading/writing packet timestamps. A problem
arises during packet reception and transmission. If there is
delay in element scheduling, then the packets will remain in
the NIC’s send/receive buffer as time goes on. The variance
in delay would increase in proportion to the packet rate

increase. Hence, it is imperative to have a separate thread
per PollDevice/ToDevice. Since we have four ports in our
experiments, we need seven CPUs as depicted in Fig 8.

C. Calibration

Before we can proceed with data collection, we must
determine which network device configuration would give
the best performance and induce the least amount of noise
into the measurements. This measurement noise results from
the network card/bus specifics of our measurement machine.
We had the best results with polling and 64-slot receive
and transmit buffers. Fig. 9 demonstrates the measured delay
between the two NICs compared to pure transmission delay.
We used a constant flow of UDP packets to generate the
results.

[
I
o

g ®
S 120t L
2 ®

o 100 - ¥

S :

E s L

g P

= 60 *

> ®

©

) 40 -

a «

L 20

% * Pkt TX

a)))) Measured Delay =

0
0 200 400 600 800 1000 1200 1400 1600
Packet Size (bytes)

Fig. 9. NIC-to-NIC (mean, 5 and 95 percentiles) vs. pure TX delay

Tables I and Il demonstrate the mean, 5th, and 95th per-
centiles for Ethernet frames of sizes of 64, 800, and 1500
at various rates. The percentiles indicate that variance is
relatively small.

TABLE |
NIC-TO-NIC PACKET DELAYS FOR 64-BYTE ETHERNET FRAMES

[[4Kpps | 8Kpps [40 Kpps | 110 Kpps | 1135 Kpps |

mean 13.82 13.78 13.84 15.94 15.63
5th 13.00 13.00 13.00 13.00 13.00
95th 14.00 14.00 14.00 23.00 23.00
TABLE I
NIC-TO-NIC PACKET DELAYS FOR 800- AND 1500-BYTE ETHERNET
FRAMES
800 bytes | 1500 bytes |
| 4Kpps [8Kpps | 4Kpps [8 Kpps |
mean 75.61 7560 | 13516 | 137.02
Sth 75.00 75.00 | 13500 | 135.00
95th 76.00 76.00 | 136.00 | 138.00

V1. EXPERIMENTAL RESULTS

This section outlines the model parameters derived for the
Cisco 3660 and Cisco 7206V XR routers, and compares our
model predictions to measurements.

A. Model Parameters

As discussed in Section I1-C, we first compute delay tables.
We vary the packet size from 64 to 1500 bytes, and keep
the rate at a low 50 packets/s. The packet size includes
Ethernet/IP/UDP headers. Fig. 10 compares the results for a

perfect router, Cisco 3660, and Cisco 7206V XR. The results
show the mean, 5th, and 95th percentiles. The perfect router
is a hypothetical router that has zero processing and queuing
latency, with packet transmission time being the only delay.
We use the data from Fig. 9 to obtain the results for the
perfect router: we add the NIC overhead to one additional
packet transmit time (recall Fig. 5). The results indicate that
the routers have significantly higher delays and variance than
the perfect router.

Tables 111 and IV demonstrate the packet delays for 64, 800,
and 1500-byte packets at different rates. In these experiments,
only one port was used and there was no loss except for the
64-byte packets at 113.5 Kpackets/s on the Cisco 3660 router.
At that setting, the queue did become full and losses occurred.

TABLE Il
CISCO ROUTER PACKET DELAYS FOR 64-BYTE ETHERNET FRAMES

[3660 | 4Kpps | 8Kpps | 40 Kpps | 110 Kpps [113.5 Kpps

mean 7252 78.04 70.21 33113 7564.31
5th 45.00 46.00 45.00 58.00 2702.00
95th 99.00 99.00 98.00 1288.00 8290.00
7206 | 4Kpps | 8 Kpps | 40 Kpps | 110 Kpps | 113.5 Kpps
mean 85.21 83.03 96.08 83.76 84.38
5th 38.00 40.00 41.00 43.00 44.00
95th 149.00 145.00 136.00 143.00 144.00
TABLE IV
CI1SCO ROUTER PACKET DELAYS FOR 800- AND 1500-BYTE ETHERNET
FRAMES
| 800 bytes | 1500 bytes |
3660 [4Kpps | 8Kpps | 4Kpps | 8 Kpps |
mean | 207.03 | 20371 | 33328 | 405.02
5th [I79.00 | 179.00 | 307.00 | 346.00
95th 234.00 233.00 360.00 444.00
(7206 [4Kpps | 8Kpps | 4Kpps | 8 Kpps |
mean 229.31 237.75 343.71 416.84
5th [18200 | 190.00 | 296.00 | 346.00
95th [293.00 | 294.00 | 407.00 | 503.00
TABLE V
QUEUE SIZES FOR DIFFERENT PACKET SIZES
Router 64 [200 | 400 | 600 | 800 | 1000 | 1200 | 1500
3660 | 1909 | 674 | 167 | 167 | 167 167 167 167

7206 272 | 294 | 295 | 167 | 167 167 125 125

TABLE VI
NUMBER OF SERVERS FOR DIFFERENT PACKET SIZES
Router 64 200 400 600 800 | 1000 [1200 | 1500
3660 | 6.027 6.080 | 5.661 | 4653 | 3969 [3.389 | 3.126 [2.786
7206 | 15489 | 11648 | 7.794 | 5464 | 4318 | 3463 | 2969 | 2439

Using the model derivation process outlined in Section 11-C,
we compute parameter values for the two routers. Table V
and Table VI demonstrate the measured values for QSize
and NumServ respectively. The values of M, Q, ServReg,
and QueueReq for the two routers are computed from these
tables, as given in Algorithm 1, lines 17-20. The DelayTbls
are omitted from the paper for brevity. As seen in the tables,
there are 3 queue sizes (in terms of number of packets) for each
of the routers for this set of packet sizes. This is consistent
with the documentation in [7].

Packet Delay Time (micro-seconds)
S
o

Packet Delay Time (micro-seconds)
S
o

Packet Delay Time (micro-seconds)
S
o

0 200 400 600 800 1000 1200 1400 1600 0 200 400 600
Packet Size (bytes)

(a) Perfect Router
Fig. 10.

B. Model Fidelity

In our first series of experiments, we replay the simple CBR
traces used in the model derivation experiments. We use QSim
to model the Cisco 3660 and 7206V XR routers, and compare
packet delay and loss values. QSim utilizes the time-stamps
of when the packet departed the BBP device driver for the
first time, as the time when the packet is injected into the
simulation. Since the packet time-stamp reflects the time when
the packet entered the device driver and not the router, we add
a packet transmission time to the arrival time. This attempts
to re-create the exact timing of when the packet entered the
routing device.

During the validation runs, we noticed that loss creates
a major complication for the accuracy of the trace replay
in QSim. If the packet gets lost, time-stamp accuracy is
compromised, since the device driver time-stamp is lost as
well. The only available time-stamp is the one from ns-2
which may be a few milliseconds behind. Hence, the packet
would appear in the simulation earlier than it would have in
the original experiment. This can lead to inaccuracies between
the observed and predicted data, as the events do not happen
at exactly the same times in both cases. To make the rest of
the comparisons accurate, we have removed the events when
the actual packet or a predicted packet is dropped.

Our results (not shown due to space limitations) indicate that
the model can accurately account for backplane contention.
For instance, the model correctly predicts that Cisco 7206V XR
cannot have all four interfaces forwarding 64-byte frames at
more than 57 Kpps. Additionally, when multiplexing two flows
into a single output port, the model correctly predicts the
packet delays due to queue build-ups. The data also confirmed
the need for QueueReq, as fixed size slot-based queues would
have been insufficient for correctly modeling the routers.

To further investigate the accuracy of the model, we create a
more complex traffic scenario. We use FullTCP SACK agents
in ns-2 to represent the TCP agents. FullTCP agents in ns-
2 mimic the Reno TCP implementation in BSD 4.4. NodeO,
Nodel, and Node3 in Fig. 7 generate 30 TCP and 5 UDP
flows each, destined to Node2, for a total of 90 TCP and
15 UDP flows. TCP was configured to use up to 3 SACK
blocks, 1400-byte payloads, and delayed ACKs. We use FTP
and CBR agents at the application layer to drive the TCP and

Packet Size (bytes)
(b) Cisco 3660

800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600
Packet Size (bytes)

(c) Cisco 7206VXR

Observed minimum delays for different packet sizes

UDP traffic respectively. FTP agents were configured to send
large continuous files, and UDP CBR agents were configured
to send 100 256-byte messages per second. Certainly, such
synthetic traffic is not representative of real-world traffic, but
it subjects the routers to a high load. The experiment ran for
200 seconds on the Cisco 3660 and Cisco 7206V XR routers.
We then replayed the traces in our simulator, QSim, using the
model parameters we derived for Cisco 3660 and 7206V XR.

Table VII depicts the loss ratios in the actual and predicted
data sets. The data indicates that the model has lower loss ra-
tios than the routers. This implies that the model overestimates
the forwarding capacity of the routers. We also ran the same
traces on the VOQ model (which does not model backplane
contention) and obtained similar loss ratios to our model. This
implies that backplane contention resulted in almost two times
the loss compared to output queue only losses. The replay
fidelity problem due to losses, as mentioned above, may have
contributed to this discrepancy.

TABLE VII
AVERAGE TCP LOSS RATIOS
[Test Type [Loss |
Cisco 3660 0.0317
Predicted 3660 0.0182
Cisco 7206VXR 0.0445
Predicted 7206VXR | 0.0184

In addition to comparing the loss ratio, it is important to
compare delay statistics. Table VIII reports the mean and
Coefficient of Variation (COV) for the model predictions and
the actual data set. It is interesting to note that even though the
means for the predicted and observed delays are not far from
each other, especially in the case of the 7206V XR, there is a
mismatch in coefficients of variation except for Node2. More
insight can be gained from a closer examination of the data in
Fig. 11 and Fig. 12. In Fig. 11(a,b) and Fig. 12(a,b), the model
tracks observed data quite well, because output port queuing
delay is the dominant factor in the delay. The queuing delay
reaches 18 ms and 14 ms on the 3660 and 7206V XR routers
respectively. This is in contrast to core routers, which observe
almost no queuing delay [13]. In Fig. 11(c) and Fig. 12(c),
there is little output port queuing delay as only ACKs are
being sent. In such a scenario, a VOQ model would predict

only the minimum delay per packet size. Our model captures
the dynamics of backplane contention that cause increased
packet delays due to extra processing delays. The modeled
contention is evident from the rising peaks on the graphs,
though the observed data exhibits higher variation than the
model predicts.

TABLE VIII
MEAN AND COEFFICIENT OF VARIATION OF CISCO 3660 AND 7206V XR
PACKET DELAYS

| | 3660 | 7206VXR |
| Dst Node | Type | Mean | COV | Mean | COV |
Node0 Predicted 111.095 0.506 71.795 0.326
Observed 89.005 0.674 76.574 0.513
Nodel Predicted 110.957 0.495 72.460 0.345
Observed 90.677 0.737 78.297 0.508
Node2 Predicted 15658.462 0.184 10822.451 0.251
Observed 14636.507 0.176 11327.927 0.207
Node3 Predicted 113.013 0.536 71.925 0.329
Observed 99.626 | 0.700 78.709 | 0.503
f“ . . }MJL . . 7
gwooo A‘»,fh / VI"“‘\" MW ¥)‘”’U""q
S 14000 \ { B
[} i

Delay (mic

—Data

L " L L L L L L L L Model

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Packet Sequence Number

(a) Start of the experiment, destination Node2

z 104 T T T T T T T T T

1.8F ﬂ* E
o j 1 W i
2 WM | | y
?) 1,A|\/'L'&'N M ‘ 1
P 12b | : |] 1
o | i {
S 1 b \ |]
Eod ‘\ W #) | } 1
z i i
g 061 LJ th ;v’ 1

aF R

9.43 9.44 9.45 9.46 9.47 9.48 9.49 9.5 9.51
Packet Sequence Number x10°
(b) Middle of the experiment, destination Node2
. —

] s
O 400F 4
=4
3 3s0- B
2 {
o 300

= |
el V\JVJ\JW/\WVIF\\,’WAW\Wﬂu /\M

1.8065 1.8066 1.8067 1.8068 1.8069 1.807 1.8071 1.8072 1.8073 1.8074 1.8075
Packet Sequence Number x10°

50

(c) Middle of the experiment, destination Node3

Fig. 11. High rate TCP/UDP traffic scenario on the 3660 port 3
The high COV values for ports that do not have output queu-

ing in Table VIII imply that processing delays are significant,

T - T T T ;
Aleoof L ",.\ i AW-
8 A .
T 120001 : | y e 1
<] | | | i
& 10000-] I b ¥]
[} i | | i |
8000 L | 1
o L a Y I
! i
g 6000 m } /’ ¥ \\‘4' 1
E : LY
> L J
Z 4000
o]
QO 2000 —Data
0! LR ~‘\ Il Il Il Il Il Il I I Model
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Packet Sequence Number
(a) Start of the experiment, destination Node2
ﬁmoom ;'“"‘M") "‘ J.t W
5 y [
S 12000- W w/ ‘ L
o iy ! b i
& 10000 ¥ H \ -
7] ! i i Vo
zI:; 80001 I ! .
ks \ g} y W
£ 6000F ki } g
> 1
8 4000 i g
3 |
20001 11(—Data
Il Il Il L Il Il Il Il I Model
1.307 1.308 1.309 131 1311 1312 1.313 1314 1.315 1.316
Packet Sequence Number x10°

(b) Middle of the experiment, destination Node2

’0?200* 73?)(:el

2 '

[=} \

é 150 \/ 1

o |

= WV

E i |

= /\ A J\)

g4 Y]
1 7‘109 1 7‘11 1 7‘111 1 7‘112 1 7‘113 1,7‘114 1.7‘115 1,7‘116 1.7‘117

Packet Sequence Number x10°
(c) Middle of the experiment, destination Node3
Fig. 12. High rate TCP/UDP traffic scenario on the 7206V XR port 3

and induce a high degree of packet delay variance. To further
analyze the accuracy of the model, we use the Kolmogorov-
Smirnov (K-S) statistical test (maximum deviation of CDFs).
For brevity, we do not show CDF plots and only report
the resulting K-S values. Table IX reports the results, which
demonstrate that the predicted values are a close approxima-
tion for 7206V XR on the heavily congested port. For the 3660,
the congested port statistic indicates that the model is not as
accurate as in the 7206V XR case, but it is better than the case
of non-congested ports. With a VOQ model, the statistics for
both routers on non-congested ports are 1, meaning that the
model completely fails to capture backplane contention.

TABLE IX
KOLMOGOROV-SMIRNOV STATISTIC
Dst Node 3660 | 7206VXR
Node0 0.286 0.496
Nodel | 0.287 0.482
Node2 | 0.306 0.094
Node3 | 0.207 0.478

Our experiments reveal that the model predictions are
reasonably accurate, but not always perfect, especially in cases
when backplane contention is dominant. Our predictions are,
however, much closer to a variety of routers than the VOQ-
based model presented in Section 1I-A, or the simpler model
in ns-2.

VII. RELATED WORK

Black box testing and traffic generation are required for
measurements and modeling. Hence, we summarize related
work on these topics in this section.

A. Black-box Testing

Router modeling based on empirical observations is dis-
cussed in [14]. The model is called the Virtual Output Queue,
and is described in detail in Section I1-A. The work derived
a simple queuing model, but was not designed to handle
loss events, and ignored interactions at the input ports. A
production Tier-1 router was used in their work. While this
ensures that the router configuration and traffic are highly
realistic, repeatability is not possible in a production setup.
Time-stamping was performed with GPS synchronized DAG
cards [11]. Such devices are highly accurate, but increase the
setup cost and complexity.

Black-box router measurement is also described in [20], [3],
[18]. In [20], a router is profiled with a focus on measuring its
reaction times to OSPF routing messages. RFCs 2544 [3] and
2889 [18] describe the steps to determine the capabilities of
a router (e.g., forwarding rate). The RFCs only discuss using
homogeneous traffic for profiling, and do not discuss creating
models based on measurements.

B. Traffic Generation

The Harpoon [21] traffic generator uses flow data collected
by Cisco routers to generate realistic traffic. Creating highly
configurable live (i.e., closed-loop) traffic is important for our
purposes. One of the earliest network simulation-emulation
tools was VINT [12] — a part of ns-2. We did not directly
use the ns-2 emulation code as it does not support send-
ing/receiving spoofed IPs (required for subnet emulation on
a single node), and it is data-rate limited. A recent effort
to extend emulation in ns-2 was reported in [17]. However,
the system was not built to handle very high data rates
and extensive packet logging with micro-second precision,
which are important for our measurements. A commercial
alternative to generating live TCP traffic is the IXIA-400T
traffic generator [15]. IXIA devices use a proprietary OS and
do not allow changing the types of the TCP stacks, however.

VIIl. CONCLUSIONS AND FUTURE WORK

In this paper, we have devised a device-independent model
for forwarding devices, and outlined a general model parame-
ter derivation procedure. We also developed a router profiling
system that we refer to as BBP. Our model is router-agnostic
and only requires a few parameter tables to mimic a specific
router. The model tables are small, which makes the model

highly portable and easy to compute. The model attempts to
not only replicate packet delays due to router processing, but
also packet losses.

We have derived model parameters for two low-to-mid
range Cisco routers: 3660 and 7206VXR, and compared real
observations to the model predictions. The comparison has
revealed that the model is capable of closely matching the
real data when output congestion is more dominant than
backplane delays. We believe that incorporating such a model
in simulators is an important step in increasing fidelity of
network simulations, while preserving scalability.

Our future work plans include using a wider variety of
router types for fine-tuning the model. We also plan to
investigate more sophisticated traffic scenarios, and investigate
backplane contention. For example, we would like to utilize
tmix [23] so that traffic can be generated based on realistic
application workloads. Finally, we plan to integrate our models
with the ns-3 and emulation testbed development efforts.

REFERENCES

[1] OMNeT++. http://www.omnetpp.org/.

[2] F. Baker. Re: [e2e] extracting no. of packets or bytes in a router buffer.
Message to "end2end” mailing list, December 2006.

[3] S. Bradner and J. McQuaid. Benchmarking methodology for network
interconnect devices. RFC 2544, 1999.

[4] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy,
P. Huang, S. McCanne, K. Varadhan, Y. Xu, and H. Yu. Advances
in network simulation. |IEEE Computer, 33(5):59-67, May 2000.

[5] R. Chertov, S. Fahmy, and N. B. Shroff. Emulation versus simulation:
A case study of TCP-targeted denial of service attacks. In Proc. of
TridentCom, February 2006.

[6] R. Chertov, S. Fahmy, and N. B. Shroff. A black-box router profiler. In
Proc. of Global Internet, May 2007.

[7] Cisco Systems. Basic system management. http://www.cisco.com/
en/US/products/sw/iosswrel/ps1835/products_configu%ration_guide_
chapter09186a008030c799.html#wp1009032.

[8] Cisco Systems. Cisco 12000 series internet router architecture:
Packet switching. http://www.cisco.com/en/US/products/hw/routers/
ps167/products_tech_note%09186a00801eldcl.shtml.

[9] Cisco Systems. How to choose the best router switching path for your
network. http://www.cisco.com/en/US/tech/tk827/tk831/technologies_
white_paper091%86a00800a62d9.shtml.

[10] DETER. A laboratory for security research. http://www.deterlab.net.

[11] Endace. http://www.endace.com/.

[12] K. Fall. Network emulation in the vint/ns simulator. In Proc. of ISCC,
pages 244-250, July 1999.

[13] C. Fraleigh and et. al. Packet-level traffic measurements from the sprint
ip backbone. |EEE Network, 17(6):6-16, Nov-Dec 2003.

[14] N. Hohn, D. Veitch, K. Papagiannaki, and C. Diot. Bridging router
performance and queuing theory. In Proc. of SGMETRICS 2004.

[15] IXIA. http://www.ixiacom.com.

[16] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek.
The Click modular router. ACM Transactions on Computer Systems,
18(3):263-297, August 2000.

[17] D. Mahrenholz and S. Ivanov. Real-time network emulation with ns-2.
In Proc. of DS-RT, pages 29-36, October 2004.

[18] R. Mandeville and J. Perser. Benchmarking methodology for LAN
switching devices. RFC 2889, 2000.

[19] OPNET. Network modeling and simulation environment.

[20] A. Shaikh and A. Greenberg. Experience in black-box OSPF measure-
ment. In Proc. of IMW, pages 113-125. ACM Press, 2001.

[21] J. Sommers and P. Barford. Self-configuring network traffic generation.
In Proc. of IMC, pages 68-81. ACM Press, 2004.

[22] K. V. Vishwanath and A. Vahdat. Realistic and responsive network
traffic generation. In Proc. of SGCOMM, 2006.

[23] M. C. Weigle, P. Adurthi, F. Hernandez-Campos, K. Jeffay, and F. D.
Smith. Tmix: A tool for generating realistic application workloads in
ns-2. ACM Computer Communication Review, 36:67-76, July 2006.

