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Abstract— We study sleep/wake scheduling for low duty cycle
sensor networks. Our work is different from prior work in
that we explicitly consider the effect of synchronization error
in the design of the sleep/wake scheduling algorithm. In our
previous work, we have studied sleep/wake scheduling for single
hop communications, e.g., intra-cluster communications between
a cluster head and cluster members. We showed that the there is
an inherent trade-off between energy consumption and message
delivery performance (defined as the message capture probabil-
ity). We proposed an optimal sleep/wake scheduling algorithm,
which satisfies a message capture probability threshold (assumed
to be given) with minimum energy consumption.

In this work, we consider multi-hop communications. We
remove the previous assumption that the capture probability
threshold is already given, and study how to decide the per-hop
capture probability thresholds to meet the Quality of Services
(QoS) requirements of the application. In many sensor network
applications, the QoS is decided by the amount of data delivered
to the base station(s), i.e., the multi-hop delivery performance.
We formulate an optimization problem, which aims to set the
capture probability threshold at each hop such that the network
lifetime is maximized, while the multi-hop delivery performance
is guaranteed. The problem turns out to be non-convex and
hard to solve exactly. By investigating the unique structure of
the problem and using approximation techniques, we obtain a
solution that achieves at least 0.73 of the optimal performance.

I. INTRODUCTION

An important class of wireless sensor network applications
is the class of continuous monitoring applications. These appli-
cations employ a large number of sensor nodes for continuous
sensing and data gathering. Each sensor periodically produces
a small amount of data and reports to one (or several) base
station(s). This application class includes many typical sensor
network applications such as habitat monitoring [1] and civil
structure monitoring [2].

Measurements show that idle listening consumes a sig-
nificant amount of energy for sensor devices. An effective
approach to conserve energy is to put the radio to sleep
during idle times and wake it up right before message
transmission/reception. This requires precise synchronization
between the sender and the receiver, so that they can wake up
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simultaneously to communicate with each other. The state-of-
the-art in sleep/wake scheduling assumes that the underlying
synchronization protocol can provide nearly perfect (e.g., us
level) synchronization, so that clock disagreement can be
ignored. However, in our previous work [3], we determined
that the impact of synchronization error is non-negligible. We
found that although existing synchronization schemes achieve
precise synchronization immediately after the exchange of syn-
chronization messages, there is still random synchronization
error because of the non-deterministic factors in the system.
Due to the synchronization error, clock disagreement grows
with time and can be comparable to the actual message
transmission time. This means the design of an effective
sleep/wake scheduling algorithm must consider the impact of
synchronization error. We showed that there is an inherent
trade-off between energy consumption and message delivery
performance (defined as the message capture probability). We
then proposed an optimal sleep/wake scheduling algorithm,
which achieves a message capture probability threshold (as-
sumed to be given) with minimum energy consumption.

In the above-mentioned work, we focused on single-hop
communications. In this work, we consider multi-hop commu-
nications. For illustration, we consider a network that has been
hierarchically clustered. We remove the previous assumption
that the capture probability threshold is already given, and
study how to decide the per-hop capture probability thresholds
to meet the QoS requirement of the application. In many sensor
network applications, the nodes cllect sensing data and report
to the base station(s) (BS). Therefore, the QoS is decided by
the amount of data delivered from the nodes to the BS, i.e., the
multi-hop delivery performance. We formulate an optimization
problem which aims to set the capture probability threshold at
each hop such that the network lifetime is maximized, while
a minimum fraction of data is guaranteed to be delivered to
the BS. The problem turns out to be non-convex and hard to
solve exactly. Therefore, we use approximation techniques and
obtain a 0.73-approximation algorithm.

The remainder of this paper is organized as follows. Sec-
tion II reviews related work. Section III gives the system model
and briefly describes our sleep/wake scheduling algorithm for
single hop communications. Section IV studies how to assign
the thresholds along multi-hop paths in the cluster hierarchy.
Section V concludes the paper.



II. BACKGROUND AND RELATED WORK

We first review previous work on sleep/wake scheduling in
sensor networks, then discuss clustering in sensor networks.

A. Sleep/Wake Scheduling for Sensor Networks

MAC designs for wireless sensor networks can be
broadly classified as contention-based or TDMA protocols.
In contention-based MACs, overhearing, collisions, and idle
listening waste energy. Hence, mechanisms such as over-
hearing avoidance have been proposed to save energy with
contention-based MACs [4]-[6]. Several researchers argue that
TDMA protocols combined with sleep/wake scheduling are
more suited to sensor network applications (since TDMA
protocols avoid energy waste due to contention). In this case,
the radio sleeps during idle times, and wakes up right before
message transmission/reception. This requires precise synchro-
nization between the sender and the receiver, so that they can
wake up at the same time to communicate with each other.
Most existing sleep/wake scheduling schemes assume that the
underlying synchronization protocol can provide nearly perfect
(e.g., us level) synchronization, and that clock disagreement
is negligible at all times. This, however, is untrue in practice.
Consider two nodes that have agreed to rendezvous on the
radio channel once every 5 minutes to exchange a 30-byte
message. Using a 19.2 kbps radio such as RF Monolithics [7],
30 bytes can be transmitted in 12.5 ms. The radio must be
awakened early to compensate for clock disagreement. Let
the relative clock skew be 5 ppm!, i.e., the clocks of the two
nodes drift away from each other 5 us each second. After 5
minutes, the clocks will drift by 5 ps x 300 = 1.5 ms, which
is non-negligible compared to the message transmission time.

B. Clustering for Sensor Networks

Clustering is generally considered to be a scalable method
to manage large sensor networks. Sensors within a geograph-
ical region are grouped into a cluster. The sensors are then
locally managed by a cluster head (CH) — a node elected to
coordinate the nodes within the cluster and to be responsible
for communication between the cluster and the BS or other
cluster heads. This grouping process can be recursively applied
to build a cluster hierarchy. Sensor nodes first elect level-1
CHs, then level-1 CHs elect a subset of themselves as level-2
CHs. Cluster heads at levels 3,4, ... are elected in a similar
fashion to generate a hierarchy of CHs, in which any level-i
CH is also a CH of level (i — 1), (i —2),...,1. Fig. 1 depicts
nodes organized in a three-level cluster hierarchy with each
number representing the level of the corresponding node.

Hierarchical clustering provides a convenient framework for
resource management and local decision making. Moreover, it
can be extremely effective for data fusion, i.e., sensing data can
be aggregated before being passed onto the next higher level
in the hierarchy. Hence, hierarchical clustering is used in many
practical systems [2], [9]. Due to this widespread use, in this

! According to the datasheet of Mica Motes [8], the clock skew with respect
to the standard clock is up to 50 ppm, thus the relative clock skew between
two sensor nodes can be 100 ppm in the worst case.

work we choose the cluster hierarchy model as an illustrative
example. We assume that the network has been hierarchically
clustered using one of the popular clustering techniques [10],
[11].
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III. SYSTEM MODEL

We consider a cluster hierarchy, where each cluster consists
of a single cluster head (CH) and multiple cluster members.
Note that a node can be both the CH in one cluster, and a
member in another cluster at a higher level, e.g., in Fig. 1,
C is the CH of E, but is also a member of A. Time is
divided into recurring epochs with constant duration 7. As
in many MAC protocols for sensor networks [5], [6], each
epoch begins with a synchronization interval 75 followed by
a transmission interval (Fig. 2). During the synchronization
interval, the cluster members synchronize with their CH and
no transmissions are allowed. During the transmission interval,
each member node transmits in a TDMA manner and sends
one message to the CH every 1" seconds. The message consists
of the aggregate of its own sensing data, and the data collected
from its members if the node itself is a CH. Each transmission
interval contains one or more rounds of transmissions, i.e.,
T. =Ts+ NT,N > 1. The transmissions from the different
members are equispaced, i.e., if M is the number of cluster
members, then transmissions are separated by %

A. Assumptions

We make the following assumptions about our system:

(1) Orthogonal Frequency Channels: We assume that
neighboring clusters use orthogonal frequency bands and do
not interfere with each other. This is a reasonable assumption
since the data rate of sensor networks is usually low, typically
around 10—40 kbps. If we run the network in ISM-900
bands (902—928 MHz), then there are more than a thousand
frequency channels to choose from.

A node that is both a CH and cluster member needs to
communicate with its members and with its CH, e.g., in Fig. 1
node C needs to communicate with both A and E. However,
A and E are in neighboring clusters; hence they use different
frequency channels. Since every node has only one radio
interface, C has to schedule carefully to participate in each
cluster. This can be achieved in the following manner. The
BS first decides the schedule of the synchronization interval
and the transmission schedule for its members (A and B in
Fig. 1), then broadcasts this information to the members. A
and B, upon hearing the broadcast, will reserve the relevant
times for synchronizing/communicating with the root. Then, A




and B schedule the synchronization and transmissions for their
members at different times. Similarly, C will reserve the times
to synchronize/communicate with A, and choose different
times for its members (E and F) to synchronize/transmit.

(2) Data aggregation: We adopt a data aggregation model
similar to [12]. Consider a cluster with node 0 being the CH,
and with M members, i = 1, ..., M. The length of messages
from node ¢ is L;, ¢« = 0,..., M. Thus, the length of the
aggregated message is a function of L;,7 = 0,..., M. We
use the following model for x (Lo, ... Las), the length of the
aggregated message,

M
X(LO,...LM):rZLH—c. 1)
i=0
In this model, ¢ corresponds to the overhead of aggregation,
while r < 1 is the compression ratio. Note that r can be 0, in
which case Eq. (1) corresponds to the case when all messages
can be combined into a single message of fixed length. This
models those applications where we want updates of type min,
max, and sum (e.g., event count).

The model in Eq. (1) assumes the same compression ratio
for messages from different nodes. It can be easily extended
to account for different compression ratios, and the results still
apply. The details can be found in our technical report [13].

(3) Radio hardware: We assume that the sender can
precisely control when the message is sent out onto the channel
using its own clock. This is reasonable since in [14], system
measurements have shown that non-determinism at the sender
is negligible compared to non-determinism at the receiver.

For the receiver, we assume that if there is an incoming mes-
sage, it can immediately detect the radio signal. This is a close
approximation of the real situation, since modern transceivers
can detect incoming signals within microseconds [15]. Further,
we assume that once the receiver detects an incoming message,
it will stay active until the reception is completed.

(4) Collisions: We assume that the separation between
transmissions from different members, %, for a cluster with
M members is large enough so that the collision probability
for transmissions from different members is negligible. This is
a reasonable assumption for low duty cycle sensor networks.
Consider a large cluster of M = 50 members and each
member transmits to the CH every T' = 60 seconds. The
separation is % = 1200 ms. For low duty cycle networks,
the message size is usually not large; hence the transmission
time is much smaller than this separation. Moreover, at the
beginning of each epoch, the cluster members re-synchronize
with the CH, so that the clock disagreement will not become
large enough to cause significant collision probability.

(5) Propagation delay: Finally, because the communication
range for sensor nodes is typically < 100 meters, the propa-
gation delay is below 1us. Thus, we consider the propagation
delay to be negligible and assume it to be zero for simplicity.

B. Synchronization Algorithm

Time synchronization for wireless sensor networks has been
extensively investigated [14], [16]-[20]. Clock disagreement
between sensor nodes can be characterized using two factors:

phase offset and clock skew. Phase offset corresponds to
clock disagreement between nodes at a given instant. Clock
skew means clocks run at different speeds, i.e., the actual
frequency deviates from the expected frequency. This is due to
manufacturing imprecision and aging effects. The maximum
clock skew is less than than 100 ppm and is usually specified
by the manufacturer. Besides manufacturing imprecision and
aging, the frequency is also affected by environmental factors
including temperature, pressure, and voltage [21]. Among
these factors, temperature has the most significant effect. When
temperature significantly changes, the variation in the clock
frequency can be up to several tens of ppm, while the variation
caused by other factors is far below 1 ppm. Observe, however,
that temperature does not change dramatically within a few
seconds in typical sensor environments. If the epoch duration
T, is chosen according to the temperature change properties
of the environment, we can assume that the clock skew for
each node is constant over each epoch. This is consistent with
the empirical observations in [20].

In this work, we adopt the well-known RBS synchronization
scheme, and study the sleep/wake scheduling problem?. The
scheme includes two steps: (1) Exchange synchronization mes-
sages to obtain multiple pairs of corresponding time instants;
and (2) Use linear regression to estimate the clock skew and
phase offset.

At the beginning of each epoch j, the members need to syn-
chronize with the CH. To this end, each member 7 exchanges
several synchronization messages with the CH and obtains NV,
pairs of corresponding time instants (C(j,k),t:(j, k)), k =
1,...,N,, where C(j,k),t;(j,k) denote the k*" time instant
of the CH and of node 7 in epoch j respectively.

Under the assumption that the clock skew of each node does
not change over the epoch, during a given epoch j the clock
time of member node ¢, ¢;, is a linear function of the CH
clock time C, i.e., t;(C) = a;(§)C 4 b;(j), where a;(5), b;(5)
denote the relative clock skew and phase offset (respectively)
between member node ¢ and CH in epoch j.

Because of the non-determinism in the message exchange,
the obtained time correspondence is not exactly accurate and
contains an error, i.e.,

where e;(7, k) is the random error caused by non-determinism
in the system. Real system measurements [16] show with
a high confidence level that e;(j, k) follows a well-behaved
normal distribution with zero mean N (0,02), and o is on
the order of several tens of microseconds.

At each epoch j, pairs (C(j,k),t:(4,k)),k = 1,...,Ns
are obtained via exchange of synchronization messages. Then,
linear regression is performed on these N pairs to obtain
estimates of a;(j), b;(j), denoted by @;(7), b;(j). In this work,
we control the exchange of synchronization messages such
that C(j, k) = jT. + ka#,j = 1,...,00,k = 1,..., N.
This can be achieved by letting the CH initiate the message
exchange, and we give the detailed explanation in our technical
report [13].

2This scheme is chosen for illustration purposes only. Our sleep/wake
scheduling solution works with most synchronization schemes.



C. The Optimal Sleep/Wake Scheduling Problem

We now summarize our previous work [3] on sleep/wake
scheduling for single hop intra-cluster communications.

Assume that during epoch j, node ¢ has a message p to
send at CH clock time 7, where jT, < 7, < (j +1)T¢. Node
1 first converts 7, into its own clock time using the estimates
(@i (), bi(5)), i.e., £i(7p) = @i (j)7p + bi(4), and then it sends
out the message at #;(7,) according to its own clock.

The CH clock time corresponding to #;(7,) is:

o B = bl) L @) — ali)m +bil) — bilG)
- ai(j) o)

ai(7)
From Eq. (2), random errors exist in the measurements.
Therefore, (@;(5),b;(j)) is also random and may not equal
(ai(4),bi(j))- As aresult, the actual arrival time 7, will deviate
from the scheduled arrival time 7,. To account for this random
deviation and still “capture” (receive) the message, the CH
needs to wake up earlier than 7, and stay active for some
time (Fig. 3), i.e., it uses a wake up interval to capture the
actual message arrival. This leads to the following question:
When should the CH wake up and how long should the wake
up interval be?
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Fig. 3. Wake up interval to capture the message

Obviously, if the CH wakes up much earlier than 7, and
stays active for a long time, the probability of capturing
the message would be high; however, waking up early and
staying active for a long time consumes more energy. In
order to reduce energy consumption, yet still guarantee the
message delivery performance, we formulate the following
optimal sleep/wake scheduling problem which attempts to
minimize the expected energy consumption with constraints
on the capture probability.

Let p be a message from node ¢ to arrive in epoch j, i.e.,
scheduled arrival time 7, € (jT¢,jTc + T¢). Let TZ/) be the
actual arrival time at which p arrives at the CH, as defined
in Eq. (3). To capture p, the CH wakes up at w,, and waits
for the message until s,,. The goal is to determine w,, and s,
to minimize the expected energy consumption as described by
the following optimization problem:

(A) Min £ = (sp — wyp)ay Prob{T),

fsp{ x_wp)o‘I"' O‘T}f‘r (z)dx
such that Prob{r, € (wp, sp)} > th,

¢ (wp,sp)} +

where «j/a, is the power consumption during
idle/reception time; L, is the length of the message; R
is the data rate; fr(-) is the probability density function
(PDF) of TZ/); and th is the capture probability threshold,
0 < th < 1. Its value is application specific and is assumed
to be given.

To solve (A), we first compute the PDF f7, (z). By linear
regression [22], we find that 7'1’) is normally distributed and

E(TZI)) = Tp, 4)

o2 1 Tp —
VAR(r)) = 0y = == | 2(p ( it
a;(j) Ns ™ C2(j, k) (C(J,k))
Substltutmg Eq (4) “into problem (A) and lettlng T =

T —Tp

_ DGR FEn

— Wp—Tp — Sp—Tp
oW = ks = ke, 7, (w, s) are the normal-

ized arrival time and normalized wake up interval respectively.
After simple algebraic operations, problem (A) becomes:
(A1) Min F(w, s) = (s —w)opar — [Q(w) — Q(s)]sopar
+lg(w) = g(s)]opar + [Qw) — Q(s)] Frau,
such that Q(w) — Q(s) > th,
where g(-) is the PDF for the standard normal distribution, and
Q(-) is the complementary cumulative distribution function.

The main difficulty in solving (Al) is that the problem is
not a convex optimization problem, which can be shown by
computing the Hessian matrix. Due to the non-convexity, we
cannot use conventional convex optimization techniques [23]
to find the optimal solution. Hence, we looked into the struc-
ture of problem (Al) and proved the following proposition,
which shows that the optimal solution always appears at the
boundary of the region Q(w) — Q(s) > th.

Proposition 1: For Problem (Al), any optimal solution
(w*, s*) satisfies Q(w*) — Q(s*) = th.

The equality Q(w*) — Q(s*) = th means that under the
optimal scheduling policy, the capture probability is always
equal to the threshold th. This is quite intuitive as we can
imagine that to guarantee a larger capture probability, more
energy will be consumed.

Substituting Q(w*) — Q(s

F(w,s) =

*) = th into F(w, s), we get

[(1—=th)s—w+g(w)—g(s)]opar —l—th%aT. (5)

Substituting Eq. (5) into (A1), we can simplify the formulation
as follows. First, because thﬁpar does not depend on w and s,
we remove it from F'(w, s). Second, all the remaining terms of
F(w, s) have opay, SO We can extract opar. Finally, because
Q(z) is monotonic, we express s as a function of w, s(w) =

Q1 (Q(w) — th). Now the formulation becomes:

(A2) Min G(w) = (1 — th)s(w) — w + g(w) — g(s(w)),
such that s(w) = Q71 (Q(w) — th) and w < Q~1(th).
Hence, we have transformed the original formulation (A)
into an equivalent formulation (A2). We can see that the
minimum expected energy to receive the message is

L
opary(th) + Eparth, 6)

where

y(th) = min{G(w): w < Q' (th)} )

is the minimum value of the objective function in (A2). Eq. (6)
and (7) will be used later in Section IV.

Next, we solve (A2). The following proposition shows that
G(+) is a convex function, and gives the position of the global
minimum.



Proposition 2: (1) G (w) > 0;

(2) Let wy be the global minimum, w; = Q~(52) w, =
min(0, Q~1(th)), then wy € (w;,w,), and is the unique
minimum on this interval.

Because wy is the unique minimum on (w;, w, ), we can use
the Golden Search method to find wg [24]. The complexity
of the Golden Search method is O(log(%)), where 4 is the
required precision. Thus, it can be efficiently implemented.

After we obtain w*, s*, we compute the optimal sleep/wake
schedule as (wy = 7, + w*oy, s, =7, + 5% 0p).

We simulated our sleep/wake scheduling scheme and
showed that it outperforms schemes that do not intelligently
consider the synchronization error [13].

IV. THE CAPTURE PROBABILITY THRESHOLD
ASSIGNMENT PROBLEM

As described in Section III-C, our previous work [3] focused
on single hop intra-cluster communications, and studied the
optimal sleep/wake scheduling problem under the assumption
that the capture probability threshold was already given. In this
work, we study how to decide the capture probability threshold
to meet the QoS requirement of the application and maximize
the network lifetime.

A. Problem Definition

Consider a sensor network deployed for environment mon-
itoring. The network consists of a set of sensor nodes denoted
by S, and one or more base stations (BSs), usually personal
computers. The network has already been hierarchically clus-
tered using one of these clustering techniques [10], [11]. We
assume there is a single BS, denoted by BS. The formulation
can be easily extended to the case with multiple BSs. H(n)
denotes the cluster head of node n. M (n) denotes the set of
nodes that are members of n. D(n) denotes the set of nodes
that are the descendants of n. M (n) and D(n) can be empty
if node n is at level 0. d(n) is the hop distance from node n
to BS,ie., H")(n)= H(H(...H(n)...)) = BS.

d(n

Each sensor node periodically re(p(zrts to its CH. The CH
aggregates its own sensing data and the data collected from
the members over the last transmission period, then forwards
the aggregated data to its CH. The process continues until
the message finally gets to BS. Each message contains some
sensing data and represents certain amount of “information”
about the environment. BS uses the collected information to
compute certain properties, e.g., the chemical contaminant in
the area. The service quality is defined as the accuracy of
the computed properties, which is decided by the amount
of information collected by B.S, i.e., the more information
collected, the better accuracy. Hence, the service quality is not
decided by the delivery performance at any particular hop, but
by the multi-hop delivery performance from the nodes to BS.

However, collecting more information requires higher en-
ergy consumption and may lead to widely varying power
dissipation levels across nodes, e.g., nodes at high levels in
the cluster hierarchy have an excessive relaying burden. This
will result in a shorter lifetime for some nodes, which can

lead to loss of coverage when these nodes deplete their energy.
This is the inherent trade-off between application performance
and network lifetime. To maximize the network lifetime and
still guarantee the application performance, we formulate the
following optimization problem.

We define the network lifetime 77, as the time until the death
of the first sensor node. This definition is widely used in the
literature [4], [10], [25]-[27]. It mainly applies to application
scenarios with strict coverage requirements, where each sensor
“covers” a certain area in the environment and provides equally
important information to B.S. To maintain complete coverage
and save redeployment cost, we must ensure that all the nodes
remain up for as long as possible’.

Let z(n) be the capture probability threshold of H(n)
for messages coming from n, i.e., node H(n) will capture
messages from node n with probability no less than z(n). The
goal is to choose z(n) to maximize the network lifetime, and
still guarantee that all information be delivered to B.S with a
predefined probability A:

(B) Max T,
such that Hfi%)fl 2(HD(n)) > A,Vn € S,

where A is decided by the QoS requirement of the application.

For the data from node n to be received by BS, it needs
to pass through H(n), H® (n),..., H4 =1 (n). Hence in
(B), the constraint [[7")) " 2(H(®)(n)) > A means the data
from n will be received by BS with probability no less than
A. Note that the data will be aggregated with data from other
nodes at each hop along the path.

B. Solution

In the cluster hierarchy, if the multi-hop delivery perfor-
mance of a leaf node (a level-O0 node) is guaranteed, then
the delivery performance for its ancestors is guaranteed as
well, i.e., if the information from a leaf node n is delivered
to BS with probability no less than A, then the information
from H(n), H® (n)... H™=1(n) will also be delivered
with probability no less than A. Hence, in (B), the constraints
on the delivery performance of non-leaf nodes are redundant
and can be removed. Let LF denote the set of leaf nodes. We
obtain the following formulation:

(B) Max T,
such that Hfi%)fl 2(H®(n)) > A,¥n € LF,

To obtain an explicit form of Problem (B), we characterize
the average power dissipation for each sensor node when
z(m), m € S are given. During an epoch, a node n consumes
energy for sensing, synchronization, and transmitting/receiving
data messages. Let the sensing energy and synchronization
energy be e5(n), and eg4y,(n) respectively. These do not
depend on the capture probability thresholds.

Both the transmission energy and the receiving energy
depend on the capture probability thresholds. Let [ be the

3Here, we assume that we will lose the corresponding coverage if a node
dies, i.e., there is no redundant node. If the network has redundancy, we can
consider the nodes covering the same area (e.g., nodes near the same bird
nest) as a single node whose initial energy equals the sum of energy of all
the relevant nodes, and then this definition and the following results still apply.



amount of sensing data generated by each sensor during each

transmission period T', and L*¥9(n) be the average message

size from n. Then, from the aggregation model in Eq. (1),
L9 (n) = 1l + X jersim 2()L™9(0)) + c.

Recursively applying the above formula, we have

d(i)—d(n)—1
L) =rl+c+ Y (rl+c) [[ [rzEH® @)
i€D(n) k=0

®)
Since N messages are transmitted in each epoch, the average
transmission energy in an epoch is

Lev9(n)
Et (n) R s
where a;(n) is the transmission power of node n*.
We now compute the average receiving energy e, (n). For
a node n with |M(n)| members, during a given epoch j,
these nodes transmit to n in turn. To decide the transmission
sequence, node n orders the |M(n)| members, i.e., each
member node ¢ € M (n) is assigned a sequence number 6(7)
from {1,2,...,|M(n)|}, and different member nodes have
different sequence numbers. Node ¢ is scheduled to transmit at
JTe + T + 9(1)% +hT,h =1,...,N. For given capture
probability thresholds, node n will use the sleep/wake schedule
described in Section III-C, as it is the optimal sleep/wake
schedule. Therefore, the average energy used to receive a
message scheduled to arrive at 7, is exactly the minimum
value of the objective function in Problem (A), which is (by
Eq. (6))

= Nay(n) ©)

L
opary(th) + Eparth.

Here, L, is the message size, o, is computed from Eq. (4), th
is the required threshold, and ~(¢h) is as given in Eq. (7). The
average receiving energy ¢,(n) can be computed by summing
up the energy used to receive all messages from its members.
As in Section III-B, the synchronization is controlled such that
C(j, k) = jTe + k— S0

+ N T.

2 N’
S (e~ )
C(5,k))* = : .
( (37 )) Ns

Further, recall that the maximum clock skew is no larger than
100 ppm; hence in Eq. (4), the relative clock skew a;(j) =~ 1.
Combining these together, we have

1
C(js k) JTe +

%

(10)

02(]', k) -

~
~

Laug
en)~ Y Zar )+ (11)
i€M(n) h=1
6(i)T 1+N T,
arv(o(i)) |op 4 L AT~ 5w
ONs 27:51 (k Ti» 1;1\25,11)2 .
N,

For node n, the average energy consumption in an epoch
is the sum of the sensing energy, the synchronization energy,

4We assume that each node has a fixed number of transmission power levels
(as in Mica2 motes), and can choose the appropriate one based upon factors
such as distance and channel fading.

and the transmission/reception energy. Combining Eq. (8), (9)
and (11), the average power dissipated in node n is given by

es(n) +esyn(n) +e1(n) +e,(n)

z 12
n(n, z') T (12)
= A(n)+ Z P(n,i)y(z(i)) +

i€M(n)
d(i)—d(n)—1
> Qi) I =HMa)),
i€D(n) k=0
where
1 l
A(TL) = i[fs(n) + Esyn('R) + Nozt(n)r ;-C]’
P(TL,Z) =
N O@OT LN, 1.
! 1 (T gy T — e )2
= or |og~[1+ N
Te i3 Ns Tpty (bR —W;TS)
— =
Q(n,i) = iww + c)rd(i)—d(n)_1.

T. R

Let £(n) be the initial energy of node n, then Problem (B)
can be written as

Max 717y,
such that T["% ™" 2(H®(n)) > A, Vn € LF,
n(n, 2) <&mn)/Tr,¥n € S.

Next, we introduce a lifetime-penalty function ¥(1/77,) to
be a strictly convex and increasing function (e.g., ¥(x)
x%). Then, maximizing the network lifetime is equivalent
to minimizing the lifetime-penalty function. We now use a
change of variable u = 1/T, to give the network lifetime
maximization problem as the following equivalent problem:

(B) Min ¥(u)
such that [["% ™" 2(H®(n)) > A,Vn € LF,
n(n, 2) < &(n)u,Vn € S.

The difficulty in solving (B) is that it is not a convex
optimization problem. To see this, we observe that in the
second set of constraints, the left side 1(n, Z’) includes
~v(2(4)) and [] 2(¢). ] 2(¢) may not be convex, e.g., z(1)z(2);
for y(z(i)), we numerically show the curve in Fig. 4 which
is clearly not convex. Hence, the constraint region is not a
convex set, and Problem (B) is not convex. Further, we do not
have an explicit analytical form for v(z). This makes Problem
(B) hard to solve exactly. Next, we investigate the structure of
the problem and obtain an approximate solution.
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The following proposition characterizes v(z).

I,



Proposition 3: (1) For z > 0.86, v(z) is strictly convex;

(2) For z € [0,0.99],1.862 < v(2) < 2.52z.
We give the proof in the technical report [13]. The idea is that
although we do not have an explicit analytical form of y(z), we
have the bounds obtained from Proposition 2(2). Therefore, we
compute v'(2),v"(z) using implicit differentiation and bound
them. This proposition shows that (z) is convex in the region
[0.86,1); for the remaining region where 7(z) may not be
convex, we can bound it fairly tightly.

Next, we approximate v(z) with a convex function. The

curve 2z + 0.00122 intersects y(z) at Zo ~ 0.95. Let
(2) = 224 0.00122 0<2z<Z,
miE = ~v(2) Zp<z<l1

The following proposition shows that v1(z) is a convex
approximation of 7(z).

Proposition 4: (1) 0.929 < v(z)/v1(z) < 1.26;

(2) 71(z) is strictly convex.

This proposition is easily proved using Proposition 3 [13].
Fig. 5 illustrates that 71 (z) is a good approximation of ~(z).
Now, we can obtain an approximate solution of (B). Consider
the following problem (B1):

(B1) Min ¥(u)

such that H?i%)fl 2(H®(n)) > A,Vn € LF,

mn, )= Am) + 3 Pln,im(=() +
i€M(n)

d(i)—d(n)—1

H 2(H®(4)) < &(n)u,¥n € S.

k=0

The only difference between (B) and (B1) is that in (B1),

~(+) is replaced by 1 (-). The following proposition shows that
the solution of (B1) is an approximate solution of (B).
_I;‘roposition 5: Let (2*,u*) be the optimal solugon to (B),
(27,u}) be the optimal solution to (B1), TL(z*) be the
network 11fet1me when using 2% as the capture probablhty
thresholds, TL(zl) be the network l1fet1me when using z1_> as
the capture probability thresholds, then 77, (zl ) > 0.73T(=%).

Proof: From Proposition 4, 0.929 < 771((2 )) < 1.26. Therefore,

0.929 < n(n, Z)/m(n, 7)) < 1.26.

13)

Because (zl, 1) is the optimal solution of (B1), we have
m(n, zl) < &(n)ui,¥n € S.

Therefore, n(n, 27) < 1.261:1(n, z_f) < 1.26¢(n)ui,Vn € S.
Hence,

!

Ty (27) > 1/(1.26u%). (14)

Also, as (z_f,uf) is the optimal solution of (B1), there
must exist some node i such that 7, (z,;) > &(i)ui. ,Oth-
erwise if 71(n,z") < {(n)ui,Vn € S, then let u =
max{m(n 2*)/&(n)}. It can be easily verified that (z*,u,)

is a solution to (Bl) and ul < uj, which is contradictory to
the fact that (21 ,u}) is the optimal solution of (B1).

For this node i, we have (i, ;) > 0929171(2',?) >
0.929¢(7)uy, thus TL( ) < 1/(0. 929u1) Combined with
Eq. (14), we have TL(zl) > 0. 73TL( ). m

The intuition behind the proof is that v, (-) approximating

. . — ~ —
y(.)_;mphes 71(71, Z) N_;n(n, z),Vn e S. He_i)lce,
Tu(z¥) = minfe(n)/ntn, =)} ~ minfe(n)/m(n, =)},
-3 . = . 3
and Ty (25) = min{€(n) /n(n, 25)} ~ min{e(n)m(n, )}
But z—f is the optimal solution _(>)f (B1), so
mig{f(n)/nl (n,z*)}. Therefore,
ne

min{{(n)/m(n, 21)} =

(
— —=
Tr(27) = mig{ﬁ(n)/m (n,z7)} cannot be much smaller than
ne

Tu(=%) ~ mind€ (n)/m (n. =)}

Proposition 5 is important as it shows that z_f is an approx-
imate solution of (B) with approximation ratio 0.73.

As described earlier, (B) is a non-convex optimization
E}oblem; hence it is difficult to obtain the optimal solution
z*. However, Proposi_tion 5 shows that if we can solve (B1)
and use its solution zj as the capture probability thresholds,
then the achieved network lifetime is no less than 73% of the
maximum. Next we solve (B1).

Using the variable transformation: v(7) = In(z(7)), problem
(B1) becomes the following equivalent problem (B1’):

(B1°) Min ¥(u)
such that Zfi%)fl v(H®D(n)) >InA,Vn € LF,

M, v)=An)+ > Pni)y(e"™)+
i€M(n)

S QM i)eis T HY @) < g(nyu,vn € 8.

i€D(n)

In (B1’), obviously the optimization goal function is convex
and the first set of constraints corresponds to a convex set. For
the second set of constraints, because both exp(-) and , (+) are
strictly convex and increasing, from the composition rule [23],
~1(exp(+)) is also strictly convex. Therefore, the second set of
constraints also corresponds to a convex set, and (B1’) is a
convex equivalent of (B1).
We solve (B1’) via dual formulation. The dual problem is
—
(N, 1),

_ max
X>0,77>0

where X ,Ji are Lagrange multipliers correspondmg to the
two sets of constraints in (B1”), and &( By ,J1) is the dual
function given by

®(X,77) = min + 3 AnA - (5)
u>0,7 <0 S
d(n)—
Z (HOM) + > (0 (n, T) = E(m)u).
i=0 nes

We use the subgradlent method [23] to solve the dual prob-
lem. Let v* v* be the minimizer in Eq (15). One subgradient
of the negative dual function —®( )\ ) is [23]

9, = S H=t v (HD(n)) —InA,Vn € LF,

on = &(n)u* —ni(n,v*),Vn € S,



— —
where ¥ and @ correspond to the dual variables A and 7/
respectively.

To obtain the optimal dual variables, the subgradient method
uses the following updates at the k" iteration

An(k+1)
un(k+1) =

(k) — wrdn (k)] T,¥n € LF, (16)
[kn (k) — wron (k)] T, Vn € S,

where [.]T denotes projection on the nonnegative orthant >, and
w}, is the step size. Convergence to the optimal dual variables
is guaranteed if wy, satisfies wy — 0, 22021 Wi = 00.

Hereis a pthical interpretation of the dual variables X and
7. Consider )\ to be the price of violating the requirement
on the delivery performance, and ﬁ_}’ to be the price of
exceeding the battery capacity. Then, 1) represents the safety
margin before breaking the performance requirement, and @
represents the excess battery capacity. The updates in Eq. (16)
will increase the corresponding prices if the performance re-
quirement is violated or the average power dissipation exceeds
the capacity, and reduce the prices otherwise.

C. Implementation

In many sensor systems [28], [29], the BS is a Pentium level
PC, which has a high computational capability and sufficient
memory compared to the sensor nodes. Further, the BS is often
connected to an unlimited power supply. Hence, it is preferable
for us to take advantage of the computing capabilities of the
BS and let it perform the computations®.

After the cluster hierarchy has been established, the BS
informs the nodes of the systems parameters, including the
epoch duration T, synchronization interval T, and message
frequency T Each node then computes A(n), P(n,i), Q(n,1)
and reports to the BS. The transmission is hierarchical: the
cluster members compute their A(n), P(n,i),Q(n,i) values,
and pass them onto the CH, then the CH combines its own
parameter values with those of the members and passes onto
its own CH. To guarantee that these values are received by
the BS, reliable data delivery mechanisms like hop-by-hop
acknowledgments can be used.

The BS solves (Bl) using the subgradient method and
computes the capture probability thresholds, then informs the
sensor nodes. The nodes then decide the wake up schedule as
described in Section III-C.

We note that the computation of the optimal capture
probability thresholds is done infrequently, i.e., the capture
probability thresholds are computed only once after the clus-
ter hierarchy is constructed. Hence, the additional message
overhead is insignificant in the long run.

SNote that in Problem (B), because n(n, 7) increases with Z, it can be
seen that to guarantee a larger delivery probability, higher power is needed
and the lifetime will be reduced. Hence, the optimal solution(s) occurs only
when the delivery probabilities equal A, i.e., when ?S(L)Fl 2(H® (n)) =
A,Vn € LF. Thus, when updating A, the projection [.| is unnecessary.

%Note that this centralized scheme is effective because the BS is much
more powerful than the sensor nodes. If the BS has similar performance to
the sensor nodes, a distributed implementation is desirable.

D. Reclustering

In our discussions thus far, the network topology is fixed at
one particular cluster hierarchy. In many systems [10], [27],
periodic reclustering is used to balance the load, and the
network topology alternates among several cluster hierarchies.
In our technical report [13], we have shown that the problem
formulation can be easily extended to account for reclustering
and the solution still holds after slight modifications.

E. Simulation Results

We conduct simulations to study our threshold assignment
algorithm. For illustration, we consider the cluster hierarchy
in Fig. 6. The initial energy for all nodes is 1 Joule. Each node
will generate [ = 4bytes of sensing data during each trans-
mission period. The data aggregation overhead c is 4 bytes;
the compression ratio » € [0,1]. We set A = 0.7, i.e., all
information should be delivered to the BS with probability >
0.7. Other simulation parameters are specified in Table 2 in
our technical report [13].

For the given topology, we first note that since the BS has
unlimited power supply, it can always stay awake. Thus, for
messages coming from node 1, the BS will always “capture”
them, and we can directly set z(1) = 1. Further, due to
symmetry, the algorithm should set z(2) ~ z(3) and z(4) ~
2(5) &~ ... z(11). Next we consider two special cases:

e 7 =1 corresponds to the case without any compression.
In this case, node 1 is the bottleneck since it has the
highest relaying burden. Hence, z(2) and z(3) should be
small such that node 1 spends less energy for receiving.
Our algorithm sets z(2) = 2(3) ~ 0.71 and z(4) ~
...z(11) = 0.99, correctly identifying the bottleneck.

e 7 = 0 corresponds to the case where we want updates of
the type min, max, and sum. Here, transmission energy
is the same for all the nodes, and the receiving energy
decides the lifetime for each node. Thus, nodes 2 and
3 become the bottleneck since they need to receive from
more member nodes. Correspondingly, our algorithm sets
2(2) = 2(3) 2 0.999 and z(4) ~ ... 2(11) = 0.703.
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To illustrate the performance gain of our threshold assign-
ment algorithm, we compare with a scheme which sets equal
capture probability threshold at each hop along the cluster
hierarchy, z(2) = ... = z(11) = v/A. In Fig. 7, we vary
the value of r and show the performance gain, which is
defined as the ratio between the network lifetime with the two
schemes. We observe that our scheme always outperforms the
scheme with equal thresholds. As r increases from 0 to 1,



the gain first decreases and then increases. This is because,
from the above discussion, when » = 0 nodes 2 and 3
are the bottlenecks; hence our scheme sets z(4),...,z(11)
to be small and z(2), z(3) to be large. As r increases from
0, node 1 has a higher burden of relaying. To balance the
energy consumption, our scheme increases z(4),...,z(11)
and decreases z(2), z(3). Consequently, our solution becomes
closer to the scheme with equal thresholds. When r = 0.5,
our solution almost overlaps with the other scheme and the
performance gain is relatively small. But as r increases further,
our solution diverges from the other scheme and achieves a
higher gain, which is as large as 19% when r = 1. This
confirms that it is necessary to adopt an intelligent scheme
to assign the thresholds, and validates the effectiveness of our
scheme.

V. CONCLUSIONS AND FUTURE WORK

We have studied sleep/wake scheduling for low duty cycle
sensor networks. Our work is different from most previous
work in that we explicitly consider the effect of synchroniza-
tion error in the design of sleep/wake scheduling algorithm.
In our previous work [3], we showed that the impact of syn-
chronization error is non-negligible, and studied sleep/wake
scheduling for single hop communications. We proposed an
optimal sleep/wake scheduling algorithm, which achieves a
given capture probability threshold with minimum energy
consumption.

In this work, we considered multi-hop communications. We
relaxed the assumption that the capture probability threshold
is already given, and studied how to determine the per-hop
capture probability thresholds to meet the QoS requirement of
the application. We observe that in many sensor networks for
continuous monitoring applications, the QoS is decided by the
amount of data delivered from the nodes to the base station(s),
i.e., the multi-hop delivery performance. We formulate an op-
timization problem that sets the capture probability threshold
at each hop such that the network lifetime is maximized,
and yet the multi-hop delivery performance is guaranteed.
The problem turns out to be non-convex and hard to solve
exactly. However, by investigating its unique structure, we
have obtained a 0.73-approximation algorithm. Simulations
show that our solution correctly identifies the bottleneck and
significantly extends the network lifetime.

In this work, we have fixed the synchronization scheme and
only focused on energy conservation with sleep/wake schedul-
ing. Synchronization and scheduling are, however, closely
tied to each other and will both affect the overall system
performance. Therefore, it is necessary to jointly consider
synchronization and scheduling to improve the overall system
performance. Further, the definition of network lifetime in
this work mainly applies to application scenarios with strict
coverage requirements. We plan to extend our framework to
consider other definitions of network lifetime, e.g., time until
network partitioning.
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