
On the Utility of Inference Mechanisms

Ethan Blanton Sonia Fahmy Greg N. Frederickson
Department of Computer Science, Purdue University

West Lafayette, Indiana, USA
E-mail: {eblanton, fahmy, gnf}@purdue.edu

Abstract

A number of network path delay, loss, or bandwidth
inference mechanisms have been proposed over the past
decade. Concurrently, several network measurement services
have been deployed over the Internet and intranets. We
consider inference mechanisms that use O(n) end-to-end
measurements to predict the O(n2) end-to-end pairwise
measurements among n nodes, and investigate when it is
beneficial to use them in measurement services. In particular,
we address the following questions: (1) For which measure-
ment request patterns would using an inference mechanism
be advantageous? (2) How does a measurement service
determine the set of hosts that should utilize inference
mechanisms, as opposed to those that are better served using
direct end-to-end measurements? (3) How can the answer to
question 2 be efficiently computed as measurement requests
arrive and terminate? Our solution is able to identify groups
of hosts which are likely to benefit from inference, by
utilizing a probabilistically generated spanning forest on the
measurement request graph. We compare our solution to a
simple heuristic that uses the number of measurements a
host participates in. Results with synthetic datasets as well
as datasets from a popular peer-to-peer system demonstrate
that our technique identifies host subsets that benefit from
inference quite accurately, and in significantly less time than
an algorithm that identifies optimal subsets. The measure-
ment savings are large when measurement request patterns
exhibit small-world characteristics, which is often the case
for peer-to-peer and other popular distributed systems.1

1. Introduction

An important class of network inference mechanisms
estimate the properties (e.g., delay or loss) of a large number
of end-to-end network paths by measuring some subset

1. This research is sponsored in part by a gift from Hewlett-Packard and
NSF CAREER grant 0238294. We would like to thank Sujata Banerjee,
Puneet Sharma, and Praveen Yalagandula (HP Labs) and Sriharsha Gangam
(Purdue) for several helpful discussions on this work. We would also like
to thank Chuan Wu and Baochun Li for sharing with us their UUSee node
degree data.

thereof.2 This class of mechanisms is designed to reduce
the amount of injected active measurement probe traffic and
the effort required to collect a large number of measure-
ments, typically at the expense of measurement accuracy.
For example, the Azureus BitTorrent client can use inferred
network delay information to select peers from which to
transfer data [1]. The question of how much of a reduction
in measurements the existing inference mechanisms achieve
for different measurement request patterns has not been
adequately studied.

A network measurement service, which provides measure-
ment results to applications on request, is uniquely suited
to utilizing network inference mechanisms. Examples of
network measurement services include ScriptRoute [2], the
Scalable Sensing Service (S3) [3], iPlane [4], and the system
by Calyam et al. [5]. Because a measurement service has
knowledge of a larger number of network measurements
than individual applications, it is in a position to determine
when inference can be used to reduce the total number of
measurements required to satisfy a particular demand from
applications. To accomplish this, the service must quantify
the measurement load required to set up and operate a
network inference mechanism, and compare this load to
that introduced by direct measurement of requested prop-
erties [6].

In this paper, we predict the network traffic injected by
inference mechanisms, and compare it to the traffic injected
by requested direct measurements. We present an efficient
method for identifying opportunities when inference induces
less traffic than a given pattern of direct measurements.
Our method is not an inference mechanism, but a tool
for deploying existing inference mechanisms dynamically
on the hosts where their use is advantageous. We note
that setting up an inference mechanism may incur a non-
negligible cost [7]. After startup, continuing measurements
typically require O(n) probes to estimate properties of
O(n2) paths [7], [8], [9], [10]. Our work hinges on the two
observations that (1) there is a hidden constant for the O(n)
probes, which can be large, and that (2) oftentimes, not all
the O(n2) path properties are requested.

2. The terms inference or tomography are also used to refer to the
inference of properties of internal (router-to-router) links from purely end-
to-end (i.e., host-to-host) measurements. Such mechanisms are not under
discussion in this paper.

The remainder of this paper is organized as follows.
Section 2 gives some definitions. Section 3 defines the
problem that we are addressing. Section 4 gives our solution
and analysis. Section 5 gives results from our experiments
with both real and synthetic datasets. Finally, Section 6
summarizes our results and directions for future work.

2. Terminology

When we discuss measurements, we generally mean
active network measurements that require injecting probe
packets into the network, e.g., ping packets to measure end-
to-end delay. A measurement service is a network service
that accepts requests for the results of active measurements
from applications on-demand, schedules measurement tools
to be run to service these requests, and ultimately returns
the results from the tools to the application. A measurement
host, or simply host, is an infrastructure host in the measure-
ment service that invokes measurement tools and records
their output, to be delivered to applications. Measurement
endpoints are the hosts which source and/or sink traffic in
performing a given measurement.

The inference mechanisms we consider can be broadly
divided into two categories. The first category includes
mechanisms that use knowledge of link-level or autonomous
system (AS)-level paths to choose a subset of paths to be
probed. We will call these path-based inference mecha-
nisms. Inference mechanisms in this category include Chen’s
Algebraic method [11], IDMaps [12], NetQuest [13], and
iPlane [4]. The second category consists of mechanisms
which infer pairwise properties using measurements to
reference nodes (which may or may not be chosen a
priori). We will term these mechanisms reference-based
inference mechanisms. Mechanisms in this category include
Vivaldi [8], GNP [7], and Theilmann et al.’s Dynamic
Distance Maps [9]. Our primary focus in this paper is on
mechanisms in this latter category. We identify the pattern
of direct measurement workload required to equal or exceed
the network load of the inference mechanism, and specify
advantageous replacements of direct measurements.

3. When to Use Inference?

Of the reference-based inference mechanisms, many re-
quire a number of measurements that scales linearly with
the number of hosts participating in the inference. Some
mechanisms perform a constant number of measurements
per host, e.g., [9], [8]. Others perform varying numbers of
measurements per host, but average a constant number per
host, e.g., [7], [10]. In this latter group, typically the majority
of hosts participate in a constant number of measurements,
and a constant number of hosts (such as the so-called
landmarks from GNP [7]) participate in a large number of
measurements (linear in the number of hosts). Some of the

algorithms have an additional cost for initial construction,
which we will not consider in this paper.

Assume that we can identify or approximate the constant
in a network inference algorithm that requires, on average, a
constant number of network measurements per host to infer
all-pairs measurements among participating hosts. We will
call this constant k, call the number of hosts participating
in the inference n, and call such an inference mechanism
a kn-cost inference. The authors of the GNP delay in-
ference mechanism, for example, recommend that hosts
take measurements to 15 landmarks [7], and the authors
of the Vivaldi delay inference mechanism recommend a
selection of 32 neighbors [8]. For these two systems under
their recommended configurations, k would be 15 and 32,
respectively. Observe that the constant k is dictated by the
workings of the inference mechanism under consideration,
and is not a tunable parameter in our work. Given a set of
measurements requested from a measurement service and the
constant k, we can determine the tipping point at which the
total number of measurements requested becomes greater
than or equal to the number of measurements required to
perform inference. In this case, inference can reduce the
total load on the network, at the cost of reduced accuracy.

If we only use inference when the total number of
requested measurements exceeds kn, we will miss key
opportunities when inference is beneficial. This is because
some hosts may be participating in measurements to a large
number of hosts, while others may be involved in very
few measurements. Consider a situation where n hosts are
interested in performing delay measurement to at least one
endpoint. Assume that m out of the n hosts are performing
a complete all-pairs measurement mesh, where each of the
m hosts measures delay between it and the other m − 1
hosts. Additionally, n−m hosts are measuring delay to only
one endpoint each. We therefore have O(m2 + n−m) total
measurements. If m <

√
n and k ≥ 3, comparing total

numbers indicates that direct measurement requires fewer
total measurements than inference. However, if m > 2k+1,
performing inference on the subset of m hosts, and direct
measurements for the remaining hosts, would require fewer
total measurements than only using direct measurements.

Fig. 1 illustrates this scenario with n = 12 and m = 8.
We represent each host requesting measurement as a node
in a graph. A requested measurement between two hosts
is represented as an undirected edge in that graph. When
k = 3, this graph (which has 32 edges) superficially appears
to see no benefit from inference, as 32 < 3n = 36. However,
by performing inference among the eight nodes marked in
black, we reduce the number of measurements taken to 3×
8 + 4 = 28, realizing savings of four measurements.

If, given a set of requested measurements, we wish to
determine whether or not inference can save effort over
any subset of the participating hosts, we have to answer
a slightly different question. For any subset of hosts of size

Figure 1. Graph benefiting from partial-graph inference
when k = 3.

n performing measurements among themselves, if the total
number of measurements being performed is greater than
kn, then a kn-cost inference mechanism requires fewer total
measurements than direct measurement. Using our measure-
ment request graph above, determining whether inference
can reduce the total number of measurements is a matter of
finding subgraphs for which the number of measurements
within each subgraph is greater than k multiplied by the
number of nodes in the subgraph. Replacing the direct
measurements in these subgraphs with inference will yield
a smaller total number of measurements performed.

In other words, given a graph G = (V, E), our goal is
to transform it into another graph G′ = (V, E′) such that
we minimize |E′|, where 0 ≤ |E′| ≤ |E| and 0 ≤ |E′| ≤
k|V |. The only transformation operations allowed on G are
replacement of all edges among subsets Vi of V by k|V i|
edges (i.e., employing one of the inference mechanisms in
the literature on subsets Vi of vertices, while using direct
measurements for remaining edges). Note that a vertex in
one of the Vi subsets can still be an endpoint in a direct
measurement, as long as the other endpoint does not belong
to a subset Vi.

4. Solution and Analysis

A k-regular graph is a graph in which each node has a
degree of exactly k. An undirected graph where each node
has a degree of exactly 2k involves kn total measurements,
and thus represents the tipping point for a set of hosts using
a kn-cost inference. Unfortunately, showing that a general
graph contains a k-regular subgraph has been shown to be
NP-complete [14]. Therefore, we must find a solution that
trades off optimality for tractable computational complexity.

To identify the subgraphs that have sufficient “density”
so that replacement of their direct measurements with a kn-
cost inference will result in a net reduction, we investigate
the following approximation.3 We use a set of minimum
spanning forests to identify edges in the request graph (as
described in Section 3) that are likely to be a part of low-
edge-count cuts of the graph, and prune them. The nodes of
the connected components which remain are assumed to be

3. We will compare this approximation to a simple heuristic that uses
inference on all hosts with degree exceeding k in Section 5.2.

hosts which would benefit from participating in inference.4

4.1. Algorithm

The pseudocode for an algorithm to identify groups of
hosts which may benefit from inference is presented in
Fig. 2. The algorithm takes three parameters as input. The
first, G, is an unweighted, undirected5 graph representing
measurement hosts and requested measurements, as de-
scribed in Section 3. The second and third parameters, f
and s, are integer arguments representing parameters for the
heuristic itself. Let f be the number of spanning forests
used by the algorithm, which balances the tradeoff between
computation time and accuracy of the algorithm. Let s be
a threshold score used to identify edges which are assumed
to be part of a low-edge-count cut of the graph G. As we
will show later, the value of s is a function of f and of the
constant k of the inference algorithm.

Let V (G) represent the vertices of G, and E(G) represent
the edges of G. Let vw represent an edge from vertex v to
vertex w. Let wt(·) represent the weight of the edge given
as its argument.

First, we construct a set of f graphs {G1, . . . , Gf},
identical to the unweighted graph G, except that each edge
in these graphs is assigned a weight from a uniform random
distribution. We then find a minimum spanning forest Fi for
each such graph Gi via the function MSF(·) (using, e.g.,
Kruskal’s algorithm). Next, we define a score for each edge
in G as follows:

score(vw) =

f
∑

i=1

{

1 : vw ∈ Fi

0 : vw 6∈ Fi

Any edge in G having a score greater than the threshold
score s is then removed from G. The connected components
of G are calculated by the function components(·), and
each connected component is assumed to represent a set
of hosts which would benefit from having measurements
internal to the set replaced with inference. Additionally, any
two components that were connected via an edge in the
original graph are merged into a single component. This
is because using inference on the merged graph incurs no
additional cost (as the merged graph includes no additional
vertices).

4.2. Bounds on the Expected Score

The motivation for using minimum spanning trees with
random edge weights is that we want a quick method

4. Note that our approach bears some similarity to (but has important dif-
ferences from) the Girvan-Newman algorithm for community identification.
The Girvan-Newman algorithm has a higher complexity of O(|E|2|V |).

5. We consider only undirected graphs in this work. The algorithm
presented generalizes readily to directed graphs, at the expense of some
clarity.

def inference groups(G, f, s)
for i ∈ 1..f do

let V (Gi) = V (G)
let E(Gi) = E(G)
for e ∈ E(Gi) do

let wt(e) = random()
let Fi = MSF(Gi)

for e ∈ E(G) do
if score(e) > s then

let E(G) = E(G)\e
return components(G)

Figure 2. Pseudocode for probabilistic spanning tree
selection of nodes for inference.

for estimating edge-connectivity in a graph. For any edge
in the graph, we are able to lower-bound the probability
that a given edge will be in a most constricting cut that
contains that edge, which leads to a lower bound on the
expected score for that edge. In addition, we can upper-
bound the probability that the actual score for the edge falls
significantly below the lower bound on its expected score.

Let e = v1v2 be an edge in G, and let (V ′, E′) be the
connected component of G that contains edge e. Define
vertex sets V1 and V2 = V ′ − V1 such that v1 ∈ V1 and
v2 ∈ V2 and c(V1, V2) is minimized, where c(V1, V2) is the
number of edges uw in G such that u ∈ V1 and w ∈ V2.

Lemma 1: The probability that edge e is an edge in
Fi is at least 1/c(V1, V2), and the expected score for e
is thus at least f/c(V1, V2). Furthermore, Pr(score(e) ≤
f/c(V1, V2) − α

√
f) ≤ exp(−2α2) for any constant α.

Proof. Consider any of the graphs Gi. Whenever all edge
weights in Gi are distinct, an edge in Gi that is of minimum
cost among all edges between V1 and V2 will be in the
minimum spanning forest Fi.

Since the weights of all edges in Gi are chosen randomly,
the probability that edge e = v1v2 is of minimum cost
among all edges between V1 and V2 is 1/c(V1, V2). Thus
e appears in Fi with probability at least 1/c(V1, V2).

For i = 1, 2, . . . , f , let Xi be a random variable with
Xi = 1 if e has minimum weight among all edges uw
between V1 and V2, and Xi = 0 otherwise. Clearly, the
Xi are independent random variables. Let S = X1 + X2 +
. . .+Xf . Then E[S] = f/c(V1, V2). Let X ′

i be variables, with
X ′

i = −Xi. Let S′ = −S. Similarly the X ′

i are (amongst
themselves) independent random variables.

By Hoeffding’s inequality [15], Pr(S ′ − E[S′] ≥ t) ≤
exp(−2t2/f). Then

Pr(S′ − E[S′] ≥ t) = Pr(−S + E[S] ≥ t)

= Pr(S − E[S] ≤ −t)

= Pr(S ≤ f/c(V1, V2) − t)

≤ exp(−2t2/f).

Choosing t = α
√

f gives the claimed result. Note that
score(e) ≥ S, since edge e might not have the smallest
weight of edges between V1 and V2 and yet still be in Fi.

As clear from this lemma, the expected score is a function
of both c(V1, V2), which depends on the structure of the
graph, and of the number of forests f , which balances the
tradeoff between complexity and accuracy. Based on the
bounds on the expected score, the value of the threshold
score s must be essentially proportional to f . Additionally,
the threshold s must be inversely related to the constant k of
the inference algorithm. This is because the higher the value
of k, the higher the overhead of the inference mechanism,
and therefore the more aggressively we want to prune edges,
so that direct measurements rather than inference are used
in relatively sparse areas of the graph. Reducing the value
of s increases the number of pruned edges, thus increasing
the number of direct measurements that will be performed.
The relationship between s, f , k, and the structure of the
graph is further explored in our experiments in Section 5.

4.3. Complexity

To be useful for on-demand measurement requests in
an Internet-scale system, the decision to use inference or
take direct measurements must be made rapidly. Traditional
methods of computing minimum spanning trees run in
O(|E| log |E|) time (e.g., Kruskal’s algorithm or Prim’s
algorithm), which, for large systems with thousands or tens
of thousands of measurement hosts and measurements being
requested many times per second, are too expensive to
compute for every measurement request entering the system.

In order to make our solution feasible for on-demand
measurements, we plan to turn to algorithms that main-
tain the minimum spanning forest of a graph in the face
of dynamic updates in amortized time O(log4 |V |) per
insertion or deletion [16], or worst-case O(|V |1/2) time
per operation [17], [18].6 Efficient handling of on-demand
measurements will be a subject of future work.

5. Experimental Evaluation

We experimentally evaluate the algorithm given in Sec-
tion 4.1 on graphs of various structure. As a baseline, we
evaluate our method on a set of simple synthetic topologies,
including graphs having uniform random edge placement.
Additionally, we utilize graphs based on real datasets from a
large-scale peer-to-peer system: the popular UUSee stream-
ing television service [19]. These graphs represent a typical
scenario where users select peers or servers with which to
communicate based on measured network path properties.

6. We note that |V |1/2 ≤ log4 |V | whenever |V | ≤ 1012.

The key measure of comparison for this study is the
amount of reduction in measurements required between
hosts in the graph if we employ inference on the subgraphs
(components(·)) that our algorithm outputs and direct mea-
surements on the remaining edges, compared to performing
all the requested direct measurements. We also report the
cost of performing a single inference on the entire graph.
We give the running time of our algorithm, and investigate
the values of its two key parameters (number of forests f and
threshold score s). We also study the relationship between
s and the constant k of the inference mechanism.

5.1. Synthetic Topologies

Fig. 3 depicts a synthetic topology having two complete
subgraphs of 8 vertices each, connected by a “bridge”
consisting of two edges and a separating vertex. Investigating
subgraphs for a kn-cost inference with k = 3, an optimal
solution identifies the nodes marked in black as candidates
for inference, and the node marked in white would par-
ticipate only in direct measurements. Nodes participating
in inference make up two connected components, with a
single unconnected vertex left over. The direct measurement
request graph in Fig. 3 has 58 edges. Performing inference
separately on each of the two clusters costs 8k = 24
edges each. Adding the two direct measurements yields 50
edges. Observe that performing inference on the entire graph
using an inference algorithm with k = 3 costs kn = 51.
The savings over this full-graph inference increase with
increasing k, and increase when graphs contain more sparse
areas (as opposed to the single “bridge” in Fig. 3). It
is important to note that inference comes at the cost of
reduced accuracy, so using it when unnecessary is highly
undesirable.

Figure 3. A two-cluster measurement request topology
with optimal kn-cost inference groups for k = 3 marked
in black.

A graph of this general form (densely connected areas
separated by sparse regions) is interesting because it is a
case when inference is beneficial, but full-graph inference
is not the right choice. More importantly, it is a typical
measurement request graph due to the characteristics of
today’s distributed systems. For example, the two clusters
in the graph can represent viewers of two peer-to-peer
video streaming channels, or downloaders of two files, with
only a few users simultaneously participating in more than
one streaming channel or download session. This type of

topology where channels or downloads are largely, but not
completely, disjoint has often been observed in real appli-
cation scenarios [19], [20]. Many video streaming systems
have an option, picture-in-picture, that allows viewing one
channel at a high resolution, while viewing small window(s)
showing (an)other channel(s).

Evaluation on this sample graph illustrates that, even for
small values of f (stable results appear at f = 5), the
correct subgraphs are identified as candidates for inference.
Fig. 4 shows the average value of s above which the correct
subgraphs benefiting from inference are identified in every
case, for increasing values of f . The plot illustrates that, as
expected, s scales sub-linearly with f (at about 0.24f for
the plotted values of f). For each value of f , the minimum
and maximum s in our experiments where correct subgraphs
are identified are shown. It can be seen that the values of s
are stable, and fall within a narrow range of about 0.02f .

0
20
40
60
80

100
120
140

0 100 200 300 400 500

s

f

Min-Max Range
Average

Figure 4. Number of forests (f) versus the threshold
score (s) required to identify correct inference compo-
nents, averaged over 10 runs. Min. and max. s also
plotted.

Computing the optimal inference groups for any given
graph is NP-hard, as discussed in Section 4. Computation
of optimal inference groups on this 17-node topology takes
about 450 ms on a 1.8 GHz processor; by comparison, our
spanning forest algorithm takes about 5 ms. As the graph
grows, this difference in computation time becomes larger.
For a graph of only 32 nodes, the optimal algorithm requires
14 hours and 52 minutes of processing, while the running
time of our algorithm is still a few milliseconds.

The graph in Fig. 3 is an interesting case study, but
presents a trivial case for our algorithm, since both edges
of the bridge between the two fully connected subgraphs
will always have a score equal to f . To further explore the
relationship between f , s, and k, we build a number of
graphs on the pattern in Fig. 3, but with a variable number
of bridges between the two fully connected subgraphs. Each
bridge is configured analogous to the white node in Fig. 3,
having two adjacent edges, one rooted in each of the fully
connected subgraphs. No pair of nodes is directly connected
by more than one bridge. Fig. 5 illustrates the average values
of s bracketing the correct inference recommendation for
f = 50 and k = 3. For reference, s = 17 = f/k is

10

20

30

40

50

0 2 4 6 8 10 12 14 16

s

Number of bridges

s range
f/k = 17

Figure 5. Number of bridges between fully-connected
subgraphs vs. range of s values yielding an optimal
recommendation.

depicted as well. This graph shows that, as each bridge
becomes relatively lighter in weight for a given value of
f (due to the effect of additional bridges between the fully
connected subgraphs), the range of values of s yielding a
correct recommendation converge toward a value near f/k.
As mentioned above, the total savings in measurements
compared to full-graph inference grows linearly with the
number of bridges in the graph, at kn−(2km+2×bridges),
or one edge per bridge for k = 3. The value 2km in this
computation represents inference on the two fully connected
subgraphs of m nodes each. In the graph having 16 such
bridges, this represents a savings of 16 measurements over
full-graph inference, or a 17% savings in measurements
performed (80 versus 96 measurements).

5.2. Selection by Degree

A straightforward approach to identifying hosts which
could benefit from inclusion in a kn-cost inference is to
select all hosts which have a degree greater than or equal to
k. While preliminary experiments show that this approach
works well on many graphs, there exist graphs for which it
fails.

Figure 6. Highly connected nodes separated by
sparsely connected nodes.

One graph structure for which this method fails is depicted
in Fig. 6. This graph consists of a number of highly
connected nodes separated by nodes of low degree, such

that there exist no large clusters of highly connected nodes.
A simple selection on node degree for k = 3 will select the
nodes marked in black for inference, despite the fact that this
yields a larger total number of measurements than direct
measurement. In contrast, employing our algorithm across
two by two and three by three lattices of the structure in the
dotted box from Fig. 6 (arranged as in Fig. 6, as well as
short linear “chains” of the same structure attached between
the black nodes of degree six) yields the optimal result of
no vertices recommended for inference for values of f as
low as 35, with s = f/k = 11. As expected, decreasing
f decreases the accuracy of the algorithm, and for smaller
values of f , some vertices are recommended for inference
for values of s ≤ f/k.

5.3. UUSee Topologies

The Magellan project [19] characterized the connections
between peers of the UUSee live streaming video service,
which is highly popular in China. They found that the
UUSee graphs exhibit small-world properties. A small-world
graph is characterized by two important properties: (1) a
small average path length between any pair of nodes, and (2)
a relatively large clustering coefficient, indicating that there
is high connectivity between neighboring nodes. Studies of
the Gnutella peer-to-peer network have also shown that it
exhibits small-world characteristics in client peering [20].

We generate topologies using the small-world topology
generator described by Jin and Bestavros in [21]. We use the
node degree distribution information of the UUSee service
reported in [19], and set the local preference parameter p
to 0.5.7 Magellan found that the topology representing all
UUSee channel viewers included around 100,000 viewers,
with approximately one third of these being stable. The
average path length in the UUSee topologies of stable
viewers of all channels was close to 5 hops, while the
clustering coefficient was close to 0.3, which is more than an
order of magnitude higher than typical clustering coefficients
of random graphs. The graphs of the different channels (up
to 800 channels) were reported to be largely disjoint [19].

We generated UUSee-inspired topologies to correspond to
viewers of a typical UUSee channel. In [19], one channel
was reported to have about 2500 viewers. We validated the
clustering coefficient of our graphs, which was found to
be approximately 0.25, and the average path length which
was close to 2.3. Each UUSee-inspired topology used in
our experiments in this section had 2500 vertices and in
the neighborhood of 53,000 edges. We also experimented
with graphs representing multiple channels, and with smaller
topologies (results not reported here for brevity).

Fig. 7 depicts the number of measurements required to
fulfill the mixture of inference and direct measurement rec-

7. We examined a number of graphs having values of p between 0.05

and 1.0 (in increments of 0.05), and the results were consistent.

7400

7450

7500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

k
=

3

f = 20
f = 50

f = 100

12100

12300

12500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1N
um

be
r

of
ed

ge
s

k
=

5

30000

34000

38000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

k
=

1
5

s/f

Figure 7. UUSee topologies: Total measurements taken
(edges). x axis gives s/f . A vertical line is marked on
each plot at x = 1/k.

ommended by our algorithm on UUSee-inspired topologies.
Each plot is an average over ten random UUSee topologies.
The y axis of these plots is truncated; for very small
values of s, no inference is recommended or inference is
recommended on very small clusters of vertices, and thus
the number of edges in the resulting graph approaches the
53,000 edges of the original topology. The figure illustrates
substantial savings over the original 53,000-edge topology,
and increasing savings over performing inference on the
entire graph as k increases. The number of edges is slightly
lower with larger values of f , validating the hypothesis that
increasing f increases algorithm accuracy, at the cost of
increased computation time.

As seen in the figure, for each value of k, the total number
of measurements required falls rapidly as s approaches
somewhat less than f/k. The number of measurements
climbs toward kn as s approaches f and the algorithm
recommends that nearly all vertices participate in inference.
The minimum number of resulting measurements occurs for
all three values of k (as well as other values of k not
depicted here) at a value of s slightly smaller than f/k.
This coincides with the finding of Section 5.1, where s of at
least 0.24f yielded correct results on the synthetic topology
with one bridge for k = 3. The result also agrees with the

discussion in Section 4.2, suggesting that s must increase
with increasing values of f , and decrease with increasing
values of k.

Computation time for our algorithm is manageable for
these topologies. For f = 20, computation on the same
1.8 GHz processor as referenced in Section 5.1 takes about
six seconds. For f = 50, computation takes about 15 sec-
onds, and f = 100 takes about 30 seconds. As discussed in
Section 4.3, this is tractable computation in comparison to
the optimal algorithm for the NP-hard problem. However,
it underscores the need for incremental computation with
on-demand measurement requests.

5.4. Uniform Random Edge Placement

In this section, we consider graphs which have uniform
random edge placement. For each pair of vertices in the
graph, an edge is present with probability 0 < p ≤ 1.
Such graphs exhibit roughly uniform edge density across
all vertices and all subsets of vertices, and, as such, tend
to either not benefit from inference at all, or benefit from a
full-graph inference including all vertices.

A graph created in this fashion with the same number
of vertices and a similar number of edges to the UUSee
topologies in Section 5.3 has 2,500 vertices and p = 0.017.
This graph is uniformly sufficiently dense that for all values
of s greater than about 0.05f across a broad range of
values for k, our algorithm (correctly) recommends full-
graph inference.

1000

2000

3000

4000

5000

0.002 0.004 0.006 0.008 0.01

N
um

be
r

of
ed

ge
s

p

Graph edges
Recommended inference

Full-graph inference

Figure 8. Uniform random graphs: Measurements taken
as edge density increases for a graph of 1,000 nodes.

Fig. 8 shows the results of our algorithm on 1,000 node
graphs with uniform random edge placement across a range
of values of p. The x-axis gives the probability p that any
of the possible n(n− 1)/2 edges appears in the graph, and
the y-axis gives the measurement edges (with k = 3) for no
inference, full-graph inference, and recommended inference.
The plot illustrates the transition from edge density less
than full-graph inference to density greater than full-graph
inference. The value of s is selected, in this example, to be
f/k with f = 50 and hence s = 17. As depicted in the
figure, our algorithm correctly recommends mostly direct
measurements for graphs with low density. The algorithm

rapidly converges toward full-graph inference for graphs
with higher density, saving only a few measurements here
and there. In between, there is a brief region of over-
estimation, where inference is recommended for borderline
regions of the graph which do not quite have edge densities
meriting inference.8

6. Conclusions and Future Work

In this paper, we have studied the network load induced by
inference mechanisms, and presented an efficient algorithm
to identify subgraphs where replacing direct measurements
with inference is most advantageous. Our results show that
we achieve significant measurement savings with small-
world graphs, which represent popular peer-to-peer and dis-
tributed system measurement request patterns. We demon-
strate the ability to identify regions of measurement graphs
which see no cost benefit from inference, and accordingly
use more accurate direct measurements in those regions. We
analyze the performance and configuration of our algorithm,
and make recommendations for its discretionary parameter
s based both on theory and empirical results.

Our future work plans include conducting additional ex-
periments on graphs of other sizes, structures, and clus-
tering properties. We will also investigate the implemen-
tation and evaluation of incremental computations, e.g., as
discussed in [16]. Finally, we plan to investigate specific
inference mechanisms with different linear constants, e.g.,
the reference-based mechanisms [9], [8], [7], and include
their startup costs in our analysis.

References

[1] J. Ledlie, P. Pietzuch, M. Mitzenmacher, and M. Seltzer,
“Network coordinates in the wild,” in Proc. of NSDI, Apr.
2007.

[2] N. Spring, D. Wetherall, and T. Anderson, “ScriptRoute:
A public internet measurement facility,” in Proc. of USITS,
2002.

[3] P. Yalagandula, P. Sharma, S. Banerjee, S. Basu, and S.-J.
Lee, “S 3: A scalable sensing service for monitoring large
networked systems,” in Proc. of INM, Sep. 2006.

[4] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Ander-
son, A. Krishnamurthy, and A. Venkataramani, “iPlane: An
information plane for distributed services,” in Proc. of OSDI,
Nov. 2006, pp. 367–380.

[5] P. Calyam, C. Lee, E. Ekici, M. Haffner, and N. Howes, “Or-
chestration of network-wide active measurements for support-
ing distributed computing applications,” IEEE Transactions
on Computers, vol. 56, no. 12, Dec. 2007.

8. Note that the entire plot represents 0.0015 ≤ p ≤ 0.01, and hence
many of the graphs toward the lower end of the plot are disconnected.

[6] E. Blanton, S. Fahmy, and S. Banerjee, “Resource manage-
ment in an active measurement service,” in Proc. of the IEEE
Global Internet Symposium, Apr. 2008.

[7] T. S. E. Ng and H. Zhang, “Towards global network position-
ing,” in Proc. of ACM Workshop on Internet Measurement,
2001, pp. 25–29.

[8] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi:
A decentralized network coordinate system,” in Proc. of
SIGCOMM, 2004, pp. 15–26.

[9] W. Theilmann and K. Rothermel, “Dynamic distance maps
of the internet,” in Proc. of INFOCOM, Mar. 2001.

[10] M. Pias, J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatti,
“Lighthouses for scalable distributed location,” in Proc. of
Workshop on Peer-to-Peer Systems, 2003.

[11] Y. Chen, D. Bindel, H. Song, and R. Katz, “An algebraic ap-
proach to practical and scalable overlay network monitoring,”
in Proc. of SIGCOMM, Aug. 2004.

[12] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and
L. Zhang, “IDMaps: A global internet host distance service,”
IEEE/ACM Transactions on Networking (ToN), vol. 9, Oct.
2001.

[13] H. H. Song, L. Qiu, and Y. Zhang, “NetQuest: a flexible
framework for large-scale network measurement,” in Proc. of
SIGMETRICS, 2006, pp. 121–132.

[14] I. A. Stewart, “Finding regular subgraphs in both arbitrary
and planar graphs,” Discrete Applied Mathematics, vol. 68,
no. 3, pp. 223–235, Jul. 1996.

[15] W. Hoeffding, “Probability inequalities for sums of bounded
random variables,” Journal of the American Statistical Asso-
ciation, vol. 58, pp. 13–30, Mar. 1963.

[16] J. Holm, K. de Lichtenberg, and M. Thorup, “Poly-
logarithmic deterministic fully-dynamic algorithms for con-
nectivity, minimum spanning tree, 2-edge, and biconnectiv-
ity,” Journal of the ACM, vol. 48, no. 4, pp. 723–760, Jul.
2001.

[17] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig,
“Sparsification–a technique for speeding up dynamic graph
algorithms,” Journal of the ACM, vol. 44, pp. 669–696, Sep.
1997.

[18] G. N. Frederickson, “Ambivalent data structures for dynamic
2-edge-connectivity and k smallest spanning trees,” SIAM
Journal on Computing, vol. 26, pp. 484–538, Apr. 1997.

[19] C. Wu, B. Li, and S. Zhao, “Magellan: Charting large-scale
peer-to-peer live streaming topologies,” in Proc. of ICDCS,
2007.

[20] D. Stutzbach, R. Rejaie, and S. Sen, “Characterizing unstruc-
tured overlay topologies in modern P2P file-sharing systems,”
in Proc. of IMC, Oct. 2005.

[21] S. Jin and A. Bestavros, “Small-world characteristics of inter-
net topologies and multicast scaling,” in Proc. of IEEE/ACM
MASCOTS, 2003.

