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Abstract

Increased performance, fairness, and security remain important goals for service providers. In

this work, we design an integrated distributed monitoring, traffic conditioning, and flow control sys-

tem for higher performance and security of network domains. Edge routers monitor (using tomogra-

phy techniques) a network domain to detect quality of service (QoS) violations– possibly caused by

underprovisioning– as well as bandwidth theft attacks. To bound the monitoring overhead, a router only

verifies service level agreement (SLA) parameters such as delay, loss, and throughput when anoma-

lies are detected. The marking component of the edge router uses TCP flow characteristics to protect

“fragile” flows. Edge routers may also regulate unresponsive flows, and may propagate congestion in-

formation to upstream domains. Simulation results indicate that this design increases application-level

throughput of data applications such as large FTP transfers; achieves low packet delays and response

times for Telnet and WWW traffic; and detects bandwidth theft attacks and service violations.

Keywords– Quality of Service (QoS), differentiated services, network monitoring, traffic conditioning,

congestion control

1 Introduction

The success of the Internet has increased its vulnerability to misuse and performance problems. Internet

service providers are now faced with the challenging task of continuous monitoring of their network to en-

sure that security is maintained, and customers are obtaining their agreed-upon service. Service providers
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must also identify when their networks need to be re-configured or re-provisioned, and must obtain the best

performance they can out of these networks. Based upon these requirements, our primary objective in this

work is twofold: (i) (i) achieving higher user-perceivable quality of service (QoS) and overall resource uti-

lization in a network domain, and (ii) flagging under-provisioning problems and network misuse. Towards

this objective, we design edge routers that combine (i) low-overhead monitoring, together with (ii) traffic

conditioning at network domain edges, and (iii) unresponsive flow control, in order mitigate misuse, con-

gestion, and unfairness problems in Internet domains. Monitoring network activity has the additional benefit

of detecting denial of service (DoS) and bandwidth theft attacks, which have become an expensive problem

in today’s Internet.

Our integrated monitoring, conditioning and control techniques will be illustrated on the differentiated

services (diff-serv) architecture [4]. Diff-serv is a simple approach to enhance quality of service (QoS) for

data and multimedia applications in the Internet. In diff-serv, complexity is pushed to the boundary routers

of a network domain to keep core routers simple. The edge routers at the boundary of an administrative

domain shape, mark, and drop traffic if necessary. The operations are based on Service Level Agreements

(SLAs) between adjacent domains. The SLA defines what levels of service a user can expect from a service

provider. The SLA clarifies the goals of both parties, and ensures that both of them abide by the agreement.

Our design comprises three primary components. The monitoring component infers possible attacks

and SLA violations. The traffic conditioning component marks TCP traffic, using basic knowledge of TCP

operation. The unresponsive flow control component regulates traffic entering a domain, and conveys con-

gestion information to upstream domains. These three edge router components, and the flow of data and

control among them, are depicted in Figure 1. Our focus when designing each component will be on scala-

bility and low overhead. We now outline the operation of each component.
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Figure 1: Monitoring, conditioning, and flow control components in an edge router.
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SLA Monitoring Component. QoS-enabled networks (e.g., differentiated services networks) are vul-

nerable to different types of attacks from traditional IP network domains. For example, users may inject

or re-mark traffic with high QoS requirements, which may cause other users to have lower throughput, or

higher delay and packet loss. We define anattackto be an incident when a user violates his/her SLA or re-

marks packets to steal bandwidth. We need to flag such SLA violations or bandwidth theft attacks. Towards

this end, we will extend and exploit network tomography techniques that use end-to-end measurements to

infer internal domain behavior. Although network tomography has witnessed a flurry of research activity in

the past few years, these new tomography results have not been integrated with the more mature research on

monitoring and control. In contrast, we will use network tomography techniques such as per-segment loss

inference mechanisms [12] to monitor and control network domains.

Traffic Conditioning Component. At the edge of a network domain, traffic conditioners can utilize

knowledge of TCP characteristics to give priority to “critical” packets, and mitigate TCP bias to flows with

short round trip times (RTTs). Such intelligent conditioning functions, however, have traditionally required

maintaining per-flow state information. While edge routers between a stub domain and a transit domain

do not typically handle very large numbers of flows, many edge routers, such as Internet Exchange points

among peering domains, are highly loaded. To address this problem, we will design a conditioner that only

uses packet header information instead of stored state when possible, and employs replacement policies to

control the amount of state maintained.

Congestion Control Component.Congestion collapse from undelivered packets is an important prob-

lem in the Internet [19]. Congestion collapse occurs when upstream bandwidth is consumed by packets

that are eventually dropped downstream. This can be caused by unresponsive flows that do not reduce their

transmission rates in response to congestion. The congestion collapse problem can be mitigated using im-

proved packet scheduling or active queue management [5, 33], but such open loop techniques do not affect

congestion caused by unresponsive flows in upstream domains. To address this important problem, we will

design a mechanism to control the rate at which packets enter a network domain to the rate at which packets

leave the domain. Congestion is detected when many high priority packets are being dropped [39]. Edge

routers which detect or infer such drop can therefore regulate unresponsive flows. This results in better

performance for users, and better overall resource utilization in the network domain.

We conduct a series of simulation experiments to study the behavior of all three components of this

framework. Our simulation results show that TCP-aware edge router marking improves throughput of

greedy applications like large FTP transfers, and achieves low packet delays and response times for Telnet

and WWW traffic. We also demonstrate how attacks and unresponsive flows alter network delay and loss
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characteristics, and hence can be detected by our monitoring component, and controlled by the congestion

control component.

The remainder of this paper is organized as follows. Section 2 gives an overview of the differentiated

services architecture– which we use as an underlying quality of service (QoS) framework– and discusses

previous results related to the components of our proposed edge routers. Our network monitoring and loss

inference techniques for attack detection are discussed in section 3. Section 4 discusses the design of the

TCP-aware traffic conditioning component. Section 5 explains how to detect and control unresponsive

flows during congestion. Our simulation setup for performance evaluation is described in section 6. Section

7 discusses our simulation results. We conclude in section 8.

2 Background and Related Work

As previously mentioned, we use the diff-serv framework as the underlying QoS approach. In diff-serv net-

works, traffic enters a domain at aningressrouter and leaves a domain at anegressrouter. An ingress router

is responsible for ensuring that the traffic entering the domain conforms to the SLA with the upstream do-

main. An egress router may perform traffic conditioning functions on traffic forwarded to a peering domain.

In the core of the network, Per Hop Behaviors (PHBs) achieve service differentiation. The current diff-serv

specification defines two PHB types: Expedited Forwarding [26] and Assured Forwarding (AF) [24]. AF

provides four classes (queues) of delivery with three levels of drop precedence (DP0, DP1, and DP2) per

class. The Differentiated Services Code Point (DSCP), contained in the IP header DSFIELD/ToS field, is

set to mark the drop precedence. When congestion occurs, packets marked with higher precedence (e.g.,

DP2) must be dropped first.

Providing QoS in diff-serv networks has been extensively studied in the literature. Clark and Fang

introduced RIO in 1998 [10], and developed the Time Sliding Window (TSW) tagger. They show that

sources with different target rates can achieve their targets using RIO even for different Round Trip Times

(RTTs), whereas simple RED routers cannot. Assured Forwarding is studied by Ibanez and Nichols in [25].

They use a token bucket marker and show that target rates and TCP/UDP interaction are key factors in

determining throughput of flows. Seddigh, Nandy and Pieda [36] also show that the distribution of excess

bandwidth in an over-provisioned network is sensitive to UDP/TCP interactions. Lin, Zheng and Hou [28]

propose an enhanced TSW profiler, but their solution requires state information to be maintained at core

routers.

In the next three subsections, we discuss work related to network monitoring and tomography, traffic
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conditioning, and congestion collapse solutions, which comprise the three components of our proposed

design.

2.1 Network Tomography and Violation Detection

Since bottleneck bandwidth inference techniques such as packet pairs were proposed in the early 1990s,

there has been increased interest in inference of internal network characteristics (e.g., per-segment delay,

loss, bandwidth, and jitter) using correlations among end-to-end measurements. This problem is called

network tomography. Recently, Duffield et al [12] have used unicast packet “stripes” (back-to-back probe

packets) to infer link-level loss by computing packet loss correlation for a stripe at different destinations.

This work is an extension of loss inference with multicast traffic, e.g., [1, 7]. We develop a tomography-

based, low overhead method to infer delay, loss, and throughput and detect problems that alter the internal

characteristics of a network domain. The main contribution of the monitoring component of our work is to

utilize existing network tomography techniques in novel ways. We also extend these tomography techniques

for QoS networks.

In addition to tomography work, a number of network monitoring techniques have been recently pro-

posed in the literature. In efficient reactive monitoring [11], global polling is combined with local event

driven reporting to monitor IP networks. Breitbart et al [6] use probing-based techniques where path la-

tencies and bandwidth are measured by transmitting probes from a single point of control. They find the

optimal number of probes using vertex cover solutions. Recent work on SLA validation [8] uses a histogram

aggregation algorithm to detect violations. The algorithm measures network characteristics like loss ratio

and delay on a hop-by-hop basis and uses them to compute end-to-end measurements. These are then used

in validating the end-to-end SLA requirements. All of these techniques involve core routers in their moni-

toring. In contrast, our work pushes monitoring responsibilities to the edge routers. We use an Exponential

Weighted Moving Average (EWMA) for delay, and an average of several samples for loss as in RON [3],

since it is both flexible and accurate.

2.2 Traffic Conditioning

Edge routers perform traffic conditioning and control functions. The edge router may alter the temporal

characteristics of a stream to bring it into compliance with a traffic profile specified by the network adminis-

trator [4]. A traffic meter measures and sorts packets into precedence levels. Marking, shaping, or dropping

decisions are based upon the measurement result.
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Marking: Markers can mark packets deterministically or probabilistically. A probabilistic packet

marker, such as Time Sliding Window marker [14], obtains the current flow rate,measuredRate, of a user

from the meter. The marker tags each packet based on thetargetRatefrom the SLA and the current flow

rate. An incoming packet is marked asIN profile (low probability to drop) if the corresponding flow has

not reached the target rate, otherwise the packet is marked as high drop precedence with probability1 � p,

wherep is given by equation (1):

p =
measuredRate� targetRate

measuredRate
(1)

Shaping/Dropping: Shaping reduces traffic variation and provides an upper bound for the rate at

which the flow traffic is admitted into the network. A shaper usually has a finite-size buffer. Packets may be

discarded if there is insufficient space to hold the delayed packets. Droppers drop some or all of the packets

in a traffic stream in order to bring the stream into compliance with the traffic profile. This process is know

aspolicing the stream.

A number of recent studies explore the design of more sophisticated traffic conditioners. Fang et al [14]

proposed the Time Sliding Window Three Color Marker (TSW3CM), which we use as a standard traffic

conditioner. Adaptive packet marking [16] uses a Packet Marking Engine (PME), which can be a passive

observer under normal conditions, but becomes an active marker at the time of congestion. Yeom and

Reddy [40] also convey marking information to the sender, so that it can slow down its sending rate in the

case of congestion. This requires modifying the host TCP implementation, which is difficult to deploy.

Feroz et al [18] propose a TCP-Friendly marker. The marker protects small-window flows from packet loss

by marking their traffic as IN profile. In this paper, we develop similar intelligent conditioning techniques

with lower overhead.

An important problem with TCP is its bias to connections with short round trip times. Nandy et al

design RTT-aware traffic conditioners [32] which adjust packet marking based on RTTs, to mitigate TCP

RTT bias. Their conditioner is based on the steady state TCP behavior as reported by Matthis et al in [30].

Their model, however, does not consider time-outs which we consider in this paper.

2.3 Congestion Collapse

As previously discussed, congestion collapse occurs when upstream bandwidth is consumed by packets that

are eventually dropped downstream. A number of solutions have been proposed to mitigate this problem in

Internet domains. Seddigh et al [37] propose separating TCP (responsive to congestion) and UDP (may be

unresponsive) to control congestion collapse caused by UDP. Albuquerque et al [2] propose a mechanism,
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Network Border Patrol, where border routers monitor all flows, measure ingress and egress rates, and ex-

change per-flow information with all edge routers periodically. The scheme is elegant, but its overhead is

high. Chow et al [9] propose a similar framework, where edge routers periodically obtain information from

core routers, and adjust conditioner parameters accordingly. Aggregate-based Congestion Control (ACC)

detects and controls high bandwidth aggregate flows [29].

In the Direct Congestion Control Scheme (DCCS) [39], packet drop of packets with thelowest drop

priority is tracked by core routers. Dropping packets with lowest drop priority is an indication that there is

severe congestion in the network. The core routers send the load information to the edge routers only during

congestion. We employ a similar methodology for detecting congestion and controlling unresponsive flows.

However, our proposed approach has lower storage overhead and includes a mechanism to avoid congestion

collapse. Core router participation is optional.

In the next three sections, we discuss the three components of our proposed edge router design.

3 Tomography-based Violation Detection Component

An attacker can impersonate a legitimate customer of a service provider by spoofing its identity. Network

filtering [17] can detect spoofing if the attacker and the impersonated customer are in different domains, but

the attacks may proceed unnoticed otherwise. QoS domains support low priority classes, such as best effort,

which are not controlled by edge routers. The service provider should ensure that high priority customers

are getting their agreed-upon service, so that the network can be re-configured or re-provisioned if needed,

and attackers which bypass or fool edge controls are prevented. In case of distributed DoS attacks, flows

from various ingress points are aggregated as they approach their victim. Monitoring can control such high

bandwidth aggregates at the edges, and propagate attack information to upstream domains [22].1

We employ network tomography – an approach to infer the internal behavior of a network purely based

on end-to-end measurements. We use an edge-to-edge measurement-based loss inference technique to detect

service violations and attacks in a QoS domain. The measurements do not involve any core router in order

to scale well. We measure SLA parameters such as delay, packet loss, and throughput to ensure that users

are obtaining their agreed upon service. Delay is defined as the edge-to-edge latency; packet loss is the ratio

of total flow packets dropped in the domain2 to the total packets of the same flow which entered the domain;
1As with any detection mechanism, the attackers can attack the mechanism itself, but the cost to attack our distributed monitoring

mechanism is higher than the cost to inject or spoof traffic, or bypass a single edge router.
2a flow can be a micro flow identified by source and destination addresses and ports and protocol identifier, or an aggregate of

several micro flows.

7



and throughput is the total bandwidth consumed by a flow inside a domain. If a network domain is properly

provisioned and no user is misbehaving, the flows traversing the domain should not experience excessive

delay or loss. Although jitter (delay variation) is another important SLA parameter, it is flow-specific and

therefore, not suitable to use in network monitoring. In this section, we describe edge-to-edge inference of

delay, loss and throughput, and a violation detection mechanism.

3.1 Delay Measurements

Delay bound guarantees made by a provider network to customer flows are for the delays experienced by the

flows between the ingress and egress edges of the provider domain. For each packet traversing an ingress

router, the ingress copies the packet IP header into a new packet with a certain pre-configured probability

pprobe. The ingress encodes the current time into the payload and marks the protocol identifier field of the

IP header with a new value. The egress router recognizes such packets and removes them from the network.

Additionally, the egress router computes the packet delay for flowi by subtracting the ingress time form the

egress time. (We assume NTP is used to synchronize the clocks.) The egress then sends the packet details

and the measured delay to an entity we call theSLA monitorwhich typically resides at an edge router. At the

monitor, the packets are classified as belonging to customerj, and the average packet delay of the customer

traffic is updated using an exponential weighted moving average (EWMA) (we use a current sample weight

0.2). If this average packet delay exceeds the delay guarantee in the SLA, we conclude that this may be an

indication of an SLA violation.

3.2 Loss Inference

Packet loss guarantees made by a provider network to a customer are for the packet losses experienced by its

conforming traffic inside the provider domain. Measuring loss by observing packet drop at all core routers

and communicating them to the SLA monitor at the edge imposes significant overhead. We use packet

stripes [12] to infer link-level loss characteristics inside the domain. A series of probe packets with no delay

between the transmission of successive packets, or what is known as a “stripe,” is periodically transmitted.

For a two-leaf tree spanned by nodes0, k, R1, R2, stripes are sent from the root0 to the leaves to estimate

the characteristics of three links (Figure 2). For example, the first two packets of a 3-packet stripe are sent

to R2 and the last one toR1. If a packet reaches a receiver, we can deduce that the packet has reached

the branch pointk. By monitoring the packet arrivals atR1, R2 and both, we can write equations with

three known quantities and estimate the three unknown quantities (loss rates of links0 ! k, k ! R1 and

k ! R1) by applying conditional probability definitions, as discussed in [12]. We combine estimates of
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several stripes to limit the effect of non-perfect correlation among the packets in a stripe. This inference

technique extends to trees with more than 2 leaves and more than 2 levels [12].

0

k

R R21

Figure 2: Binary tree to infer per-segment loss from source0 to receiversR1 andR2

We extend this end-to-end unicast probing scheme to routers with multiple active queue management in-

stances, e.g., 3-color RED [20], and develop heuristics for the probing frequency and the particular receivers

to probe to ensure good domain coverage. Assured forwarding queues use three drop precedences referred

to as green, yellow, and red. SupposePred is the percentage ofred packets accepted (not dropped) by the

active queue. We define percentages for yellow and green traffic similarly, and show how these percentages

are computed in the appendix. Link loss can be inferred by subtracting the transmission probability from 1.

If Lg, Ly, andLr are the inferred losses of green, yellow and red traffic respectively, loss can be expressed

as:

Lclass =
ngPgreenLg + nyPyellowLy + nrPredLr

ng + ny + nr
(2)

whereni is number of samples taken fromi-colored packets. However, when loss of green traffic is zero,

we take the average of yellow and red losses. When the loss of yellow traffic is also zero, we report only

loss of red probes. We reduce the overhead of loss inference by probing the domain links with high delay

only, as determined by the delay measurement procedure. We also measure throughput by probing egress

routersonlywhen delay and loss are excessive. This helps pinpoint the user or aggregate which is consuming

excessive bandwidth, and causing other flows to receive lower quality than their SLAs.

3.3 Violation and Attack Detection

When delay, loss, and bandwidth consumption exceed the pre-defined thresholds, the monitor concludes

there may be an SLA violation or attack. Excessive delay is an indication of abnormal conditions inside the

network domain. If there are losses for the premium traffic class, or if the loss ratios of assured forwarding

traffic classes exceed certain levels, a possible SLA violation is flagged. The violation can be caused by

aggressive or unresponsive flows, denial of service attacks, flash crowds, or network under-provisioning. To

detect distributed DoS attacks, the set of links with high loss are identified. If high bandwidth aggregates
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traversing these high loss links have the same destination IP prefix, there is either a DoS attack or a flash

crowd, as discussed in [29].

Decisions are taken by consulting the destination entity. Jung et al analyze the characteristics of flash

crowds and DoS attacks in [27]. Their work reveals several distinguishable features between these two.

For example, the client distribution of a flash crowd event follows popular distribution among ISPs and

networks, however, this is not true for a DoS attack. The other distinguishable features are per client request

rate, overlap of clusters a site sees before and after the event, and popularity distribution of the file accessed

by the clients. Using these characteristics, the monitor can decide whether it is a DoS attack or a flash crowd.

If this is determined to be an attack, the appropriate ingress routers are notified and the offending user traffic

is throttled, as discussed in section 5.

4 Traffic Conditioning Component

We incorporate several techniques in the traffic conditioning component to improve performance of appli-

cations running on top of TCP. The key idea behind these techniques is to protect critical TCP packets from

drop, without requiring large state tables to be maintained. We protect SYN packets (as indicated in the TCP

header) by giving them low drop priority (DP0).3 Since TCP grows the congestion window exponentially

until it reaches the slow start threshold,ssthresh, and the congestion window is reduced to 1 or half of the

ssthreshfor time-outs or packet loss, we also protect small window flows from packet losses by marking

them with DP0, as proposed in [18]. Edge routers use sequence number information in packet headers in

both directions to determine if the window is small. ECN-Capable TCP may reduce its congestion window

due to a time-out, triple duplicate ACKs, or in response to explicit congestion notification (ECN) [35]. In

this case, TCP sets the CWR flag in the TCP header of the first data packet sent after the window reduction.

Therefore, we give low drop priority to a packet if the CWR or ECN bit is set. This avoids consecutive

ssthreshreductions that lead to poor performance with TCP Reno [13]. We also mark packets inversely

proportionally to the square of the flow requested rates if proportional sharing of excess bandwidth is re-

quired [32]. The marker avoids marking high drop priority in bursts, in order to work well with TCP Reno,

as proposed in [18].

An optional feature to mitigate the TCP short RTT bias is to mark based on RTT and RTO, if such

information is available to the edge router. To understand how RTT and RTO information can be used to
3With SYN DoS attacks, this may be unfavorable. Therefore, if a mechanism to detect SYN attacks is included in the router,

this option can be turned off as soon as a SYN attack is detected.
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increase fairness, we review two TCP throughput models. Equation (3) shows that, in a simple TCP model

that considers only duplicate ACKs [30], bandwidth is inversely proportional to RTT whereMSS is the

maximum segment size andp is the packet loss probability:

BW / MSS

RTT
p
p

(3)

An RTT-aware marking algorithm based on this model (proposed in [32]) works well for a small number of

flows because equation (3) accurately represents the fast retransmit and recovery behavior whenp is small.

We have observed that for a large number of flows, short RTT flows time out because only long RTT flows

are protected by the conditioner after satisfying the target rates. To mitigate this unfairness, we use the

throughput approximation by Padhye et al [34]:

BW / MSS

RTT
q

2bp
3
+ To�min(1; 3

q
3bp
8
)p(1 + 32p2)

(4)

whereb is the number of packets acknowledged by a received ACK, andTo is the time-out length. Designing

an RTT-aware traffic conditioner using equation (4) is more accurate than using equation (3) because it

considers time-outs. Simplifying this equation, we compute the packet drop ratio between two flows,� as:

�2 =
�RTT1
RTT2

�2 � To1

To2
(5)

whereRTTi andToi are the RTTs and timeouts (respectively) of flowi [21]. If the measured rate is beyond

the target rate of a flow, the marker marks the packets as DP0 with probability (1� p2) wherep is defined in

equation (1). The unmarked packets are out-of-profile (DP1 and DP2) packets. These packets are directly

related to the packet drop probabilities at the core. This means that packet drop at the core is proportional to

the out-of-profile marked packets. Equation (5) is used to mark out of profile packets as DP1 or DP2, where

such packets will be dropped before DP0 during congestion. The RTT and RTO are estimated at the edge

routers using an algorithm similar to that specified in [32].

Each of the techniques discussed in this section has advantages and limitations. Protecting SYN, ECN,

and CWR packets, and marking according to the target rate do not need to store per flow information and are

simple to implement. On the other hand, protecting small window flows and marking according to the RTT

and RTO values requires maintaining and processing per flow information. To bound state overhead at the

edge routers, we store per flow information at the edge only for a certain number of flows based on available

memory. The edge router uses a least recently used (LRU) state replacement policy when the number of

flows exceeds the maximum number that can be maintained. Therefore, for every flow, conditioning is based
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for For each incoming flowdo

if there is a complete state entry for this flowthen

statePresent = TRUE

Update the state table

else

statePresent = FALSE

Add the flow in the state table (replace if needed)

end if

if statePresent is TRUEthen

Use Standard conditioner plus SYN, ECN, CWR, small window, burst, RTT-RTO based marking

else

Use Standard conditioner plus SYN, ECN, and CWR based marking

end if

end for

Figure 3: Algorithm for Adaptive Traffic Conditioner

on state information if it is present. If there is no state present, conditioning only uses techniques that rely

on header information. The conditioner pseudo-code is given in Figure 3.

5 Congestion Control Component

This section describes the congestion control component of the edge router. This component detects and

controls unresponsive flows, i.e., flows that do not reduce their rates as a response to congestion. As previ-

ously discussed, SLA monitors can inform edge routers of congestion inside a domain. A shaping algorithm

at the edge routers can therefore control unresponsive flows at the time of congestion. In addition, ingress

routers of a domain may propagate congestion information to theegress routers of upstream domains. A

stub domain that is connected to only end users does not propagate this information to the users, instead,

controls the incoming flows to conform with the service level agreements.
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5.1 Optional Core Router Detection

In section 3, we have shown how tomography-based loss inference techniques can be applied to detect per-

segment losses using edge-to-edge probes. An alternative strategy is to track excessive drop of only the

high priority (i.e., green or DP0) packets at core routers, as proposed in [39]. The core router maintains

the tuplefsource address, destination address, source port, destination port, protocol identifier, timestamp,

btlnkbwg for droppedDP0 packets. The outgoing link bandwidth at the core,btlnkbw, helps regulate the

flow. Edge routers shape more aggressively if the core has a “thin” outgoing link. The core sends this drop

information to the ingress routersonly when the total drop exceeds a local threshold (thus the flow appears

to be non-adaptive). The information is sent only during congestion, and only for the flows that are violating

SLAs. Thus, this design does not significantly reduce the scalability of the differentiated service framework.

5.2 Metering and Shaping

At the egress routers, we distinguish two types of drops: drop due to metering and shaping at downstream

routerssdrop, and drop due to congestion,cdrop (either obtained via inference as discussed in Section 3

or communicated from core to edge routers as in Section 5.1). For a particular flow, assume the bottleneck

bandwidth isbtlnkbw (as given above); the bandwidth of the outgoing link of the flow at the ingress router is

linkbw; the flow has an original profile (target rate) oftargetrate; and the current weighted average rate for

this flow iswavg. In case ofcdrop, the profile of the flow is updated temporarily (to yield ratenewprofile)

using equations (6) and (7) where0 < 
 < 1 is the congestion control aggressiveness parameter:

decrement = cdrop� packet size�max(1; 

linkbw

btlnkbw
) (6)

newprofile = max(0;min(newprofile� decrement;

wavg � decrement)) (7)

A higher value of
 speeds up convergence, but application QoS may deteriorate. A lower value makes

traffic smoother, but it takes longer to readjust the rate. The “max” term in the equation can be ignored if the

bottleneck bandwidth information cannot be obtained (i.e., tools like pathchar or Nettimer cannot be used),

or core router detection (section 5.1) is unavailable. In equation (7), the weighted average of the arrival rate

is computed using the Time Sliding Window [10] algorithm.

For sdrop, the profile is adjusted as follows:

newprofile = max(0; newprofile� sdrop� packet size) (8)
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Thenewprofile is initialized totargetrate. In the absence of drops, the router increases the adjusted

profile periodically at a certain rateincrement. The rateincrement is initialized to a constant number of

packets each time the router receives drop information, and is doubled when there is no drop, until it reaches

a thresholdwavg
f

, and then it is increased linearly. Thus, the rate adjustment algorithm follows the spirit of

TCP congestion control. At the edge, shaping is based on the current average rate and the adjusted profile.

For each incoming flow, if the current average rate is greater than the adjusted profile, unresponsive flow

packets are dropped.

6 Simulation Setup

We use simulations to study the effectiveness of our edge router design. Thens-2 simulator [31] with

the differentiated services implementation of Nortel Networks [38] is used. We use the following RED

parametersfminth, maxth, Pmaxg: for DP0 f40, 55, 0.02g; for DP1 f25, 40, 0.05g; and for DP2f10,

25, 0.1g (as suggested by [32]).wq is 0.002 for all REDs. TCP New Reno is used with a packet size of

1024 bytes and a maximum window of 64 packets. We vary the number of micro-flows (where a micro-

flow represents a single TCP/UDP connection) per aggregate from 10 to 200. We compute the following

performance metrics:

Throughput. This denotes the average bytes received by the receiver application over simulation time. A

higher throughput usually means better service for the application (e.g., shorter completion time for

an FTP flow). For the ISP, higher throughput implies that links are well-utilized.

Packet Drop Ratio. This is the ratio of total packets dropped to the total packets sent. A user can specify

for certain applications that packet drop should not exceed a certain threshold.

Packet Delay. For delay sensitive application like Telnet, the packet delay is a user metric.

Response Time.This is the time between sending a request to a Web server and receiving the response

back from the server.

7 Simulation Results

The objective of this preliminary set of experiments is to evaluate the effectiveness of the three components

of our edge router. In the next few sections, we study the performance of each component under various

conditions.
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7.1 Detecting Attacks and SLA Violations

In this section, we investigate the accuracy and effectiveness of the delay, loss, and throughput approxima-

tion methods for detecting violations discussed in section 3. We use a similar network topology to that used

in [12] as depicted in Figure 4. The violation detection mechanism works for higher link capacities and for

a larger network network topology as shown in Figure 4. Having links with capacity higher than 10 Mbps

requires more traffic to simulate an attack. Multiple domains are connected to all edges routers through

which flows enter the network domain. The flows are created from domains attached toE1, E2, E3, and

destined to the domains connected to edge routerE6, so that the linkC4 ! E6 is congested. An attack is

simulated onC4! E6 by flooding this link with an excessive amount of traffic entering through different

ingress routers. The purpose of this simulation is to show that the edge routers can detect service violations

and attacks due to flow aggregation towards a downstream domain. Many other flows are created to ensure

all links carry a significant number of flows.

We first measure delay when the network is correctly provisioned or over-provisioned (and thus experi-

ences little delay and loss). The delay ofE1 ! E6 is 100 ms;E1 ! E7 delay is 100 ms; andE5 ! E4

delay is 160 ms. Attacks are simulated on routerE6 through linksC3 ! C4 andC4 ! E6. With the

attack traffic, the average delay of theE1! E6 link increases from 100 ms to approximately 180 ms. Since

all the core links have a higher capacity than other links,C4! E6 becomes the most congested link.

Figure 5 shows the cumulative distribution function (CDF) of edge-to-edge delay for the linkE1! E6

under various traffic loads and in presence of attacks. When there is no attack, the end-to-end delay is close

to the link transmission delay. If the network pathE1 ! E6 is lightly loaded, for example with a 30%

load, the delay does not go significantly higher than the link transmission delay. Even when the path is

60% loaded (medium load in Figure 5), the edge-to-edge delay of linkE1 ! E6 is increased by less than

30%. Some instantaneous values of delay increase to as high as 50% of the link transmission delay, but

the average value does not fluctuate too much. In both cases, the network is properly provisioned, i.e., the

flows do not violate their SLAs. On the other hand, excess traffic introduced by an attacker increases the

edge-to-edge delay and most of the packets of attack traffic experience a delay 40-70% higher than the link

transmission delay (Figure 5). Delay measurement is thus a good indication of the presence of excess traffic

inside a network domain.

The frequency of delay probing is a critical parameter that affects the accuracy of the estimation. Sending

fewer probes reduces overhead but using only a few probes can produce inaccurate estimation, especially

when some of the probes are lost in the presence of excess traffic due to an attack. We have found that
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sending probes at a rate of 10-15 per second is a good choice in this experiment.

C2

C1

C4

E1
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C5

E2

Core Router

Edge Router

20 Mbps, 30 ms 

10 Mbps, 20 ms

Figure 4: Topology used to infer loss and detect service violations. All edge routers are connected to

multiple domains, and each domain has multiple hosts.
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Figure 5: Cumulative distribution function (CDF) of one way delay from E1 to E6

We demonstrate detection of such abnormal conditions using delay measurements in three scenarios

labeled “No attack”, “Attack 1”, and “Attack 2” in Figure 6. “No attack” indicates no significant traffic

in excess of capacity. This is the baseline case of proper network provisioning and traffic conditioning at

the edge routers. Attacks 1 and 2 inject more traffic into the network domain from different ingress points.

The intensity of the attack is increased during timet=15 seconds tot=45 seconds. Loss is inferred when

high delay is experienced inside the network domain. To infer loss inside a QoS network, green, yellow,

and red probes are used. We use equation (2) to compute overall traffic loss per class in a QoS network.

The loss measurement results are depicted in Figure 7. The loss fluctuates with time, but the attack causes

packet drops of 15% to 25% in the case of Attack 1 and more than 35% with Attack 2. We find that it takes

approximately 10 seconds for the inferred loss to converge to the same value as the real loss in the network.

Approximately 20 stripes per second are required to infer a loss ratio close to the actual value. For more

details on the probing frequencies and convergence of the estimations, see [22].
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Figure 7: Packet loss ratio in linkC4! E6 follows the same pattern as the edge-to-edge delay of the path

E1! E6.

Delay and loss estimation, together with the appropriate thresholds, can thus indicate the presence of

abnormal conditions, such as distributed DoS attacks and flash crowds. When the SLA monitor detects such

an anomaly, it polls edge devices for throughputs of flows. Using these outgoing rates at egress routers, the

monitor computes the total bandwidth consumption by any particular user. This bandwidth consumption is

then compared to the SLA bandwidth. By identifying the congested links and the egress routers connected

to the congested links, the downstream domain where an attack or crowd is headed is identified. Using IP

prefix matching, we determine whether many of these flows are being aggregated towards a specific network

or host. If the destination confirms this is an attack, we control these flows at the ingress routers.

7.2 Adaptive Conditioning

As discussed in section 4, TCP-aware marking can improve application QoS. We first perform several exper-

iments to study each marking technique separately and study all combinations. We find that protecting SYN

packets is useful for short-lived connections and very high degrees of multiplexing. Protecting connections
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Figure 8: Simulation topologies. All links are 10 Mbps. Capacity of the bottleneck links are altered in some

experiments.

with small window sizes (SW) contributes the most to total bandwidth gain, followed by protecting CWR

packets and SYN. SW favors short RTT connections, but it reduces packet drop ratio and time-outs for long

RTT connections as well, compared to a standard traffic conditioner. Not marking in bursts is effective for

short RTT connections. If SW is not used, Burst+CWR achieves higher bandwidth than any other combi-

nation. The RTT-RTO based conditioner mitigates the RTT-bias among short and long RTT flows. This is

because when the congestion window is small, there is a higher probability of time-outs in the case of packet

drops. Protecting packets (via DP0 marking) when the window is small reduces time-outs, especially back-

to-back time-outs. A micro flow also recovers from time-outs when RTO as well as RTT is used to mark

packets. All these marking principles are integrated together with an adaptive state replacement policy, as

given in Figure 3. We now evaluate the performance of this adaptive traffic conditioner with FTP and CBR

traffic, Telnet and WWW applications. The network hosts and routers are ECN-enabled for all experiments

in this section, since we use the ECN and CWR packet protection mechanism. Additional results can be

found in [23].

Figure 9(a) compares the bandwidth with the standard and with the adaptive (Figure 3) conditioner for

the simple topology shown in Figure 8(a). The total throughput is measured over the entire simulation

time at the receiving end. The curve labeled“Max” denotes the bandwidth when the standard conditioner

is combined with all marking techniques and stores per-flow information for all flows. We find that the

adaptive conditioner outperforms the standard one for all aggregate flows. The adaptive conditioner is

more fair (not shown) in the sense that short RTT flows do not steal bandwidth from long RTT flows and

total achieved bandwidth is close to 10 Mbps (bottleneck link speed). Therefore, with simple processing

(Figure 3), performance can be increased.
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Figure 9: Achieved bandwidth with the standard conditioner and adaptive conditioner.“Max” is the band-

width when the standard conditioner is combined with all marking techniques and stores per-flow informa-

tion for all flows.

Figure 8(b) depicts a more complex simulation topology where three domains are interconnected (all

links are 10 Mbps). The link delay between host and the edge is varied from1 to 10 ms for different hosts

connected to a domain to simulate users at variable distances from the same edge routers. Aggregate flows

are created between nodesn1 ! n8, n2 ! n9, n3 ! n4, n5 ! n6, andn7 ! n9. Thus, flows are of

different RTTs, and experience bottlenecks at different links. Not all flows start/stop transmission at the same

time: flows last from less than a second to a few seconds.C2! E4, E5! C4 andC4! E7 are the most

congested links. Figure 9(b) shows the total bandwidth gain for this topology with different conditioners.

From the figure, the adaptive conditioner performs better than the standard one, and achieves performance

close to the maximum capacity. We also analyzed the bandwidth gain of each individual aggregate flow.

The flows achieve similar bandwidth gains except for flows with extremely short RTTs. Thus, the adaptive

conditioner improves fairness between short and long RTT flows,without requiring large state tables.

When each aggregate flow contains 200 micro flows, the soft state table for the adaptive conditioner

covers only a small percentage (4.16%) of the flows passing through it. We use a table for the 50 most recent

micro-flows. Table 1 shows that the bandwidth achieved with the adaptive conditioner always outperforms

standard conditioner. Note that when critical TCP packets are protected, they are charged from the user

profile to ensure that UDP traffic is not adversely affected.

We also study performance with Telnet (delay-sensitive) and WWW (response time sensitive) applica-

tions. For the Telnet experiments, the performance metric used is the average packet delay time for each

Telnet packet. We use the topology in Figure 8(b), but capacity of theC1 ! E4 andE5 ! E7 links is

changed to 0.5 Mbps and all other link capacities are 1 Mbps to introduce congestion. We simulate 100
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Micro Standard Adaptive Max Adaptive (% flows

flows Bandwidth Bandwidth Bandwidth covered at E4)

10 12.65 12.87 12.87 41.16

50 12.18 13.84 14.20 16.66

100 11.67 13.48 14.89 8.33

200 11.77 13.61 14.91 4.16

Table 1: Bandwidth shown is in Mbps. State table size = 50 micro-flows.

Conditioner Avg response time Std Avg response time Std

(sec), first pkt dev (sec), all pkts dev

Standard 0.48 0.17 2.23 0.78

Adaptive 0.45 0.14 2.15 0.75

Table 2: Response time for WWW traffic. Number of concurrent sessions = 50

Telnet sessions among hostsn1 ! n8, n2 ! n9, n3 ! n4, n5 ! n6, andn7 ! n9. A session transfers

between 10 and 35 TCP packets. Results show that the adaptive conditioner reduces packet delay over the

standard conditioner for short RTT flows.

Since web traffic constitutes most (60%-80%) of the Internet traffic, we study our traffic conditioner

with the WWW traffic model inns-2[31]. Details of the model are given in [15]. The model uses HTTP 1.0

with TCP Reno. The servers are attached ton6, n8 andn9 in Figure 8 (b), andn1, n2 andn5 are used as

clients. A client can send a request to any server. Each client generates a request for 5 pages with a variable

number of objects (e.g., images) per page. The defaultns-2probability distribution parameters are used to

generate inter-session time, inter-page time, objects per page, inter-object time, and object size (in kB). The

network setup is same as with Telnet traffic. Table 2 shows the average response time per WWW request

received by the client. Two response times are shown in the table; one is to get the first packet and another is

to get all data. The table shows that our adaptive conditioner reduces response time over the standard traffic

conditioner. The adaptive conditioner does not change the response time significantly if the network is not

congested.

7.3 Congestion Control

We conduct experiments to demonstrate the role of the congestion control mechanism in preventing con-

gestion collapse. Figure 8(a) depicts the simple topology used to demonstrate congestion collapse due to

unresponsive flows. An aggregate TCP flow with 10 micro-flows from hostn1 to n3 and a UDP aggre-

gate flow with 10 micro-flows from hostn2 ! n4 are created. Both flows have the same target rate (5

Mbps). Figure 10 shows how TCP and UDP flows behave with respect to changing the bottleneck band-
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Figure 10: a. Without flow control and the TCP gets only5 Mbps when bottleneck bandwidth is1 Mbps of

topology in Figure 8(a). b. With Flow control and now TCP gets8 Mbps. Both flows have the same profile.

width (btlnkbw) from 1�5 Mbps. Thex-axis denotes thebtlnkbw andy-axis gives the throughput achieved

by both flows. Figure 10(a) shows that the TCP flow gets its share of5 Mbps all the time because it does

not go through the congested link. When the bottleneck bandwidth is1 Mbps,4 Mbps are wasted by UDP

flows in the absence of the flow control. Figure 10(b) shows that, with flow control, the TCP flow gets an

extra8 Mbps whenbtlnkbw is 1 Mbps. The flow control mechanism prevents congestion collapse due to

undelivered packets.

We also experiment with varying the rate ratio,Rr =
SendingRate

Profile
for UDP traffic. ARr of 0.5 means

that the flow is sending at50% of its profile and aRr of 4 means the flow is sending at four times its profile.

When the UDP sending rate is zero, TCP can use the entire10 Mbps, and there is no shaping (shaping drop

is zero) at the edge. When the UDP sending rate causes drops at the bottleneck link (e.g., whenbtlnkbw= 1

Mbps), congestion collapse occurs in the absence of flow control. With flow control, even whenRr is 4 (the

profile is5 Mbps and UDP is sending at20 Mbps), there is no congestion collapse.

A more complex topology with multiple domains (Figure 8(b)) and with cross traffic is also used to study

the flow control framework. An aggregate of TCP flowsF1 betweenn1 ! n8 is created, in addition to

several UDP flows such asF2, Cr1,Cr2, andCr3 betweenn2! n9, n3! n4, n5! n6, andn7! n10

respectively. TheseCrs are used as cross traffic. The start and the finish times of theCrs flows are set

differently to change the overall traffic load over the path for the flowsF1 andF2. There are 10 micro flows

per aggregate in this setup. FlowsF1 andF2 have same profile with target rate5 Mbps, and cross traffic

sending rate is2 Mbps.

Figure 11 illustrates the bandwidth of these aggregate flows with and without flow control. The cross

traffic achieves the same target in both schemes, because the flows do not send more than their profiles and

they do not encounter any bottleneck. If there is no flow control,F1 (TCP) cannot achieve its target5 Mbps.
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Figure 11: Dynamic adjustment of F2 flow works fine in the presence of cross traffic. TCP flow (F1) gets

more bandwidth with the flow control scheme.

With flow control,F1 obtains more than the target. This is because, after controlling UDP, TCP uses the

remaining bandwidth.

8 Conclusions

We have investigated the design of edge routers that include tomography-based edge-to-edge probing meth-

ods to detect service level agreement violations in QoS networks, together with TCP-aware conditioning

and flow control for unresponsive flows. In addition to the primary goal of this design, which is to increase

performance of compliant flows, the proposed mechanisms are useful for network re-dimensioning, as well

as for detecting and controlling flooding-based attacks. We have designed methods that use edge-to-edge

packet stripes to infer loss for different drop precedences in a QoS network, based on observed delays.

Aggregate throughputs are then measured to detect distributed denial of service attacks or flash crowds.

Marking, shaping, and policing are also adapted to respond to detection results and adapt to flow char-

acteristics. We give priority to critical TCP packets and mark according to flow characteristics. We use

an adaptive conditioner that overwrites previous state information based on a least recently used strategy.

Marking is based on information in packet headers if state information for a flow is unavailable. The adap-

tive conditioner is shown to improve FTP throughput, reduce packet delay for Telnet, and response time

for WWW traffic. The conditioner also mitigates TCP RTT bias if it can deduce the flow RTT and RTO.

Finally, we have designed a simple method to regulate unresponsive flows to prevent congestion collapse

due to undelivered packets.

Most of our mechanisms can be adapted to other architectures that support service differentiation, or

to active queue management techniques at network routers. For example, the RED algorithm at network
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routers can itself protect critical TCP packets, e.g., CWR marked packets, from drop without requiring

any additional state. The adaptive conditioner concept can also be employed to keep some window size

information and use that in RED dropping decisions.
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Appendix

Percentages used in multi-priority loss inference:

1

dropP

redP

Rmin Rmax Ymin

yellowP

Ymax Gmin Gmax
Avg queue length

Pgreen

Figure 12: RED Parameters for Three Drop Precedences

Figure 12 depicts the drop probabilities in RED with three drop precedences. Thered traffic has higher

drop priority thanyellow and green traffic. The red traffic is dropped with a probabilityPred when the

average queue size lies between two thresholdsRmin andRmax. All incoming red packets are dropped when

the average queue length exceedsRmax. Pyellow andPgreen are similar. Suppose�G(n) is the probability

that an incoming green packet will be accepted by the queue given thatn packets are in the queue.�Y (n)

and�R(n) are defined similarly for yellow and red traffic respectively. The� values for green packets are

defines as follows:

�G(n) = 1; if n < Gmin
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�G(n) = 0; if n > Gmax

�G(n) = 1� Pgreen
n�Gmin

Gmax �Gmin
; otherwise (9)

The equations are similar for yellow and red traffic. LetP 0
red be the percentage of packet drops due to

active queue management for red packets, and letP 0
yellow andP 0

green be defined similarly for yellow and

green respectively. These percentages can be computed as:

P 0
red =

Rmax �Rmin

Rmax
� Pred +

Gmax �Rmax

B
� 100 (10)

P 0
yellow =

Ymax � Ymin

Ymax
� Pyellow +

Gmax � Ymax

B
� 100 (11)

P 0
green =

Gmax �Gmin

Gmax
� Pgreen (12)

whereB is the buffer (queue) size at the router. The percentage of classk traffic accepted by an active queue

can be expressed as:

Pk = 1�P 0
k (13)
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