
An Experimental Study of Routing and Data
Aggregation in Sensor Networks
Ossama Younis

Department of Electrical & Computer Engineering
University of Arizona, Tucson, AZ 85721, USA

E-mail: younis@ece.arizona.edu

Sonia Fahmy
Department of Computer Science

Purdue University, West Lafayette, IN 47907, USA
E-mail: fahmy@cs.purdue.edu

Abstract— Several sensor network applications, such as envi-
ronmental monitoring, require data aggregation to an observer.
For this purpose, a data aggregation tree, rooted at the observer,
is constructed in the network. Node clustering can be employed
to further balance load among sensor nodes and prolong the
network lifetime. In this paper, we design and implement a
system, iHEED, in which node clustering is integrated with multi-
hop routing for TinyOS. We consider simple data aggregation
operators, such as AVG or MAX. We use a simple energy
consumption model to keep track of the battery consumption of
cluster heads and regular nodes. We perform experiments on a
sensor network testbed to quantify the advantages of integrating
hierarchical routing with data aggregation. Our results indicate
that the network lifetime is prolonged by a factor of 2 to 4, and
successful transmissions are almost doubled. Clustering plays a
dominant role in delaying the first node death, while aggregation
plays a dominant role in delaying the last node death.

I. INTRODUCTION

Several sensor network applications require an aggregated
data value to be reported regularly. For example, in a habitat
monitoring application, an average or maximum of the re-
ported humidity values may be sufficient for the observer. For
this purpose, a data aggregation tree, rooted at the observer, is
constructed for in-network aggregation. Data aggregation re-
duces the communication overhead in the network, thus saving
the sensor scarce energy resources. In addition, aggregation
reduces channel contention and packet collisions.

For large-scale networks, node clustering has been proposed
for efficient organization of the sensor network topology [1],
[2], [3], [4], and prolonging the network lifetime. In a clustered
network, a 2-tier hierarchy is constructed where cluster heads
form an overlay responsible for data forwarding, while other
nodes (which we refer to as “regular nodes”) only report
their data to their heads.1 Energy savings are achieved by: (1)
periodically re-clustering the network to select more energy-
abundant cluster heads to participate in routing; and (2)
allowing nodes at the lower tier to sleep most of the time
since they do not participate in the routing infrastructure.

In this paper, we investigate the integration of node clus-
tering and tree-based aggregation and routing in a real sensor
network setting. We quantify the impact of clustering and ag-
gregation on the network lifetime and the number of success-
fully transmitted measurements. We experiment with source-

1A hierarchy may contain more than two tiers by recursive clustering.

driven applications, where nodes periodically send reports to
a fixed observer. (We discuss the case of mobile observers
in [5]). In particular, we consider an application that uses a
data aggregation operator, such as average (AVG), maximum
(MAX), sum (SUM), or count (COUNT). Prior to constructing
the routing tree, the network is clustered to identify a set of
cluster heads that have higher average residual energy than
their peers. Only cluster heads proceed to discover the path to
the root of the tree (the observer) by constructing a breadth-
first spanning tree.

Constructing a spanning tree for data forwarding was pro-
posed for multi-hop routing in TinyOS [6], [7]. We integrate
HEED clustering [2] with data aggregation in the Multi-
HopRouter [8] to implement integrated HEED (iHEED) in
TinyOS. We select the HEED clustering protocol because
it terminates in a constant number of iterations, and elects
cluster heads that are well-distributed in the network field.
HEED does not require special node capabilities, such as
location-awareness, does not make assumptions about node
distribution, and operates correctly when nodes are not syn-
chronized. iHEED can serve both source-driven applications
(where sensors periodically report their readings) and data-
driven applications (where an observer queries the network).
To the best of our knowledge, our work is one of the earli-
est implementations and testbed measurements of clustering
protocols in sensor networks. Our experiments using iHEED
show that clustering plays a dominant role in delaying the
first node death, while aggregation plays a dominant role in
delaying the last node death.

The remainder of this paper is organized as follows. Sec-
tion II gives a brief description of the HEED clustering
protocol [2]. Section III introduces our network model and
research challenges. Section IV formulates an energy model
based on our hardware platform. Section V discusses the
iHEED system design details. Section VI gives empirical
results of iHEED performance on sensor motes. Section VII
briefly surveys related work. Finally, Section VIII concludes
the paper and discusses plans for system extensions.

II. HEED CLUSTERING

In this section, we briefly describe the Hybrid, Energy-
Efficient, Distributed (HEED) clustering protocol [2]. HEED
assumes that sensor nodes do not have any special capabilities,

such as being GPS-equipped, and that all nodes to be clustered
are equally important. The goal of HEED is to prolong the
network lifetime, where the network lifetime is defined as the
time until the first (or last) node in the network depletes its
energy. We consider more practical definitions in Section VI-
B. To attain this goal, HEED uses a probabilistic approach
to elect cluster heads with high residual energy (compared to
regular nodes) in a constant number of iterations.

A node is mapped to exactly one cluster, and must be able
to communicate with its cluster head via a single hop using
an intra-cluster transmission range, Rc. Rc corresponds to a
power level Pc. Inter-cluster routing uses a higher transmission
range, Rt (Rt > Rc), corresponding to a power level Pt. Inter-
cluster routing may either be pro-active (i.e., table-driven) or
reactive (e.g., Directed Diffusion [9]) according to the type of
the application. Inter-cluster routing on data aggregation trees
is the primary focus of this work.

Cluster head selection is based on two parameters: A
primary parameter (node residual energy) is used to select
an initial set of cluster heads, and a secondary parameter
is used to break ties. A tie occurs when two nodes within
range Rc from each other announce their willingness to
become cluster heads. We propose a technique for estimating
residual energy during network operation in Section IV. The
secondary parameter can be set to an estimate of the intra-
cluster communication “cost,” which is a function of cluster
density or neighbor proximity.

A node initially sets its probability to become cluster head
CHprob = Cprob

Eresidual

Emax

, where Eresidual is the estimated
residual energy of the node, Emax is a reference maximum
energy, and Cprob is a small constant fraction used to limit
the number of initial cluster head announcements. CHprob

is not allowed to fall below a small probability, pmin, to
ensure constant time termination. During each iteration, a
node arbitrates among the cluster head announcements it has
received to select the lowest cost cluster head. If it has not
received any announcements, it elects itself to become a
cluster head with probability CHprob. If successful, it sends an
announcement indicating its “willingness” to become cluster
head. The node then doubles its probability CHprob, waits for
a short iteration interval tc, and begins the next iteration. A
node stops this process one iteration after its CHprob reaches
1. If a node elects to become a cluster head, it raises its
transmission power to Pt for inter-cluster communication.

We have shown in [2] that HEED terminates in Niter =
O(1) iterations, where Niter ≤ dlog2

1

pmin

e+1. In addition, the
clustered network remains connected under a certain density
model when Rt ≥ 6Rc (this is a loose upper bound). We have
also proven that the probability of two cluster heads lying
within the cluster range Rc of each other is very small.

III. SYSTEM MODEL

A. Platform

The platform we use in this work is the Berkeley Mica2 and
Mica2Dot sensor motes [10] running TinyOS [7]. The Mica2
mote has a 7.38 MHz Atmel processor, while the Mica2Dot

has a 4 MHz Atmel microprocessor. Both types have 128
KB program memory, 4 KB RAM, and 512 KB non-volatile
storage. The two types also have the same radio properties.
The radio is a Chipcon SmartRF CC1000, with 916 MHz
frequency, FSK modulation with data rate 38.4 kBaud (19.2
Kbps), Manchester encoding, and linear RSSI (received signal
strength indicator). Output power is digitally programmable by
setting the PA POW register. A minimum setting of PA POW
= 0x02 corresponds to a power output of -20 dBm (10 µW),
while the default value PA POW=0x80 corresponds to a power
output of 0 dBm (1 mW). In our experiments, we use the
documented power consumption values from the Chipcon
CC1000 data-sheet.

We have performed measurements in our lab that indicate
that the Mica2Dot motes have smaller transmission ranges
compared to Mica2s using the same transmission power levels.
This is despite the fact that they both use the same radio model
and antenna. During our experiments, Mica2 motes were much
more predictable than Mica2Dot motes.

B. Application

We consider the class of applications that utilizes in-network
data aggregation. An example application is radiation-level
monitoring around a nuclear plant, where the maximum value
is of particular interest for the safety of the plant and the
surrounding environment. Several projects, such as the Habitat
Monitoring on Great Duck Island [11], can utilize the approach
proposed in this work for data aggregation.

We study network support for the basic data aggregation op-
erators: AVG, SUM, MIN, MAX, and COUNT. TinyDB [12]
can be directly used on top of our clustered multi-hop network
to provide query processing capabilities and data aggregation
to applications. To assess energy savings, we experiment with
a scenario where sensor nodes periodically sense the medium
and forward their readings towards an observer on an energy-
aware data aggregation tree (details are given in Section V).
Nodes along the path from the leaves to the root aggregate
data by forwarding only two values: (1) the data value D,
which is the sum in case of AVG and SUM operators, or the
maximum (minimum) in case of MAX (or MIN) operator, and
(2) the number of aggregated sensor readings N . An observer
can thus compute AVG by dividing D by N , SUM/MAX/MIN
by using D, and COUNT by using N .

C. Challenges

Since we assume that node distribution in the field is
random, some nodes may be on “popular” routing paths and
rapidly deplete their energy, leaving areas in the field un-
monitored. Periodic node clustering based on residual energy
significantly mitigates this problem by electing nodes with
higher remaining energy to perform the more demanding job
of cluster heads. A 2-tier architecture may also reduce interfer-
ence and collisions if different channels (or CDMA codes) are
used for intra-cluster and inter-cluster communication Thus,
routing and topology management should be based on both

shortest distance (or channel losses as proposed in the ETX
metric [13]), as well as remaining energy.

A second challenge for data aggregation applications is
the integration of clusters with data aggregation trees without
degrading path quality. We propose applying HEED clustering
prior to constructing the aggregation tree, and using only
cluster heads to construct the aggregation tree. This organi-
zation is demonstrated in Fig. 1. Regardless of how the nodes
are distributed in the field, HEED cluster heads are well-
distributed. This helps in maintaining high path quality at the
inter-cluster level.

Base
Station

Fig. 1. A spanning tree of cluster heads rooted at the observer (base station)

A third challenge for energy-based topology management
and routing protocols is the estimation of the remaining battery
energy. Inspecting the analog-to-digital converter (ADC) for
the battery voltage may not be useful due to its coarse
granularity. In addition, the accuracy of the computed ADC
result is not always guaranteed. Therefore, we compute the
remaining energy in the node by using a simple approach
(described below) that exploits measurements in [14]. Our
approach considers all sources of energy consumption, and
defines a credit-point system (CREP) for updating the mote
energy budget during on-line operation of the network. Our
methodology is independent of the ADC hardware2. Observe
that the CREP system is not a new model for measuring energy
consumption of the sensor battery. It is a simple approach that
compiles known physics formulae, and converts Joule con-
sumption into point deduction for simpler computations. Some
of the equations provided below are adopted in simulators,
such as ns-2. The computations of the CREP system do not
have to be highly accurate since a rough estimate of battery
consumption will typically suffice to compute a reasonable
cluster head selection probability.

IV. DISSIPATED ENERGY ESTIMATION

Assume that a sensor uses a battery with maximum capacity
Ab Amp-hr, and typical average voltage Vb. The maximum
residual energy in the battery Emax is computed as:

Emax = Vb × Ab × 3.6 × 103Joule (1)

We compute the dissipated energy for various sensor activ-
ities. In a sensor network, a node expends energy in: (1) pro-
cessing, (2) sensing and actuation, (3) flash memory operations

2A query power monitor was also proposed in the TinyDB query proces-
sor [12]. Its goal is different from our needs for the iHEED system.

(read/write), and (4) communication (transmitting/receiving).
According to the application, a node goes through a duty
cycle when it performs some of the above activities and sleeps
otherwise. For most applications, it is possible to accurately
determine the active to sleep ratio for the sensor board since
sensing is periodic. Processor, flash memory, and radio usage
can also be estimated with some accuracy if independent of the
data received. Inaccuracies in estimating the energy consumed
in processing are negligible since it is well known that the
energy consumed for communications is significantly higher.

Let Ipa and Ips denote the current drawn by the processor
during the active and sleep periods, respectively. Let Imr , Imw,
and Ims denote the current drawn for memory read, write, and
sleep, respectively. Let Isa and Iss denote the current drawn by
the sensor board during active and sleep modes, respectively.
Finally, let, Irx

, Itx,R, and Ics denote the current drawn by the
radio for receive, transmit (to a range R), and sleep modes,
respectively.

Consider the following active/sleep ratio for different com-
ponents: processor Rpa : Rps, flash memory Rmr : Rmw :
Rms, and sensor board Rsa : Rss. Therefore, the effective
current Ieff per unit time drawn from all components except
the radio is computed as:

Ieff = IpaRpa + IpsRps + IsaRsa + IssRss

+ ImrRmr + ImwRmw + ImsRms

The power consumed for all components other than the radio,
Po, is therefore computed as: Po = Vb×Ieff . Let Ptx,R be the
power consumed for transmitting one packet of size k bytes
(in Watt) with a range R, Ptx,R is computed as: Ptx,R =
Vb × Itx,R × k × 8. The receive power consumption, Prx

, is
computed as: Prx

= Vb × Irx
.

A. Credit-Point System (CREP)

Our credit-point system, CREP, assigns points to Emax

instead of Joules. To be conservative, the points only represent
a fraction of the computed Emax (say 90%). Etx,R = Ptx,R×
tp points are deducted for each packet transmission, where
tp is the packet transmission time. Every period of time to,
Eo = Po × to points are deducted for energy consumption
of components other than the radio, and Erx

= Prx
× trx

points are deducted for radio receive, where trx
≤ to. To avoid

floating point computations and increase accuracy, points are
integers with a finer granularity than the smallest granularity
of energy consumption, as shown below.

Example: Consider Crossbow Mica2 nodes [10] with AA
batteries. A conservative estimate of the AA battery capacity
is 2.2 A-hr (an average estimate of AA capacity is about 2.4
A-hr). A Mica2 mote uses two AA batteries with effective
average voltage Vb = 3V. Therefore, the total energy available
for a Mica2 mote from 2 AA batteries, Emax = 2.2 × 3 ×
3600 = 23760 J. We assume the processor’s Ipa = 8 mA (1%),
and Ips = 15 µA (99%); the sensor’s Isa = 5mA (5%), and Iss

= 5 µA (95%); the flash memory’s Imr = 4 mA (0%), Imw =
15 mA (0%), and Ims = 2 µA (100%); the radio’s Itx,R = 16.8
mA, Irx

= 10 mA (5%), and Ics = 1 µA (95%). We assume

that the sensors transmit at 0 dBM (1 mW). The time per
bit transmission is 62.4 µsec as indicated in the measurement
study in [14], and we assume to = 1 minute. We extract the
parameters from the Mica2 data-sheet and the MPR/MIB user
manual found at [10].

Using this information, Eo = (8 × 0.01 + 0.015 × 0.95 + 5
× 0.05 + 0.005 × 0.95 + 0.002 × 1) × 3 × 60 = 56 mJ. For
a 30 byte-packet, the packet transmission time tp = 0.0624 ×
30 × 8 × = 14.97 msec. Thus, Etx,R = Ptx,R × tp = 16.8 ×
3 × 14.97 = 0.75 mJ per packet. Erx

= 0.01 × 3 × 0.05 ×
60 = 90 mJ, and Ecs (radio sleep) = 10−6× 3 × 0.95 × 60
= 171 µJ .

It is clear from the above calculations that the small-
est energy (one packet transmission) is better expressed as
multiple of 1 µJ (it can also be expressed as multiples of
nJ or pJ to improve accuracy). Thus, the points in CREP
are assigned as follows: The maximum credit limit (battery
capacity) = 23, 760×106 points, Eo = 56,000 points, Etx,R =
750 points/packet, Erx

= 90,000 points, and Ecs = 171 points.
In [5], we proved that the energy dissipated for worst case

operation of HEED clustering is no larger than twice the
energy dissipated for optimal clustering. We have verified
this result empirically using uniform and non-uniform node
distribution in the network field.

V. IHEED IMPLEMENTATION IN TINYOS

In this section, we discuss the design details of the iHEED
system.3 iHEED extends the multi-hop router in [15] (initially
proposed in [8]) by adding: (1) clustering logic that is executed
prior to parent selection in the routing tree, and (2) a packet
capture mechanism in the router for pushing data up the
protocol stack to the data aggregation application, in case the
node is a cluster head. The schematic design of the iHEED
system is depicted in Fig. 2. iHEED adds about 420 lines of
code to the TinyOS code. The packet size used is 29 bytes,
which is the default in TinyOS. The main modules in the multi-
hop router are:

Selection

head
cluster

cluster head

monitorenergy

hop
next

send
packet

Routing

Engine

parent

Application

Parent

Routing Logic

energy
monitor

Logic
Clustering

Fig. 2. Schematic diagram of the iHEED system

The Routing Engine: This is the main control unit in the
iHEED router that is responsible for packet forwarding. The
“Routing Logic” module is consulted for setting the next hop
in the packet. For data aggregation, the “Routing Engine”
module in a cluster head intercepts incoming packets from

3Our complete implementation can be downloaded from:
http://www.cs.purdue.edu/homes/fahmy/

its cluster members or its descendants in the aggregation tree,
and pushes them up the protocol stack to the application layer.
This module is independent of the routing mechanism.

The Routing Logic: This module is responsible for provid-
ing a routing algorithm for constructing a connected graph.
The “Routing Logic” consists of two main sub-modules:
(1) the Clustering Logic which implements the clustering
algorithm used to select a set of connected cluster heads.
Aggregation tree construction follows network clustering, and
considers only cluster heads in the routing infrastructure,
and (2) the Parent Selection module which is responsible
for estimating the link cost for each neighbor based on the
“quality” of communications and its proximity to the base
station. The quality of communication can be determined by
considering data losses and link symmetry [8]. For example, a
cluster head v having a neighbor u1 that is 4 hops away from
the base station, and another neighbor u2 that is 6 hops away
from the base station may prefer u2 to u1 as its parent if the
loss rate for u1 exceeds a specified minimum requirement (i.e.,
a metric like ETX [13] can be used). Each node maintains an
internal estimate of the data sent and received from each of
its neighbors to record the link quality to each of them.

1) Cluster formation: The initial proposal of the multi-
hop router in [15] includes a timer (Timer1) used for sending
out routing updates and triggering new routing computations.
We augment the Routing Logic module with two additional
timers for the clustering process: (1) clustering trigger timer
(Timer2), and (2) clustering iteration timer (Timer3). When
Timer2 expires, a node declares that it is not a cluster head
(NON CH) and it has no parent. At that point, we proceed
to initialize a table of neighbors that are final cluster heads
(FINAL CH). This table is used to arbitrate among final cluster
heads within the cluster range, after Niter iterations have been
executed. (The number of iterations, Niter , was computed in
Section II.) Timer2 then triggers Timer3 to start iterating so
that the node competes for cluster head candidacy. Whenever
Timer3 expires, the steps discussed in Section II are followed
in order to elect a cluster head or join a cluster.

If a node elects to become cluster head, a routing update
message is forced by asynchronously triggering Timer1 to
rapidly inform the neighbors. After the clustering process ends,
routing update messages continue carrying information about
a final cluster head to aid nodes that are newly deployed or
have been sleeping for an extended period of time. After a
node u elects a cluster head v, it invokes a method “join-
ClusterHead()” to use this head as its parent. This process is
successful only if: (1) the link between u and v is symmetric
using the intra-cluster range, and (2) v was able to find a path
to the root, i.e., has determined its position in the aggregation
tree. The pseudo-code for clustering logic initialization and
timer actions can be found in [5].

2) Clustering iteration interval tc: The clustering itera-
tion interval tc should allow neighboring nodes (within the
cluster range) to exchange information about their status if
they elect to become cluster heads. Three main parameters
drive the choice of tc: (1) the packet transmission time, tp, (2)

the number of neighbors ng , and (3) the delays due to retrans-
missions, propagation, and queuing. Assuming that packets
are lost with probability p, then d 1

1−p
e transmissions will be

required for successful packet transmission. The transmission
interval should be multiplied by a constant cq to account for
propagation and queuing delays. Therefore, tc = ng × tp ×
d 1

1−p
e × cq. For example, if tp = 15 msec (as computed in

the example of Section IV-A), ng = 50, p = 0.15, and cq = 2,
then tc should be set to 3 seconds.

3) Triggering the clustering process: It is difficult in
practice for all nodes to start executing iHEED simultaneously
because of clock drifts. Therefore, we use a simple approach to
asynchronously trigger the clustering process in the network.
A cluster head v whose Timer2 has expired immediately
broadcasts a routing update packet to its cluster members and
its neighbor cluster heads in the aggregation tree. The message
contains information that v is not a cluster head anymore
(NON CH). Upon receiving this message, cluster members
with v as their cluster head trigger their clustering process
by re-initializing their Timer2. In addition, neighboring cluster
heads immediately trigger their cluster members and neighbor
cluster heads and so on. Hence, the clustering process diffuses
throughout the entire network, though certain regions start
slightly earlier than their neighboring regions. It is not essential
that the entire network is simultaneously re-clustered: As long
as every set of neighboring regions can start re-clustering
within msec time difference, the network will still function
correctly.

Observe also that triggering clustering does not require any
additional overhead from a cluster head, except for a routing
update message. For a realistic scenario where the battery
lifetime is in the range of months and loads on cluster heads
are balanced, the clustering process can be triggered at a coarse
granularity, e.g., hours or days.

4) Energy monitoring: An energy monitor interface is
added to the multi-hop router to manage the CREP sys-
tem and supply information on the remaining energy to the
clustering logic. As previously discussed, CREP points are
deducted for data packet transmission, routing update packet
transmission, radio receive, and energy consumption of other
components. The conservative computation of points causes
the CREP system to deplete its points while the battery
is still operational. This is handled by the clustering logic,
which uses a minimum probability for electing cluster heads
when the remaining points are close or equal to zero. The
pseudo-code for the energy monitor can be found in [5]. For
radio receive, RECEIVE COST points are deducted from the
battery capacity. This cost may be fixed if the receive pattern
of the radio is unknown. Otherwise, it will depend on the
receive interval. For packet transmission, the cost is computed
according to the power setting of the RF radio.

5) Tree aggregation: A cluster head aggregates the data
packets received from its cluster members or tree descendants,
and sends the aggregated value up to the root. To achieve
this, we bind the packet interception at the Routing Engine
with that of the application, thus pushing data up the protocol

stack. The application manipulates data according to the
aggregation operator, increments the count of data packets
it has received within the epoch of time since its last send
operation, and forwards the aggregate when the send timer
(appTimer) expires. The pseudo-code for the application in
the iHEED system can be found in [5].

6) Detailed design: Fig. 3 depicts a detailed description
of the iHEED system. The figure is an extension of the
MultiHopRouter in [15]. RoutingLogicM is the module that
contains the clustering, and link estimation and parent se-
lection (LEPS) algorithms. We show the new timers added
for clustering, the use of the energy monitor interface, and
the application interface with the Routing Engine to intercept
packets coming to the node if it is an elected cluster head. The
EnergyMonitor interface is also used by the Routing Engine to
inform the application whether the battery is still operational.
This information is only exploited by the application to stop
data transmission. In future applications, the energy monitor
can supply the application with valuable information about
the battery status, which is used for notifying neighbors of
possible death in the near future, and adjusting the rate or
range of transmission.

S
en

d

Snoop

R
o

u
te

C
o

n
tr

o
l

S
td

C
o

n
tr

o
l

User
Name

Def’nProvider
NameModule Configuration Interface

RouteSelect

RouteControl

StdControl

RouteSelect

RouteControl

StdControl

RouteSelect

RouteSelectCntl

SubControl

S
td

C
o

n
tr

o
l

C
o

m
m

C
o

n
tr

o
l

R
ec

ei
ve

M
sg

S
en

d
M

sg

S
en

d
M

sg

In
te

rc
ep

t

In
te

rc
ep

t

RoutingLogicM

Timer1
update)

(for routing

Timer3
Timer2 (for clustering)

 Multihop Router

T
im

er
3

T
im

er
2

T
im

er
1

TimerC

EnergyMonitoring

EnergyMonitor

E
n

er
g

yM
o

n
it

o
r

EnergyMonitor

EnergyMonitor
EnergyMonitor

T
im

er

InterceptMsg
(for cluster heads)

[A
M

_A
P

P
M

S
G

]

S
en

d
[]

S
en

d
[]

[A
M

_A
P

P
M

S
G

]

R
ec

ei
ve

[A
M

_M
U

L
T

IH
O

P
M

S
G

]

R
ec

ei
ve

M
sg

[A
M

_M
U

L
T

IH
O

P
M

S
G

]

S
td

C
o

n
tr

o
l

R
o

u
te

C
o

n
tr

o
l

S
td

C
o

n
tr

o
l

R
o

u
te

C
o

n
tr

o
l

S
n

o
o

p

R
ec

ei
ve

[]

MultihopEngineM

Application

StdControl SendMsgReceiveMsg

Timer

SendMsg[]ReceiveMsg[]

CommControl

CommStdControl

Intercept

Comm QueuedSend

Fig. 3. Multi-Hop routing with clustering, aggregation, and energy control (an
extended version of [15]). Arrows show interface provider/user relationships

The Comm interface, illustrated in Fig. 3, is responsible
for packet capture and transmission. The Message ID is
used to identify whether the packet is an application packet
(AM APPMSG) sent through the Routing Engine module, or
a routing update packet (AM MULTIHOPMSG) sent through
the RoutingLogicM module. The QueuedSend interface is
responsible for buffering the packets to be sent in sequence.
Details of these interfaces are found in [6].

VI. SENSOR TESTBED MEASUREMENTS

In this section, we evaluate the iHEED system on a testbed
of Berkeley (Crossbow) Mica2 and Mica2Dot sensor motes.
Our performance metrics are: (1) the sensor network lifetime,

(2) the number of successfully transmitted measurements, and
(3) the overhead incurred by certain nodes (as described later).

A. Experimental Configuration

Our network setup is illustrated in Fig. 4. We conduct
indoor experiments in a computer lab. We use 6 Mica2 and
4 Mica2Dot sensors distributed in an area of about 18 ft ×
12 ft. The base station is also a Mica2 sensor attached to a
MIB510 programming board, which is connected to the serial
port (COM4) of a Pentium-III desktop running Windows XP.
The capabilities of the motes are described in Section III-A.
Let G1 be the set of nodes {1,2,3}, G2 be the set {4,5,6}, and
G3 be the set {7,8,9,10}. The nodes in each set are located
within a circular area with 2 ft diameter. The average distances
between the observer and G1, G2, and G3 are 6 ft, 15 ft,
and 4 ft, respectively. We place the set G2 behind one of
the lab partitions to create an obstacle and leave no line-of-
sight between this group and the base station. This necessitates
multi-hop communication between G2 members and the base
station through G1 members.

�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������

�����������������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�����������������
�����������������
�����������������
�����������������

�
�
�

	
	
	

�
���

�
�
�
��
�
�
��
�
�
��
�
�
��
�
�
�
�
�
�
��
�
�
��
�
�
��
�
�
��
�
�
�

�
�
��
�
��
�
��
�
��
�
�
�
�
��
�
��
�
��
�
��
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
�

�
�
�
��
�
�
��
�
�
��
�
�
��
�
�
�

����������
���
���
���
���

�
�
��
�
��
�
��
�
��
�
�
�
�
��
�
��
�
��
�
��
�
�

�
�
�
��
�
�
��
�
�
��
�
�
��
�
�
�
�
�
��
�
��
�
��
�
��
�
�

�
�
��
�
��
�
��
�
��
�
�
�
�
��
�
��
�
��
�
��
�
�

Observer

G2

Mica2Dot
7

2
3

9
8

10 G3

G1

Mica2

Mica2

transfer
Data

Obstacles

6

5
4

1

�
��
�
�
�
�
��
�
�
�

�
��
�
�
�

 !
!!
!

!
!"
""
"
"
"

#
##
#
#
#
$
$$
$
$
$

Fig. 4. The network testbed used in the experiments.

We use the following parameters: Cprob = 0.03, clustering
iteration interval length (tc) = 11 seconds, routing update
frequency = 6/min, route recomputation frequency = 2/min,
INTRA CLUSTER POWER = -20 dBm (PA POW register =
0x02), and INTER CLUSTER POWER = -13 dBm (PA POW
register = 0x06). The choice of Cprob ensures a minimum
of 7 iterations, which reduces the possibility of multiple
cluster heads in the same region. tc was selected such that
node asynchrony does not affect the initial choice of cluster
heads. The transmission ranges were selected such that three
network regions are created and connected. The data rate is
0.5 pkts/sec. When the clustering process is in progress, each
node aggregates its own data, and does not send it out until it
finds a parent in the tree or a cluster head. This ensures that no
data is lost during the clustering process. Using the clustering
iteration interval and the initial clustering probability given
above, the clustering process takes approximately one minute
with a reasonably charged battery. In scenarios where the
minimum CHprob = 0.001, the clustering process takes close
to 2 minutes. In real scenarios, clustering will be triggered

every few hours, and data reporting will be triggered on the
order of a few minutes. This implies that the clustering process
is within practical delay bounds for applications. The time
taken by the clustering process does not affect the application
data flow since an old cluster head remains functional until a
new cluster head takes over.

Our application uses the MAX operator. Our results are
valid, however, for all similar operators, such as MIN and
AVG. We conduct experiments using the CREP system pre-
sented in Section IV-A. We use values of drawn current
from a recent measurement study on the Mica2 radio [14].
For PA POW = 0x02, the drawn current = 5.3 mA, and for
PA POW = 0x06, the drawn current = 6.7 mA (approximately).
The intra-cluster energy consumption E1 = 5.3 × 3 × 62.4×
29 × 8 = 230 µJ , and similarly the inter-cluster energy
consumption E2 = 291 µJ . Thus, we assign points in multiples
of 1 µJ . We evaluate the iHEED system by comparing
the performance of a data aggregation application using two
different approaches. One approach uses multi-hop routing
without clustering [15] (which we refer to as “COLLECT”),
while the other uses a multi-hop routing data aggregation tree
with node clustering (iHEED). Comparison with COLLECT
was selected since it assesses the benefits of both clustering
and aggregation, as explained below.

In our experiments, the initial battery capacity is assigned a
fixed number of points (e.g., 200,000). For a clustered network,
we deduct 230 points for each intra-cluster communication,
and 291 points for each inter-cluster communication. We as-
sume that nodes in the COLLECT approach use a transmission
range similar to the inter-cluster range of the iHEED system.

This data aggregation application implies the following
about energy consumption. First, processor energy consump-
tion is almost similar in the two evaluated approaches. This
is because the main processing overhead is in maintaining the
routing table and preparing routing updates. The clustering
process is infrequently invoked, and it involves exceedingly
simple operations, except for the random number generation
in case no cluster head announcements are heard. Second, the
sensor radios are either: (1) in the receive mode if they are
not transmitting; or (2) synchronized for sleep and wakeup,
as in TinyDB [12] (see [5] for a discussion of the node duty
cycle). In either case, the energy consumed in reception is
independent of the number of received messages for both
iHEED and COLLECT. Third, our application does not re-
quire flash memory operations. Therefore, the main parameter
contributing to energy consumption in this application is the
number of transmitted packets and the power level used for
packet transmission.

B. Network Lifetime

The most common definition of network lifetime is the
time until the first (or last) node in the network depletes its
energy. In a multi-hop network, network connectivity is the
primary determinant of network lifetime. That is, if in the set
of nodes V , only a subset of the nodes V ′ ∈ V can reach the
observer in one hop (full-duplex), then the network practically

 0

 10

 20

 30

 40

 50

 60

 150 200 250 300 350

T
im

e
 (

m
in

u
te

s)

Credit points (x 1000)

iHEED, CI=6 min.
iHEED, CI=9 min.

COLLECT

(a) The network lifetime defined as the time
until first node death

 0

 10

 20

 30

 40

 50

 60

 150 200 250 300 350

T
im

e
 (

m
in

u
te

s)

Credit points (x 1000)

iHEED, CI=6 min.
iHEED, CI=9 min.

COLLECT

(b) The network lifetime defined as the time
until the network gets disconnected

 0

 2000

 4000

 6000

 8000

 10000

 150 200 250 300 350

#
 s

u
cc

e
ss

fu
l t

ra
n
sm

is
si

o
n
s

Credit points (x 1000)

iHEED, CI=6 min.
iHEED, CI=9 min.

COLLECT

(c) The number of successful transmissions

Fig. 5. Performance of iHEED vs. COLLECT

“dies” when nodes in V ′ deplete their energy because of
disconnection from the observer. Therefore, network lifetime
in multi-hop networks is defined as the time until the first (or
last) node in V ′ depletes its energy. Using the above definition
and our configuration illustrated in Fig. 4, the set G1 = {1,2,3}
represents V ′ (subset of critical nodes). This is because G2

members cannot reach the observer except through G1.
Fig. 5(a) shows the network lifetime for the first node death

definition for iHEED versus COLLECT. Results indicate that
the first node death is delayed by a factor of up to 4 with
the iHEED system. This significant improvement is attributed
to the periodic re-clustering of the network that pushes each
node in and out of the routing overlay to reduce its energy
consumption. Fig. 5(b) shows the network lifetime for the
second definition (last node death). The figure illustrates that
the observer in the iHEED system remains connected to the
network at least twice as long as the case with no clustering.
As expected, node death in a clustered network speeds up
after the first node death. The network lifetime is prolonged
for the smaller clustering interval (CI), since more frequent
clustering tends to distribute energy consumption more evenly
among nodes. In summary, clustering plays a dominant role
in delaying the first node death, while aggregation plays a
dominant role in delaying the last node death.

C. Successful Transmissions

In this experiment, we measure the number of success-
ful transmissions, since data loss may occur during the re-
clustering operation. By successful data transmission, we mean
that a sensor reading is carried all the way to the observer.
Since the number of the aggregated sensor readings is updated
in each packet on its way to the observer, the observer can
easily compute the number of successful transmissions. This
is a good metric since it implicitly accounts for losses due to
the wireless medium.

Fig. 5(c) depicts the number of successful transmissions for
both techniques. iHEED at least doubles the number of suc-
cessful transmissions. This is a consequence to the prolonged
network lifetime. The figure also illustrates that different

clustering intervals do not result in significant differences in
the number of received transmissions. This is rather surprising
since the network lifetime is longer for the smaller CI. The
longer lifetime advantage is offset by the fact that frequent
clustering may result in data loss during tree construction. This
effect is minimal in iHEED since a node does not send its data
until a cluster head (or a parent) is found.

Although successful transmissions in iHEED significantly
outnumber those in COLLECT due to the prolonged network
lifetime, it is also important that the network using iHEED
gives a consistent throughput comparable to that of COLLECT.
We compute the network throughput by dividing the total
number of packets successfully received at the root by the
network lifetime. In [5], we show that the average throughput
in iHEED is indeed comparable to that of COLLECT.

D. Overhead

The overhead in our application is defined as the energy
consumed for routing updates, clustering, and packet forward-
ing towards the root. In iHEED, the clustering process only
requires a few routing updates to carry cluster head announce-
ments. Therefore, routing updates constitute the primary over-
head in iHEED. In this experiment, we report the maximum
overhead on any node in G1 using iHEED, and compare it
to the overhead of each node in G1 using COLLECT. Fig. 6
shows that the maximum overhead in iHEED is less than one
half of the average overhead in COLLECT. This is expected
since packet forwarding in COLLECT consumes significant
energy from nodes in the critical set. In the COLLECT
experiments, most of the nodes that cannot directly reach the
base station tend to use the same parent in the tree. This results
in quickly depleting energy from this parent, which explains
why the first node death in COLLECT is much faster than that
in iHEED.

VII. RELATED WORK

TinyOS [6], developed at UC Berkeley, was proposed as
the operating system for small sensors. TinyOS provides
network abstractions to facilitate communications. A number

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 150 200 250 300 350

%
 o

ve
rh

e
a
d

Credit points (x 1000)

iHEED, CI=6 min.
iHEED, CI=9 min.

COLLECT-Node 1
COLLECT-Node 2
COLLECT-Node 3

Fig. 6. Overhead of tree construction, tree maintenance, and clustering

of approaches for multi-hop communications exist, including
tree routing, ad-hoc routing, and broadcast and epidemic proto-
cols [16]. TinyOS beaconing (AMROUTE) is the earliest tree
routing proposal for TinyOS in which the root sends periodic
beacons to construct the routing tree. Non-beaconing multi-
hop routing was later implemented in TinyOS, e.g., mh6 [15]
and its MultiHopRouter implementation. An evaluation of
the impact of data aggregation on energy conservation in
sensor networks was presented in [17]. TinyDB [12] and
Cougar [18] were proposed for efficient database querying
and aggregation in sensor networks. TinyDB focuses on the
same class of operators (AVG, MAX, etc.) as in this study.
TinyDiffusion [19] also exploits in-network data aggregation
as necessary. Our approach supports both source-driven and
data-driven applications, and thus can be used to construct
an underlying structure for both TinyDB and TinyDiffusion.
Support for other aggregation operators, such as median and
histograms, was considered in [20]. In [21], [22], a schedule
is computed for aggregating data to maximize the network
lifetime. AIDA [23] studies application-independent data ag-
gregation and proposes a mechanism for concatenating net-
work units using an adaptive feedback scheme. For topology
management techniques in ad-hoc networks, the reader is
referred to [24].

VIII. CONCLUSIONS

We have presented iHEED: a system that integrates energy-
efficient node clustering with data aggregation trees in sensor
networks. iHEED prolongs the network lifetime and reduces
contention on communication channels. We proposed a simple
credit-point system (CREP) for tracking the energy dissipated
in different sensor components. CREP assists in electing
more energy-capable cluster heads. We implemented iHEED
into TinyOS. Our experiments on a sensor network testbed
demonstrate that by using clustering and data aggregation,
the network lifetime is prolonged by a factor of 2 to 4,
the number of successful transmissions is almost doubled,
and the maximum overhead is reduced to less than half (for
the studied application). Future extensions of this system
will consider multiple cluster head overlays for reliability,
efficient node duty cycles, and message authentication. We
also plan to incorporate more operators, such as MEDIAN

and VARIANCE.

ACKNOWLEDGMENTS

We are extremely grateful to Saurabh Bagchi (Purdue
University) for lending us sensor testbed nodes, and to Sam
Madden (MIT), Fan Ye (IBM), and Victor Shnayder (Harvard
University) for several useful discussions.

REFERENCES

[1] F. Kuhn, T. Moscibroda, and R. Wattenhofer, “Initializing Newly De-
ployed Ad-hoc and Sensor Networks,” in Proceedings of ACM MOBI-
COM, September 2004.

[2] O. Younis and S. Fahmy, “Distributed Clustering in Ad-hoc Sensor Net-
works: A Hybrid, Energy-Efficient Approach,” in Proceedings of IEEE
INFOCOM, Hong Kong, March 2004, an extended version appeared in
IEEE Transactions on Mobile Computing, 3(4), Oct-Dec 2004.

[3] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “An
Application-Specific Protocol Architecture for Wireless Microsensor
Networks,” IEEE Transactions on Wireless Communications, vol. 1,
no. 4, pp. 660–670, October 2002.

[4] H. Chan and A. Perrig, “ACE: An Emergent Algorithm for Highly
Uniform Cluster Formation,” in Proceedings of the First European
Workshop on Sensor Networks (EWSN), January 2004.

[5] O. Younis and S. Fahmy, “Energy-Efficient Routing and Data Aggrega-
tion in Sensor Networks: An Experimental Study,” Purdue University,
Tech. Rep. CSD-TR-04-031, December 2004.

[6] “TinyOS,” http://www.tinyos.net, 2005.
[7] J. Hill, “System Architecture for Wireless Sensor Networks,” Ph.D.

dissertation, University of California at Berkeley, 2003.
[8] A. Woo, T. Tong, and D. Culler, “Taming the Underlying Challenges of

Reliable Multihop Routing in Sensor Networks,” in Proceedings of ACM
Conference on Embedded Networked Sensor Systems (ACM SenSys),
November 2003.

[9] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed Diffusion: A
Scalable and Robust Communication Paradigm for Sensor Networks,”
in Proceedings of ACM MOBICOM, 2000.

[10] “CrossBow,” http://www.xbow.com/, 2005.
[11] “Habitat Monitoring on Great Duck Island,”

http://www.greatduckisland.net/, 2005.
[12] S. Madden, “The Design and Evaluation of a Query Processing Archi-

tecture for Sensor Networks,” Ph.D. dissertation, MIT, 2004.
[13] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris, “A High-

Throughput Path Metric for Multi-Hop Wireless Routing,” in Proceed-
ings of ACM MOBICOM, September 2003.

[14] V. Shnayder, M. Hempstead, B.-R. C. G. Werner, and M. Welsh,
“Simulating the Power Consumption of Large-Scale Sensor Network
Applications,” in Proceedings of ACM Conference on Embedded Net-
worked Sensor Systems (ACM SenSys), November 2004.

[15] “Multihop Routing for TinyOS,” http://www.tinyos.net/tinyos-
1.x/doc/multihop/multihop routing.html, 2004.

[16] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo,
E. Brewer, and D. Culler, “The Emergence of Networking abstractions
and Techniques in TinyOS,” in Proceedings of the USENIX/ACM Sympo-
sium on Networked Systems Design and Implementation (NSDI), 2004.

[17] L. Krishnamachari, D. Estrin, and S. Wicker, “The Impact of Data
Aggregation in Wireless Sensor Networks,” in Proceedings of IEEE
International Conference on Distributed Computing Systems (ICDCS),
July 2002.

[18] Y. Yao and J. Gehrke, “The Cougar Approach to In-Network Query
Processing in Sensor Networks,” in ACM SIGMOD record, 2002.

[19] “Tiny Diffusion,” http://www.isi.edu/scadds/software/, 2004.
[20] N. Shrivastava, C. Buragohian, A. Agrawal, and S. Suri, “Medians and

Beyond: New Aggregation Techniques for Sensor Networks,” in Pro-
ceedings of ACM Conference on Embedded Networked Sensor Systems
(ACM SenSys), November 2004.

[21] K. Kalpakis, K. Dasgupta, and P. Namjoshi, “Maximum Lifetime Data
Gathering and Aggregation in Wireless Sensor Networks,” in IEEE
International Conference on Networking (ICN), 2002.

[22] K. Dasgupta, K. Kalpakis, and P. Namjoshi, “An Efficient Clustering-
based Heuristic for Data Gathering and Aggregation in Sensor Net-
works,” in IEEE Wireless Communications and Networking Conference
(WCNC), 2003.

[23] T. He, B. Blum, J. Stankovic, and T. Abdelzaher, “AIDA: Adaptive
Application-Independent Data Aggregation in Wireless Sensor Net-
works,” ACM Transactions on Embedded Computing Systems, vol. 3,
May 2004.

[24] P. Santi, ”Topology Control in Ad Hoc and Sensor Networks”. John
Wiley and Sons, 2005.

