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Abstract

We design an efficient on-line approach,FlowMate, for
partitioning flows at a busy server into flow groups that
share bottlenecks. These groups are periodically input to
congestion coordination, aggregation, load balancing, ad-
mission control, or pricing modules.FlowMate uses in-
band packet delay measurements to the receivers to deter-
mine shared bottlenecks among flows. Packet delay infor-
mation is piggybacked on returning feedback, or, if impossi-
ble, flow (e.g., TCP) round trip time estimates are used. We
simulateFlowMate to examine the effect of network load,
traffic burstiness, network buffer sizes, and packet drop
policies on partitioning correctness. Our results demon-
strate accurate partitioning of medium to long-lived flows
even under heavy load and self-similar background traf-
fic. Experiments with HTTP/1.1 flows demonstrate difficul-
ties in partitioning bursty foreground traffic. We also study
fairness of coordinated congestion management when inte-
grated withFlowMate.

1 Introduction

Current end system congestion control mechanisms reg-
ulate the sending rate of each individual connection (flow)
according to network conditions assessed by that particular
connection. Recent research has shown that coordinating
congestion control decisions among certain flows at a busy
end system (e.g., ftp/Web server) can increase the collec-
tive performance of the flows [3, 18]. An important prob-
lem in addressing coordinated congestion management is
the partitioning of flows from a single sender to multiple
receivers into groups, in order to perform congestion man-
agement decisions on a per-group basis. In current coor-
dinated congestion management approaches [2, 9, 17, 22],
flows between the same hosts (or same LANs) are grouped
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together. This strategy assumes that those flows will likely
share the samebottlenecksalong their paths. This, however,
may not necessarily be true, due to network address trans-
lation (NATs), quality of service (e.g., using several queues
at certain router ports), load balancing schemes, and disper-
sity routing [1]. In these cases, flows destined to the same
host or LAN may be routed on different paths with different
bottlenecks, and, consequently, should not be grouped and
coordinated. Moreover, extending coordination benefits to
flows that share the same bottlenecks, but arenot destined
to the same host, can significantly enhance performance.

In this paper, we examine on-line partitioning of flows
at a sender into groups with shared bottlenecks, without in-
troducing out-of-band traffic. The problem can be stated as
follows: given a set of flowsF = ff1; f2; : : : ; fng, we de-
sign a mapping protocolP that periodically maps each flow
fj , 1 � j � n, to exactly one groupgi, 1 � i � k, in a set
of k groups, such that8i, all flowsfj 2 gi, share a common
bottleneck. Our approach, which we callFlowMate, can be
integrated with any congestion coordination scheme that co-
ordinates decisions within each groupgi, such as the Con-
gestion Manager [3] or TCP-Int [2]– the partitioning and co-
ordination schemes are completely orthogonal.FlowMate
outputs flow groups that can also be input to load balanc-
ing, admission control, and pricing modules.

We use the packet delay correlation test proposed in [21]
to periodically determine shared bottlenecks and partition
flows. Delay correlation tests usually converge faster than
loss correlation, and yield more accurate results. Delay cor-
relation tests, however, impose the requirement of times-
tamping packets. We extend the techniques for timestamp-
ing packets in [13] for this purpose. The TCP timestamp-
ing option is currently supported in TCP implementations
in most operating systems, such as FreeBSD, Linux, and
Windows (it is currently enabled by default in the Windows
2000 TCP implementation). We use TCPround trip time
(RTT)estimates (which TCP maintains for timeout compu-
tation purposes), however, if timestamping is not possible.

Since TCP flows comprise the majority (80% or more)
of traffic in the Internet, we experiment with TCP flows,



although our algorithm can be generalized to any flow for
which delay information can be obtained (e.g., feedback in-
formation gathered by RTCP). Partitioning requires a time
scale larger than the life-time of very short TCP connections
(e.g., small HTTP/1.0 transfers) to converge. Long TCP
connections (such as file downloads) still comprise a domi-
nant trafficloadon the Internet (the heavy-tail portion of the
distribution). With the growing popularity of peer-to-peer
applications, connections used in these applications, mainly
media files FTP, are mostly long-lived. At the server, parti-
tioning such medium to long-lived connections (called ele-
phants in the literature, e.g., [14]), and coordinating conges-
tion decisions within a group, increases responsiveness and
fairness among all flows originating from the same server.
We integrate our algorithm with a coordinated congestion
management strategy and illustrate the improved fairness.

FlowMatehas the following features that distinguish it
from other approaches in the literature: (1) no generation
nor transmission of out-of-band probing traffic, (2) on-line
adaptivity to flow and network dynamics during flow life-
times, (3) completely end-to-end: sender side only, or with
timetamping support at receivers, and (4) low overhead and
complexity.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 explains our de-
sign in detail. Section 4 analyzes the performance ofFlow-
Mate in a number of network configurations with HTTP,
FTP and Telnet traffic, and demonstrates the effect of net-
work parameters on a correctness index metric, which we
define. Section 5 studies the performance ofFlowMatein-
tegrated with coordinated congestion management. Finally,
section 6 summarizes our conclusions and discusses future
work.

2 Related Work

Coordination among flows has been proposed and stud-
ied in [2, 3, 9, 18]. The congestion manager (CM) [3]
provides a general framework for applications to coordi-
nate congestion management decisions among flows be-
tween the same end systems. Other schemes also follow
the same-end-system paradigm in coordination, including
TCP-Int [2], Ensemble-TCP [9, 22], and TCP Fast Start
[17]. Padmanabhan [18] studies the benefits of performing
coordinated congestion control, and identifies topology dis-
covery, delay and/or loss correlation, and enhanced notifi-
cation as means of detecting shared bottleneck links among
flows.

Recently, a number of studies have investigated the in-
ference of internal network characteristics using end-to-
end measurements (sometimes referred to as “network to-
mography”), by applying innovative statistical techniques
[5, 8, 12, 15, 21]. Katabi et al [15] use an entropy fuc-

tion to compute correlation among flows at the receiver.
This technique does not require probe traffic and proposes
general flow partitioning algorithms, but partitioning cor-
rectness degrades under heavy cross-traffic. More recent
measurement results using Renyi (as opposed to Shannon)
entropy demonstrate more robust partitioning [16]. Ruben-
stein et al [21] propose novel loss and delay correlation tests
among flows to determine shared bottlenecks. They inject
Poisson probes to collect loss or delay information. They
do not use in-band measurements or present a general par-
titioning algorithm. Moreover, they do not discuss main-
taining information from multiple receivers. We adopt their
delay-correlation test, but address the additional issues re-
quired for its on-line application for multiple flows at a busy
server. Delphi [20] sends probes at the sender to collect de-
lay information from receivers organized in a multifractal
wavelet model to infer the amount of cross traffic at certain
bottlenecks. Harfoush et al [12] use Bayesian probing in-
stead of Markovian probing to infer shared losses. Their
approach is more effective with active probing, rather than
in-band measurements.

To avoid problems with collecting delay information and
clock synchronization, correlation among TCP round trip
time (RTT) estimates (e.g., [6]) or throughput estimates at
the sender (e.g., [23]) may substitute one-way delays. Al-
though using these metrics eliminates any changes (e.g.,
timestamping support) to the receiver, the delay on the for-
ward path cannot be isolated from that of the reverse path
and the delays at the receivers themselves, as discussed in
the next section.

3 FlowMateDesign

This section describes our system and analyzes its com-
plexity. More details, including data structures and pseu-
docode, are provided in [27].

3.1 Basic Architecture
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Figure 1. One possible FlowMateorganization

TheFlowMatemodule can be invoked to provide infor-



mation about groups of flows sharing common bottlenecks
along their paths from a sender to various receivers. One
FlowMateorganization is depicted in figure 1. Basic mod-
ifications to the TCP implementation are required at the
sender side to provide delay samples for correlation. Pack-
ets are timestamped before being sent. Usable samples are
later selected at the “Sampler” when timestamped ACKs are
received, as described in section 3.3. Sample delay lists are
then provided to the “Flow Correlator” module, which per-
forms partitioning and sends the resulting groups to other
modules, e.g., load balancer. Another possible organization
of F lowMate is at the application layer.

3.2 Correlation Tests

The delay correlation test that we use inFlowMatewas
proposed in [21] to statistically identify shared bottlenecks
using Poisson-distributed probe packets. We apply an anal-
ogous method on actual data packet delays. Pearson’s cor-
relation function [21, 25] is used on the delay samples as
follows:

rxy =

Pn

i=1 (xi � x)(yi � y)
pPn

i=1 (xi � x)2
Pn

i=1 (yi � y)2
(1)

where,rxy is the correlation coefficient (with range[�1; 1])
of the two sample setsxi andyi whose averages arex andy
respectively. The closerrxy approaches+1 (�1), the more
positively (negatively) linear the samples(xi; yi) are. If
rxy = 0, the samples show no linear relationship.

The correlation test among two flows is defined as fol-
lows [21]: (1) Compute thecross-measure, Mx, between
pairs of packets in two flowsf1 and f2, spaced apart by
time t > 0. (2) Compute theauto-measure, Ma, between
packets within a flow, spaced apart by timeT > t. (3) If
Mx > Ma, then the flows share a common bottleneck, oth-
erwise they do not. The intuition behind this test is that if
two flows share a bottleneck, then the cross correlation co-
efficient should exceed the auto correlation coefficient, if
the spacing between packets of different flows at the bottle-
neck is smaller than the spacing between packets within the
same flow.

3.3 Delay Computation

The delays of packets on the forward path from sender
to receiver should be collected at the sender. If timestamp-
ing ACKs is not possible, RTT samples (which TCP any-
way computes for retransmission timeout calculation pur-
poses) are used instead. The receiver need not handle the
TCP timestamping option field (or an equivalent applica-
tion layer mechanism) in this case: the receiver is entirely
FlowMate-unaware. Using RTT information instead of for-
ward delay may, however, degrade the partitioning accuracy

Table 1. RTT vs. forward delay sampling
RTT Forward delay

Transparency Receiver is com-
pletely F lowMate-
unaware

Receiver is
F lowMate-aware

Overhead None at receiver Timestamping over-
head at receiver

Accuracy Less accurate due to
return path bottle-
necks

More accurate due to
timestamping

when bottlenecks in the reverse direction alter the packet de-
lay correlation properties. Furthermore, delayed acknowl-
edgments (and even the operating system and scheduling at
the receiver) affect the RTT. We have repeated all our exper-
iments in section 4 with RTT samples instead of one-way
delays, and the reduction in accuracy values was less than
5%. This performance degradation is primarily due to the
interference of reverse path bottleneck dynamics with delay
correlation values. Table 1 compares the pros and cons of
using RTT vs. forward delay sampling.

Standard timestamping mechanisms presented in [13]
use the Options field in the TCP header [19] to include the
time a packet is sent by the sender, and the time an ACK is
sent by the receiver, as shown in figure 2. We extend this
field (KIND=8) to also include the time at which the packet
was received. (Alternatively, this information can be added
to the application layer payload if the receiver does not sup-
port this extension.) Note that clock-skewness between the
sender and receiver clocks is not a problem if it is approxi-
mately constant throughout the flow duration.

10 TS Echo Reply

1 1 4 4

1 4 4 4

Kind = 8

Kind = 8

TS Value

TS Recv. TimeTS Echo ReplyTS Value14

1

Figure 2. Extending the timestamped ACK op-
tions field

Since packet queueing and processing times at destina-
tion are usually negligible when compared to its propaga-
tion delay, it is possible to use ACK send time as an in-
dication of packet reception time. This serves to keep the
timestamping standard unaltered, but at the expense of re-
duced accuracy, especially for host machines with limited
processing capabilities.



3.4 In-Band Packet Sampling

The scalability of out-of-band delay correlation tests to
flows at a busy server is limited due to the need for generat-
ing and transmitting Poisson probes on all flow paths [21].
For example, a server sending flows to one thousand des-
tinations has to send another one thousand probing flows,
which is a large overhead and consumes a significant por-
tion of the server’s resources. To avoid injecting out-of-
band control traffic in the network, we use selected data
packets as samples. The sampling proceeds as follows. For
the two flows being tested, we merge the two sets of sample
delays according to their packet send times. We compute
the average spacing between every two consecutive pack-
ets,t. Then, to compute the autocorrelation coefficient of
one of the two flows, samples are selected from its sample
set with packet spacing higher thant. Samples that are not
used in the autocorrelation test due to packet spacing viola-
tion are marked and are not used in cross correlation compu-
tation (for each particular test). This is the main restriction
on the correctness of the correlation tests (as explained in
[21]), and not how probes are distributed. To verify this,
we repeated our experiments with the following sampling
approach: we selected data packets that are closest to Pois-
son probe send times (at a rate of 10 Poisson samples per
second), and then applied the spacing restriction discussed
above. Our results were not significantly different from the
general case described above (without Poisson sampling).
Therefore, in section 4, we only use the inter-packet spac-
ing restriction.

3.5 Triggering Partitioning

It is important to trigger partitioning only when sufficient
samples are usable. This cannot be easily achieved for all
flows, however, since each flow has its own congestion win-
dow according to its start time and encountered losses. As-
sume that the last partitioning process was invoked at time
t. We next trigger partitioning at timet + d, whered is a
period during which all flows have received at least a min-
imum of M delay values. Assuming a minimum ofk us-
able samples are required for correlation testing, the thresh-
old M is selected to be at least twice the value ofk. We
have experimentally determined thatk � 10 is usually ade-
quate. Under low background load, at least 20 samples are
required for accurate results because inter-packet spacing is
large, thus requiring more samples to capture the delay pat-
tern. The value ofk is also dependent on how packets of
various flows are interleaved. With little interleaving, more
samples are required for accurate partitioning, as discussed
in section 4.3.5. If a timedmax elapses before the thresh-
oldM is satisfied for all flows, partitioning is automatically
triggered. In this case, we only consider flows with suffi-

cient samples. Flows which are not considered in the cur-
rent partitioning process do not appear in the output groups,
i.e., they are implicitly kept each in a one-flow group. To
prevent frequent triggering, partitioning is not invoked be-
fore a perioddmin elapses since the last partitioning.

3.6 Partitioning

FlowMatepartitioning starts with empty group lists and
a set of target flows (with sufficient samples) to be grouped.
We designate a “representative” flow in every group. A new
flow is only compared to the group representative to deter-
mine whether it should join the group. This ensures that all
flows that are grouped together are highly correlated with
the same representative flow.FlowMateselects the first flow
in a group to be its representative. Selecting and switch-
ing the group representative dynamically is currently under
study. A new flow is compared toall group representatives
to determine if it should join an existing group or create a
new group. Consider, however, the case when a new flow is
highly correlated with more than one group representative.
FlowMatefollows a conservative rule:no groupingis better
than incorrect grouping. The cross correlation coefficients
of the new flow in all successful tests are compared, and
the flow joins the group with highest cross coefficient. This
is because a flow typically exhibits the highest correlation
with the correct group. Optionally, whenever a new group
is created, all flows in other groups, except for the represen-
tatives, may be compared to the new group representative to
determine if they have a higher correlation with the newly
created group. This technique increases accuracy in cases
where flow delay patterns are similar. Note that the cross
and auto measures and their delay statistics are maintained
and continuously updated for every pair of flows that have
been tested. When partitioning is triggered, new samples
update the mean and variance of flow delay samples, and
consequently, the corresponding cross and auto measures.
Thus, history of correlation tests is kept in the data struc-
tures of the involved flows throughout their lifetime, and
decays gradually with the arrival of new samples (refer to
Pearson’s formula in Section 4.1).

3.7 Time Complexity

FlowMatecomputations are divided into two main com-
ponents: (1) sample selection, and (2) correlation tests. Us-
ing appropriate bounds in the triggering condition limits the
number of delay values to process for each flow. Computing
the coefficients depends on the number of selected samples,
which is less than the number of delay values received. As-
sume thatN flows are currently being partitioned;G is the
number of generated groups; andSg is the average group
size. FlowMate time complexity isO(NG), whereG is



Table 2. Simulation parameters
TCP flows 12–48; infinite FTP flows; Telnet flows;

HTTP/1.1 flows
Cross traffic 24 flows, CBR (256 Kbps each)
Background traf-
fic

to all receivers (256 Kbps
Pareto/traces)

Reverse traffic 64 Kbps average rate for each (from re-
ceivers to sender)

Queue size 250 packets (except in one experiment)
Drop policy Drop-Tail (RED in one experiment)

approximatelyN=Sg. This is better than comparing ev-
ery pair of flows which isO(N2). Therefore,FlowMate
partitioning is a lower-cost approximation of the K-Means
clustering technique [7]. In addition, flows with insufficient
samples are excluded from partitioning, which may further
reduce complexity.FlowMateoverhead is lowest if only a
few large groups are formed. Large groups do not require
as many correlation tests among individual flows (due to
the representative-based approach). The worst case occurs
if all flows do not share any common bottlenecks and each
is grouped separately, which would not occur often. This
is due to the locality of server requests, as well as Internet
topology power-law characteristics.

4 Performance Analysis

We have implementedFlowMate in the ns-2 network
simulator [24]. We have conducted several experiments to
evaluate its performance. In this section, we investigate
FlowMate robustness under heavy background traffic us-
ing Pareto sources or self-similar traces, and with various
foreground traffic models, including FTP, Telnet and HTTP.
We also study the effect of physical bandwidth constraints,
buffer sizes, drop policies andFlowMateparameters. Ta-
ble 2 summarizes the simulation parameters. Two topolo-
gies (one symmetric and one asymmetric) are used in the
experiments. In the first topology (figure 3), a single source
has a number of concurrent TCP connections with receivers
on three different branches. The upper two branch links are
bottlenecks with bandwidths 1.5 Mbps and 3 Mbps, respec-
tively. The third branch link has a bandwidth of 10 Mbps,
but is congested by a number of cross CBR flows. All other
links have a capacity of 10 Mbps. A number of multiplexed
Pareto flows (originating at the same source) are generated
as background traffic. Other multiplexed Pareto flows are
generated by the receivers in the reverse direction.

Figure 4 depicts the second simulation topology, where
the upper two branch links have limited bandwidth, while
the link on the third branch is congested by high back-
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ground traffic load. This topology is not as symmetric as
the first one. Background traffic is injected using a real traf-
fic trace (the “Star Wars” movie [11]). One “Star Wars”
flow is transmitted on each of the three main branches start-
ing from routerr2 to a randomly-chosen receiver on each
branch, so as not to create a bottleneck on the main shared
path. In both topologies, three groups of flows comprise the
expected partitioning: one group for each one of the three
branches.
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4.1 Group Accuracy Metric

Partitioning inaccuracies are introduced by either erro-
neous grouping of flows (including merging two or more
groups) or splitting a group into two or more subgroups. We
use the term “false sharing” (fs) to denote erroneous group-
ing of a flow with a group it does not share bottlenecks with.
Let N denote the total number of flows;Gc denote the set
of correct groups;Gr denote the set of resulting groups;



nfs denote the number of flows grouped erroneously in a
resulting group; andsj denote the number of subgroups of
a correct group2 Gc that was split intosj subgroups inGr.
The group accuracy index (AI) is computed as follows:

Accuracy Index (AI) = 1�

PjGrj
i=1 (nfs)i

N
�

PjGcj
j=1 (sj � 1)

N

where(nfs)i of a groupgi 2 Gr is computed as follows:
Mapgi to a corresponding groupgc 2 Gc, such thatjgi\gcj
is maximized. The total number of flowsf such thatf 2
gi ^ f =2 gc is the number of flows grouped erroneously
(nfs)i.

For example, consider 6 flows with correct groups
f1,2,3g andf4,5,6g. If the groups produced byFlowMate
aref1,2g, f3,4,5g, andf6g, then the accuracy index is com-
puted as:1 � 1

6 �
(2�1)

6 = 0:67. In this case, one sixth is
deducted for flow 3, which was incorrectly grouped, and
another one sixth is deducted for the split of groupf4,5,6g
into groupsf4,5g andf6g. Note that a single flow is pe-
nalized only once, either for being grouped incorrectly, or
for not being grouped (merged). Table 3 gives some ad-
ditional examples. Note that, in general random grouping
will not just yield results similar to coin flipping (i.e., 0.5).
That is because random grouping will most likely result
in a wrong number of groups in addition to false sharing
per group. This will usually result in less than 50% accu-
racy. Our metric is different from the ones presented in [15].
The metric that we present accounts for all types of errors
with weights based on their severity (false sharing is worse
than group splitting). In [15], one metric is proposed for
each error type, and one metric tries to account for all er-
ror types (all with the same weight). There is no case in
whichall flows are erroneously grouped. Therefore, the ac-
curacy index varies between a fraction (above 0) and 1. For
a fixed number of flows, as the number of correct groups in-
creases (decreases), the average number of flows per group
decreases (increases). Therefore, the merge effect is, on the
average, diminished (exacerbated). The split effect is con-
stant, since it only depends on the number of flows. Our
interpretation of accuracy considers a group split into two
or more groups to be of equal severity (thus prompting an
equal deduction) to incorrect grouping of one flow (while
incorrect merging of two groups entails a penalty for each
flow that was incorrectly merged with the larger set). This
may be too strict, since group splits often occur during tran-
sient periods. In addition, group splits have fewer undesir-
able effects than false sharing. A group split simply does not
exploit the full benefits of coordination among the group,
but the consequent decisions (congestion control, load bal-
ancing, or pricing) are not incorrect. This is in contrast to
false sharing which may, for example, cause a flow to enter
the slow start phase if other members of that group are bot-
tlenecked. We are currently investigating the effectiveness

Table 3. Computing the accuracy index
(AI) for 10 flows with 2 optimal groups
(f1,..,5g,f6,..,10g)

Output Groups AI Interpretation

All split: f1g, f2g,� � �,f10g 0.2 1 correct flow per
group

All merged:f1,2,� � �,10g 0.5 only 1 correct group
Splitting: f1,2,3g, f4,5g,
f6,7,8g, f9,10g

0.8 2 errors (splits)

More splitting: f1,2g,
f3,4g, f5g, f6g, f7,8g,
f9,10g

0.6 4 errors (splits)

Some false sharing:
f1,� � �,7g, f8,9,10g

0.8 2 errors (flows 6 and
7)

More false sharing:
f1,� � �,9g, f10g

0.6 4 errors (flows 5 to 9)

Combined errors:f1,2,3g,
f4,5,6,7g, f8,9,10g

0.7 3 errors (1 split + 2
false sharing)

Combined errors: f1,2g,
f3,4g, f5,6g, f7,8g, f9,10g

0.6 4 errors (3 splits + 1
false sharing)

of our accuracy index metric more carefully.

4.2 FlowMateAccuracy

In this section, we discuss the results of experiments on
the topology in figure 3. In our first experiment, we com-
pute the accuracy index with different numbers of flows.
Figure 5(a) shows the performance using 24, 36, and 48
TCP flows as foreground traffic. To interpret the results
more easily, we trigger partitioning at fixed intervals and
do not trigger it early if sufficient samples are received be-
fore dmax. All the other triggering rules apply (not before
dmin and flows with insufficient samples are discarded).
The value used fordmax is 6 seconds. Therefore, the re-
sults of the first partitioning can be seen at time 6 seconds,
the second at time 12, and so on. Triggering partitioning
according to the number of samples (as proposed in sec-
tion 3.5) may improve system performance (e.g., conges-
tion control or load balancing) if it occurs betweendmin

anddmax. The main effect of only triggering atdmax in-
tervals onFlowMate accuracy computation is to alter the
number of flows considered for partitioning (according to
their number of samples). Note that we compute the accu-
racy index by comparing against a static correct partition-
ing, even though the background traffic variations entail a
dynamic partitioning goal. We select this more conserva-
tive approach for ease of accuracy index computation, and
to show the worst case index value.

We observe that in steady state, performance is reason-
able (average index> 90%). During the initial transient pe-
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Figure 5. Accuracy index with FlowMate

riod, which includes the first one or two partitioning invoca-
tions, sample delay patterns are not unique for each group of
flows, so accuracy is lower. After the transient, accuracy is
higher: observed inaccuracies are mostly due to a few group
splits. Flows used in this experiment start at 10 to 50 ms in-
tervals apart. We also perform experiments with more stag-
gered start times with 36 TCP flows and 12 receivers. In the
first experiment, half of the flows begin at time zero (using
a 40 ms mean interval between flows), and the remaining 18
start around 30 seconds later. In a second experiment, one
third of the flows start near time zero, another third after
approximately 18 seconds, and the last third after approxi-
mately 36 seconds. Finally, we conduct a third experiment
where flows are divided into 4 groups, each starting at times
near 0, 18, 30, and 48 seconds. The performance results
are depicted in figure 5(b). A large number of flows start-
ing during the same period causes an abrupt degradation in
accuracy, unlike the case where flows are added gradually.
The performance is still reasonably good in the steady state,
and if a dynamic accuracy metric (that considers transient
bottlenecks) is used, the accuracy index increases.

4.3 Impact of Network Conditions

The performance ofFlowMate is affected by network
conditions. Router buffer size is an important network pa-
rameter since the delay correlation test performs better in
networks with large buffer sizes [21]. The packet drop pol-
icy and traffic patterns may also impact the results. We
demonstrate the effect of these parameters on the topology
shown in figure 4. The effect of varying the maximum cor-
relation interval durationdmax does not have a profound
impact on the results. Results fordmax values between 2
and 10 seconds follow almost the same pattern as the re-
sults with 6 seconds given in this section (see [27]). Be-
low 2 seconds, number of samples are too few that many
flows are discarded from the partitioning process, whereas
when the correlation period is too long (above 10 seconds),
accuracy is not enhanced. As mentioned above, the “Star
Wars” trace is used as a source of self-similar background
traffic, except when varying background traffic load, when
a number of Pareto sources are multiplexed (in order to eas-
ily experiment with different background rates and on/off
periods). 24–36 TCP flows are used as foreground traf-
fic, evenly divided among all 12 receivers, and, as before,
the correct partitioning is three groups– one for each main
branch. Simulation time is 60 seconds. This allows the
effect of the transients to be visible, even in experiments
where the average accuracy is computed over the simula-
tion period.

4.3.1 Buffer Size

Although the delay correlation is more clearly manifested
in bottlenecked routers with long queues, varying buffer
sizes from 50 to 500 packets does not result in significant
performance variation in steady state, as illustrated in fig-
ure 6. Detailed results for specific buffer sizes are given
in [27]. Variation in performance is more pronounced dur-
ing the transient period, which is expected any time a large
number of connections start at the sender simultaneously.
We believe that having routers with larger buffers usually
increases performance.

4.3.2 Packet Drop Policy

The most common drop policy used in routers is Drop-Tail.
We use this policy in all our experiments, except in this ex-
periment, where we use Random Early Detection (RED).
Figure 7 shows the resulting accuracy index in three cases.
One case uses the Drop-Tail policy for all queues, another
case uses some Drop-Tail and some RED queues, and the
last case uses only RED in all queues. Results show that
using RED for all queues reduces the accuracy. This agrees
with the results presented in [12] about Markovian probing
performance with the RED queuing discipline. The reason
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Figure 6. Average accuracy index (averaged
over the simulation time) with different buffer
sizes

for RED interference is that random packet drop alters sam-
ples and introduces noise to the correlation process. Varia-
tions among different flow delay patterns are also reduced
by RED, which complicates the process of determining the
best group for a certain flow. This is consistent with the
results presented in [21]. The Drop-Tail policy currently
prevails in Internet routers, however, and even with the use
of other policies insomerouters on a path,FlowMatestill
performs reasonably well.
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Figure 7. Effect of packet drop policy

4.3.3 Background Traffic Load

We study the performance ofFlowMate in our two config-
urations (figure 3 and figure 4) under different background
traffic loads: we multiplex a number of Pareto sources, each
with average rate of 400 Kbps. The Pareto sources are syn-
chronized to start at the same time (1 second before fore-
ground traffic starts). The load values shown on thex-axis
in figure 8 are computed according to the first branch which
has the least physical bandwidth; load is slightly lower on
other branches. Results show thatFlowMateis robust under
heavy background traffic. We also conducted another exper-
iment in which the ratio of the on/off periods of the Pareto

sources is varied to demonstrate the effect of different burst
sizes. The results illustrated that performance is consistent,
which indicates that different on/off period ratios have a rel-
atively minor effect on the partitioning accuracy. It is worth
noting that performance on the more complex configuration
is superior to the simpler one. This can be attributed to its
asymmetric nature.
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Figure 8. Performance under different back-
ground loads

4.3.4 Foreground Traffic Load

In our experiments thus far, we have used FTP applications
as our foreground traffic sources. In this experiment, we
demonstrate the effect of higher burstiness in foreground
traffic, and determine the number of samples required for
correct results. We use Telnet traffic with bursty packet
inter-arrivals, and control the packet inter-arrival meant.
As shown in figure 9, a larget value reduces the number
of samples available for correlation and consequently re-
duces accuracy. Fort = 100 ms, the figure depicts signif-
icant performance degradation since very few samples are
used in the correlation tests. In most of the cases where
we saw group splits, the number of available samples was
less than 10 per flow. Degraded performance continues
throughout the simulation period. We conclude that large
average packet inter-arrival times limitFlowMateeffective-
ness, since the reduced number of samples either disables
the partitioning entirely or impacts the results. See [27] for
results with other inter-packet arrival periods.

4.3.5 HTTP Traffic

Many problems arise when HTTP traffic is considered.
First, most HTTP connections are short-lived [14]. This
implies that a connection may very well terminate before
partitioning is triggered, even for a smalldmin value. Sec-
ond, since HTTP packets are sent in short bursts, and since
we only select samples whose inter-packet spacing exceeds
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Figure 9. Performance degradation with
bursty Telnet traffic

Table 4. HTTP simulation parameters
Number of web clients 12, 18, and 24
Number of sessions/client 20
Mean number of pages/session 50
Mean inter-page interval 10 ms
Mean page size 12 KB
Mean number of embedded objects/page2
Mean object size 120 KB

the inter-flow packet spacing, then we may have no avail-
able samples during many intervals. The above two prob-
lems are exacerbated by the delayed ACKs option, which
delays receiver ACKs in order to piggyback them on any
available data in the reverse direction. Fortunately, these
problems are somewhat mitigated by HTTP/1.1 with persis-
tent or pipelined connections [10]. The HTTP/1.1 specifi-
cation entails that connections are not terminated after each
request/response as in the case of HTTP/1.0. A connection
remains alive to be used for other requests and only times
out if it stays idle for a specified interval of time. Although
this resolves the short connection problem, burstiness re-
mains an important concern.

FlowMate was applied to HTTP/1.1 traffic on the two
configurations in figure 3 and figure 4. We used the SURGE
model [4] for web workload traffic generation. This model
is implemented in “nsweb” [26]. Table 4 summarizes the
HTTP/1.1 parameters used in our experiments. SURGE pa-
rameters are chosen as in [4], while other parameters used
in the experiments are similar to those in [26]. Figure 10
depicts the performance ofFlowMateusing different num-
bers of web clients on the first configuration with 12 re-
ceivers (see [27] for results for the second configuration).
Performance is similar with different numbers of clients.
Note that, performance is still better than random group-
ing, which will most probably yield less than 50% accuracy
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Figure 10. Using FlowMatewith HTTP/1.1

as explained in Section 4.1. We have found that accuracy
is actually higher than what is computed by our accuracy
metric. This is because the metric compares against static
groups throughout the simulation, and does not capture sce-
narios where two flows have samples with totally disjoint
sets of send times. In such cases, the correlation test cor-
rectly fails, andFlowMateavoids false sharing. We con-
clude that partitioning HTTP flows significantly depends
on two main factors, namely, connection lifetime and traf-
fic burstiness. While it is still possible forFlowMate to
perform reasonably well under some burstiness, connection
life-time is crucial in determining if partitioning is applica-
ble. When partitioning is triggered, short-lived flows have
either already terminated and their information has been
deleted, or they do not exceed the minimum threshold of
samples required to be considered in the correlation pro-
cess. Partitioning flows that do not provide enough samples
is not of any importance. However, popular destinations
can be actively probed periodically so that flows destined to
them are easily partitioned.

5 Application of FlowMate to Coordinated
Congestion Management

In this section, we demonstrate one application that may
benefit fromFlowMate, namely, coordinated congestion
management. As previously stated, groups of flows can be
provided as the input to any coordinated congestion man-
agement scheme, such as CM. We implement a simple coor-
dination mechanism that works as follows. Each flow main-
tains its own congestion window. When loss is detected by
any member of a group, all group member windows are re-
duced to react to incipient congestion. All group members
increase their windows afterthreeconsecutive window in-
creases within the group. Thus, flows react more conser-
vatively to detected available bandwidth. Experiments are
conducted using the configuration in figure 4. Figures 11(a)
and (b) show the number of ACKed packets during a simu-
lation period of 120 seconds for one of the resulting groups,



without and withFlowMateand simple coordination. Fig-
ure 11(b) illustrates that the flow throughput values are more
similar and consequently fairness among flows sharing a
common bottleneck is better withFlowMate. We believe
that using flow groups generated byFlowMate in schemes
such as [2, 3, 9, 17, 22] will extend the benefits of these con-
gestion coordination schemes to flows with different desti-
nations but common bottlenecks. Moreover,FlowMatewill
also prevent false sharing of state among flows with differ-
ent bottlenecks.
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Figure 11. Using FlowMatefor congestion co-
ordination

6 Conclusions and Future Work

In this paper, we have presentedFlowMate, an algorithm
that exploits end-to-end packet delays to periodically par-
tition flows originating at a busy sever into groups, based
upon whether they share bottlenecks.FlowMatedoes not
require generation and transmission of probe traffic for col-
lecting delay information. Although using out of band
probes introduces little load (usually about 5% of the to-
tal load), the overhead of generating probe flows is propor-
tional to the number of flows to be grouped. Moreover, a

flow and its corresponding probe flow may not follow the
same path, and may, consequently, face different bottle-
necks. This emphasizes the need for a scheme to dynam-
ically group flows based on in-band measurements.

FlowMate will likely produce multi-member groups at
a busy server, due to the locality of requests and Internet
topology characteristics. Therefore,FlowMate complex-
ity, which depends on the number of groups, is reasonable.
FlowMateaccuracy is high in various configurations with
different propagation delays, bottlenecks, buffer sizes, and
drop policies. The main factor that degrades performance
is the burstiness of the flows being partitioned themselves,
as seen in our HTTP/1.1 and Telnet results. Background
traffic load and burstiness do not have a detrimental effect,
due to our design which considers the history of correlation
statistics.

We have implementedFlowMate in the Linux kernel
v2.4.17. We plan to measure the benefits ofFlowMatewith
coordination schemes in wide area experiments. UDP flows
may also be considered by measuring delays at the applica-
tion layer. For example, RTP flows can be grouped with
TCP flows or with each other (at large time scales) and con-
trolled according to multimedia application requirements.
Finally, we will integrateFlowMateinto other components
in addition to congestion management– specifically in load
balancing in overlay networks.
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