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Abstract—The reachability of IP address prefixes exhibits sig-
nificant fluctuations due to changes in both physical connectivity
and ISP routing policies. In the late 1990s, Labovitz et al.
performed an extensive study of inter-domain path stability by
analyzing BGP routing data. To reduce the noise in the BGP data,
e.g., transient updates during route convergence, they applied
several filters to preprocess the raw BGP data.

In this work, we investigate prefix reachability as advertised
by BGP, while revisiting the preprocessing filter design problem.
We show that the reachability analysis results are highly sensitive
to the specific filters applied and the parameters that control the
strength of the filters. In particular, we compute the Mean Time
to Failure and Recovery (MTTF and MTTR) as well as the up-
to-downtime ratios of prefixes, and find that these can fluctuate
by a factor of 10 by varying the filter parameters. We analyze
the impact of recent fiber cuts in the Mediterranean sea and the
Middle East, and study prefix reachability during a nine-month
period in 2007 to evaluate the general health of the Internet1.

Index Terms—BGP, prefix reachability, prefix availability

I. INTRODUCTION

While universal Internet reachability is taken for granted,
failures and attacks may lead to a significant loss in con-
nectivity across continents. Recent incidents illustrating this
problem include the Taiwan Earthquake of 2006 [1], and the
undersea cable cuts in 2008 [2], [3] which caused significant
disruptions and increase in web latencies to much of the
Middle East, Asia, and North Africa [4], [5]. Understanding
how inter-domain routing via the Border Gateway Protocol
(BGP) handles failures is challenging because of the immense
scale of the Internet, and BGP flexibility, for instance in
implementing policies based on business agreements.

In the late 1990s, Labovitz et al. [6], [7] performed an
extensive study of Internet routing instability by analyzing
BGP routing data. To reduce the effect of noise, they applied
several filters to preprocess the raw BGP data, where the
term “filter” denotes data processing operations that remove
biased data points. They quantified reachability, defined as the
existence of any path to a prefix, and examined how prefix
reachability changes over time, computing the Mean Time to
Failure (MTTF), i.e., mean time to loss of reachability of a

1This research is sponsored in part by NSF grants 0238294 and 0831353.

prefix, and the Mean Time to Recovery (MTTR), defined as
the mean time until a prefix is reachable.

In this work, we revisit the problem of prefix reachability
using BGP data collected from RouteViews [8]. Labovitz et
al. [6] had used filters with parameter values chosen either
without in-depth investigation, or based on measurements like
convergence time which can change over time based on the
BGP implementations deployed. Our contributions include:
(1) systematically studying the impact of the filter parameters
used in data preprocessing on the MTTF, MTTR, and prefix
availability, (2) comparing Internet “health” results obtained
in [6] to recent data, and (3) investigating prefix reachability
during the 2008 cable cuts in the Mediterranean sea and
the Middle East. We find that while the filters are useful
in studying the general health of the Internet, one has to
judiciously use them based on the goal of the measurement
study. We also find that today’s Internet is healthier than that of
the late 1990s, confirming the conclusions in [9]. Finally, our
results for the 2008 cable cuts demonstrate that the impact of
transient stress events can only be seen with minimal filtering.

The remainder of this paper is organized as follows. Sec-
tion II summarizes work related to our study, and Section III
describes our datasets. Section IV explains how we compute
MTTF and MTTR. In Section V, we discuss the design of
the filters. Section VI presents our results and observations.
Section VII concludes the paper.

II. RELATED WORK

In this section, we briefly review previous work closely
related to prefix stability and reachability.

Labovitz et al. studied Internet instability in the late
1990s [6], [7]. In [6], the authors compute the MTTF and
MTTR for both inter-domain and intra-domain paths. They
find the Internet to be remarkably robust with inter-domain
path MTTF close to 10 days and MTTR around 10 minutes,
and with intra-domain paths performing even better. Several
filters are applied to the dataset before computing these
values. These include choosing prefixes that were present in
the routing table for more than 60% of a 9-month period,
counting multiple failures within a 15-minute window as a
single failure, and excluding the loss of a peering session as a



source of failure. We explore how the filter parameters affect
the results, while repeating the reachability study for today’s
Internet. Recently, Li et al. [9] showed that BGP dynamics
are busier but healthier, compared to Labovitz’s study. They
classified BGP updates while studying temporal characteristics
and a peer’s contribution to the dynamics. Their work does not
follow-up on the availability of prefixes, which we address in
this paper. Closely related to our work, in [10], the authors
studied the reachability of a particular set of prefixes (DoD
prefixes). They found global unreachability (when none of
the peers can reach a prefix) durations to be fairly high with
17% of unreachability durations being longer than one hour.
Among data-plane-based monitoring systems, Hubble [11]
continuously monitors reachability of prefixes in the Internet
using many probing end hosts.

Several recent studies have focused on the impact of BGP
instability. The authors of [12] designed an online system
that not only identifies significant routing disruptions (by
correlating updates), but also estimates their impact on the
flow of traffic. Wang et al. [13] injected routing changes
on the PlanetLab testbed and studied changes in the end-
to-end performance using the metrics of packet loss, delay,
and reordering. A related problem (addressed in [14]) is how
instabilities in the control plane affect the data plane. Their
measurement study monitors traffic towards a sink behind a
BGP beacon with the beacon going up and down at regular
intervals. Finally, Wu et al. [15] studied the impact of large-
scale failures, e.g., the Taiwan earthquake, under a general um-
brella of analyzing routing resilience, and Renesys researchers
studied the effects of the Taiwan earthquake and the Middle
East and Mediterranean cable cuts, analyzing the number of
prefixes that were down or unstable [16].

Several studies aim at finding the root cause of BGP dynam-
ics [17], [18]. Several papers cluster updates into events [19],
[20], [21] by grouping updates within a certain time threshold.
Our work is orthogonal to these studies as we do not study the
root cause of routing events but rather their effect on prefix
reachability.

III. DATA SETS

We use RouteViews [8] as our source for BGP routing tables
and updates. Specifically, our data was obtained from route-
views2.oregon-ix.net which contains the Routing Information
Bases (RIBs) and Updates in MRT format. We used this source
as it was the largest data source in the MRT format, with
data dating back to October 2001. We used the RIBs and
update files for a period of 9 months from March to November
2007. These months were chosen to represent typical Internet
health since, to our knowledge, no major stress events were
reported during this period. The period length of 9 months
was selected to match Labovitz’s study [6], which enables a
direct comparison of the results.

We also used selected periods when some known events
occurred. We used January and February 2008, as they were
associated with Middle East and Mediterranean cable cuts [2]
and a YouTube prefix hijack [16]. The cable cuts occurred

between January 30 and February 2, 2008 and most of the
repairs were completed within 14 days [16]. The YouTube
prefix hijack happened on February 24, 2008 for a period of
approximately 2 hours.

A. Preprocessing RouteViews Data

The RIBs and updates available are in .bz2 format with
typical sizes of 0.8 GB per day of RIB files (sampled every 2
hours) and about 25 MB per day of update files (written every
15 minutes), which total about 25 GB per month of data. We
preprocess the data, using libbgpdump version 1.4.99.7 [22]
to convert the files from the MRT format to text. We reduce
the storage space required by removing unused fields. We
only keep the timestamp, peer IP, prefix, and the type of
update (Announcement or Withdrawal). After preprocessing
and filtering of table transfers (described in Section III-B), we
have about 13-15 GB of gzipped RIB and update files per
month of data.

B. Filtering Table Transfers

One problem with using the raw updates from RouteViews
is that they also include routing table transfers which are
caused by session resets between a monitor and a peer [23].
These spurious updates are an artifact of the update collection
methodology and should not influence the state of a prefix.
Zhang et al. [23] developed the Minimum Collection Time
(MCT) algorithm to identify BGP routing table transfers.

We executed scripts (with default parameters as in [23])
kindly contributed by the authors from the point of view of
every peer in our dataset. We define a peer as any peer which is
present in any routing table entry and at least one update. This
definition yields 45-47 peers in our dataset. The scripts report
tuples of the form (PeerIP, Starting Time, Duration) which
identify a table transfer as observed by the peer specified by its
IP, starting time, and duration. We developed a script that uses
this information to remove the table transfer updates from the
update files obtained from RouteViews. We use these filtered
updates for all later processing.

IV. MTTF AND MTTR COMPUTATION

We define a combination as a (peer, prefix) tuple which
implies that the prefix was observed by the peer. The MTTF
and MTTR are computed for each combination that we are
interested in using the following methodology. We maintain
the state of each combination at each point in time, and at the
time of each state change, we record a downtime or an uptime.
If the state of a combination changes from Announced (A) to
Withdrawn (W), an uptime is recorded whereas a change from
W to A leads to the recording of a downtime.

With this methodology, we encounter the problem of bound-
ary effects. Since the updates only show incremental changes,
we do not know the state of a combination till we observe
the first update for that combination. For stable combinations,
this may be a significant time period. To address this problem,
we treat every entry of the first routing table of our data
period as an announcement. This enables us to initialize the



state of each combination. As the state changes, we continue
recording uptimes and downtimes, while updating the state
of the combination and the time of the state change. After
processing all the update files, we add an extra up or downtime
depending upon the last state of the combination. For example,
if the last state change was to W and was reported at time
t1, and if the data period ended at time t2, we add an extra
downtime with value t2 − t1. Then, we compute the mean,
median, standard deviation, and coefficient of variation of
the recorded uptimes and downtimes. The mean uptime is
the MTTF and the mean downtime is the MTTR. For each
combination, we also compute the ratio of cumulative uptime
and cumulative downtime and report the statistics of this up-
to-downtime ratio. The ratio can be infinite if the downtime
is zero.

Observe that our approach of measuring the uptime and
downtime of a prefix is similar in principle to Oliveira et al.’s
work [24], which studies the evolution of Internet topology by
computing births and deaths of ASes and inter-AS links.

V. FILTER DESIGN

In this section, we devise one new filter, and revisit the
design of filters in [6]. We use both routing tables and BGP
update messages to infer the existence of paths to a prefix.

A. Observed Combinations Filter

We design a filter, the observed combinations filter, to
remove bias introduced by combinations for which we have
insufficient data, because we observed them towards the end of
our dataset. This eliminates boundary effects. The filter outputs
combinations which either exist in the first routing table of
the period under consideration, or are present in the first few
update files of the period. The percentage of update files at the
beginning of the period that we check is a parameter α of this
filter. The choice of α is explored in Section VI, along with
the choice of parameters used in other filters. Small values of
α bias the results towards relatively stable combinations, since
most of the output combinations will exist in the first routing
table. Since, at this point, we have not employed filtering other
than the observed combinations filter, we refer to results on
this data as the initial filtering results.

B. Stable Prefixes Filter

We implement a filter which we refer to as stable prefixes
filter, based on the work by Labovitz et al. [6]. This filter
outputs the prefixes that are available in the routing table
for more than an aggregate percentage of time. We refer to
this percentage parameter as β. Labovitz et al. use 60% as
the value of β for a 9-month period. The goal of this filter
is to eliminate transient prefixes which can go up and down
frequently, confounding the results of stable prefixes.

C. Route Convergence Filter

We implement a filter that we refer to as the route conver-
gence filter, which considers multiple failures within a time
window as a single failure. The motivation behind this filter

is to remove the updates generated while the routes are still
converging. During such convergence periods, it is usual to
have a route withdrawn to a prefix only to be followed by
an announcement of a different path to that prefix. Such a
change does not truly reflect a failure. The filter operates by
deleting all pairs of withdrawals followed by announcements
(for the same (peer, prefix) combination) if the time between
the withdrawal and announcement is less than a time window.

We call this time window parameter γ, whose value was
chosen to be 15 minutes in [6]. The effect of increasing γ

is to increase the value of both MTTF and MTTR, because
as withdrawals are removed, uptimes are increased, thereby
causing an increase in MTTF. An increase in γ also increases
the value of MTTR because shorter downtimes are eliminated
as no recorded downtime can be less than γ seconds.

D. Summary

Table I summarizes the filters. If we define a “healthy”
Internet as one with high up-to-downtime ratios, the filters
impact the computed “health of the Internet” in different ways.
The stable prefixes filter removes unstable prefixes causing
the Internet to appear healthier than if these prefixes with
low uptimes and high downtimes had not been removed.
The route convergence filter increases the uptimes of certain
combinations but at the same time, it increases the downtimes.
The impact on the perceived health of the Internet is unlikely
to be as significant as the stable prefixes filter. The observed
combinations filter removes the combinations first seen in the
latter part of our data period, so the Internet appears healthier
by applying this filter.

VI. RESULTS AND DISCUSSION

In this section, we quantify the impact of the filter param-
eters on the MTTF and MTTR values.

A. Impact of Filter Parameters

We first study the dependence of MTTF and MTTR on filter
parameter choices. We use January 2005 and January 2007 as
two representative months of data for investigating the impact
of filter parameters, and use the control variable technique to
select parameter values to use in our later experiments.

1) Observed Combinations Filter Parameter: We imple-
ment the observed combinations filter with α = 10%, 25%
and 50% and compare the MTTF and MTTR obtained with the
one obtained when α=100%, i.e., when all the combinations
are used. The MTTF and MTTR are computed for twenty
typical cases, which include the initial filtering case, the stable
prefixes filter with β=0%, 30%, 60% and 90%, the route
convergence filter with γ = 120 s, 300 s and 900 s, and with
the two filters put together using the twelve permutations of
parameters. We investigate the value of α which showed, on
the average, the largest increase in uptime and the largest
decrease in downtime w.r.t. the 100% case. This is because
this filter aims to eliminate boundary effects and the new
combinations advertised close to the end of the observation



TABLE I
SUMMARY OF FILTERS AND CORRELATION OF THEIR PARAMETERS WITH THE MTTF/MTTR MEASURES

Filter Description Impact on MTTF Impact on MTTR Value
in [6]

“Healthy”
Values

Observed Combinations Choose the combinations that exist in the
initial α% of update files in our dataset

α ↑⇒ MTTF ↓ α ↑⇒ MTTR ↑ Not
Used

10%

Stable Prefixes Choose the prefixes that are present for more
than β% of time in routing tables

β ↑⇒ MTTF ↑ β ↑⇒ MTTR ↓ 60% 99.5%

Route Convergence Count multiple failures that happen within
γ seconds as a single failure

γ ↑⇒ MTTF ↑ γ ↑⇒ MTTR ↑ 900 s 200 s

period are typically less stable, thereby having smaller uptimes
and larger downtimes.

The results for Jan. 2007 are shown in Table II. As expected,
for lower values of α, the MTTF increase is higher and
the MTTR decrease is larger so that overall, the difference
between the MTTF increase and MTTR decrease is the
highest. We do not reduce the value of α below 10%, since
we believe that ignoring more than 90% of the update files
(more than 27 days in a month’s period) is eliminating too
much data. For Jan. 2005, the results were similar, except that
the MTTF−MTTR increase for α=10% is 21.1%, vs. 14.37%
for α=25%. With 10% as the choice of the parameter, we
have about 9 million combinations or about 91% of the total
combinations.

TABLE II
OBSERVED COMBINATIONS FILTER PARAMETER α FOR JAN. 07

α MTTF MTTR MTTF−MTTR
(%) Change (%) Change (%) Change (%)

10 5.06 -26.30 31.36
25 3.98 -26.42 30.40
50 1.12 -2.52 3.64

2) Stable Prefixes Filter Parameter: If we aim to study
healthy prefixes, we should select a value of β that maximizes
the difference between the MTTF and MTTR while ensuring
some minimum percentage of prefixes are available. We use an
observed combinations filter parameter α=10% as the control
variable and vary β from 0% to 98% for Jan. 2007. We do not
choose 100% because, for longer dataset durations (a month
or more), we found that there are no prefixes that exist in all
the routing tables. Since routing tables are recorded every two
hours, it is likely that even a relatively stable prefix may be
transiently withdrawn and may not appear in the table at the
time when it is recorded. It is also interesting to note that we
discovered that the results for β= 0% were not the same as
the ones for initial filtering. We traced this to the fact that
there are some prefixes which appear in update messages but
never manifest themselves in routing tables, excluding them
from results with the stable prefixes filter, but not from the
initial filtering case. We believe that these prefixes (henceforth
referred to as “hidden prefixes”) are transient (perhaps used
for malicious purposes), and are announced and withdrawn
very frequently. This discovery gives further credibility to this
filter.

The actual numbers of stable prefixes for various values of

β for Jan. 2005 and 2007 are listed in Table III. It is worth
noting that we have excluded the hidden prefixes from the
second and fourth columns of these tables; hence, the result
for β=0% is the baseline for 100% of the prefixes. Further,
the number of prefixes visible in our data is about 25% lower
for Jan. 05 compared to Jan 07. This is consistent with the
reported growth of the Internet and the addition of eight extra
peers (about 20%) to RouteViews during this two year period.

TABLE III
STABLE PREFIXES FILTER PARAMETER β FOR JAN. 07 AND JAN. 05

Jan. 07 Jan. 05
β Output % of Output % of

(%) Prefixes Total Prefixes Prefixes Total Prefixes

0 233537 100 180229 100
30 225685 96.64 171289 95.04
60 221620 94.89 166447 92.35
90 217607 93.18 162619 90.23
98 212883 91.16 145633 80.8

As we increase the value of β, we compute the changes
in MTTF and MTTR compared to the initial filtering case.
The results, listed in Table IV, show that as the value of
β increases, the MTTF increases and the MTTR decreases,
which is a characteristic of stable prefixes. Similar results are
also observed for Jan. 05, where the MTTF−MTTR increase
varies from 5% to about 63% for the same values of β as in
Table IV.

In subsequent results, we will use β=0% (to eliminate the
hidden prefixes), 60% (to compare with Labovitz et al.’s [6]
results) and a high value like 99.5% or 100% depending upon
whether β=100% yields a significant number of prefixes or
not. The work in [6] does not explain the reasoning behind
the choice of β= 60%; we experiment with the same value,
although in most of our results, the number of prefixes filtered
is less than the 20% reported in [6]. This is expected since
their study was conducted in the late 1990s, and the Internet
health has improved [9], leading to a higher percentage of
stable prefixes.

3) Route Convergence Filter Parameter: The results of the
effect of the filter parameter γ on MTTF and MTTR w.r.t.
the initial filtering case for Jan. 2007 are given in Table V.
The table columns are the same as previous tables for ease
of comparison. As can be seen, the MTTF−MTTR decreases
with the increase in γ. Hence, increasing the parameter is
reducing the perceived “health” of the Internet. This filter
is useful as it reduces the impact of transient updates on



TABLE IV
STABLE PREFIXES FILTER PARAMETER β FOR JAN. 07

β MTTF MTTR MTTF−MTTR
(%) Change (%) Change (%) Change (%)

0 0.48 -7.61 8.09
30 2.44 -29.88 32.32
60 5.12 -41.07 46.19
90 8.55 -46.30 54.85
98 20.03 -41.5 61.53

perceived failures. Thus, a tradeoff exists between reducing
this impact and adversely impacting perceived Internet health.
We believe that the minimum value of γ that is indicative
of route convergence should be used. Labovitz et al. [6]
specified γ to be 15 minutes, so we use 900 seconds as
one of the values of γ in our runs; however, this is longer
than the time required for convergence in today’s Internet:
Burkle [25] points out that most BGP convergence happens
within 2 minutes. In fact, Labovitz in one of his talks [26]
reports that the convergence time for announcements is about
60 seconds and for withdrawals, the median convergence time
is about 100-180 seconds, and equals 15 minutes only in the
worst case. Hence, we use 200 s and 300 s as additional values
for γ.

TABLE V
ROUTE CONVERGENCE FILTER PARAMETER γ FOR JAN. 07

γ MTTF MTTR MTTF−MTTR
(s) Change (%) Change (%) Change (%)

60 59.56 102.47 -42.91
120 81.76 156.27 -74.51
200 97.8 203.24 -105.44
300 111.32 249.66 -138.34
900 149.14 429.61 -280.46
1500 167.59 560.27 -392.68

B. Results for a Nine-Month Period

In this section, we investigate the effect of the filters on 9
months of data from March through Nov. 2007. We applied
the observed combinations filter with α=10% and found that
the total number of combinations exceeds those for Jan. 2007,
which is expected since we have a longer period of data.
However, the percentage of observed combinations that were
output by this filter was far less (61.3% of total 16,654,558)
than the percentage output for α=10% for Jan. 2007 (91.5%
of total 9,862,508), which is also explained by the longer
remaining (90%) observation period.

Table VII shows the changes in median and mean uptimes
and downtimes as parameter β of the stable prefixes filter is
changed. There are no prefixes that are available in every
routing table (β=100%) so we use 99.5% as the highest
value of β (Table VI). Table VII indicates that as the stable
prefixes parameter β increases, the MTTF increases by as
much as 51% and the MTTR falls by up to 73%. The trend
is easily explained by the fact that the stable prefixes have
higher average uptimes and lower average downtimes. The
advantage of using the median is that it is not affected by

outliers like the mean. The median uptime increases by a much
larger percentage (up to 406%) than the mean uptime when
β increases. However, the median downtime also increases
slightly with β. This increase is not unusual since the mean
is much higher than the median in this case. Hence, a fall in
the mean does not necessarily mean a fall in the median.

TABLE VI
STABLE PREFIXES FILTER PARAMETER β FOR MAR.-NOV. 07

β Output % of
(%) Prefixes Total Prefixes

0 341122 100
60 227291 66.63

99.5 180489 52.91

TABLE VII
STABLE PREFIXES FILTER FOR MAR.-NOV. 07. INITIAL FILTERING MTTF

= 827989 S, MTTR = 125479 S, MEDIAN UPTIME = 962 S, MEDIAN
DOWNTIME = 64 S. ALL % CHANGES ARE RELATIVE TO INITIAL

FILTERING

β
(%)

MTTF
Change
(%)

MTTR
Change (%)

Median
Uptime
Change (%)

Median
Downtime
Change (%)

0 0.25 -11.75 0.93 -1.56
60 10.86 -71.33 71.62 1.56
99.5 51.52 -72.61 406.76 17.19

Combining the results of Table VI and Table VII gives
us valuable insights into the stability of prefixes, which is
indicative of the general health of the Internet. An average
prefix in the Internet has an MTTF of about 9.5 days and
an MTTR of about 1.5 days. However, these observations
are heavily affected by outliers since the median uptime
is about 16 minutes and the median downtime is about a
minute. Hence, while failures happen fairly frequently for a
typical prefix, the recovery is quick as well. There is also
a significant number of prefixes that are down for days at a
time (attributable to physical failure) and which are up for
a long periods of time (very stable prefixes, e.g., of a large
ISP). The stable prefixes filter enables us to infer that about
53% of the more stable prefixes have MTTF of about two
weeks and MTTR of about 10 hours, with median uptime of
about 1.4 hours and median downtime of about 53 seconds.
The filter also enables us to rank prefixes in order of their
stability. There is significant churn in today’s Internet and,
while uptimes and downtimes do point to a healthy Internet,
one needs to study other aspects like route convergence and
availability for a holistic view. We investigate these aspects
below.

We now apply the route convergence filter with parameter
γ = 200 s, 300 s, and 900 s to the initial filtering data. Its
effect on the MTTF and MTTR data is given in Table VIII.
The results indicate that, as the value of γ increases, both
uptimes and downtimes increase significantly. The median
uptime increases by a much higher percentage than the median
downtime, suggesting that the filter is improving the perceived
“health” of the combinations.



TABLE VIII
ROUTE CONVERGENCE FILTER FOR MAR.-NOV. 07. INITIAL FILTERING

MTTF = 827989 S, MTTR = 125479 S, MEDIAN UPTIME = 962 S,
MEDIAN DOWNTIME = 64 S. ALL % CHANGES ARE RELATIVE TO INITIAL

FILTERING

γ (s) MTTF
Change (%)

MTTR
Change (%)

Median
Uptime
Change (%)

Median
Downtime
Change
(%)

200 167.27 182.95 4755.93 1817.19
300 204.74 226.89 6972.56 2459.38
900 342.48 398.91 23633.89 6482.81

TABLE IX
STABLE PREFIXES AND ROUTE CONVERGENCE FILTERS MAR.-NOV. 07.
INITIAL FILTERING MTTF = 827989 S, MTTR = 125479 S, MEDIAN

UPTIME = 962 S, MEDIAN DOWNTIME = 64 S. ALL % CHANGES ARE

RELATIVE TO INITIAL FILTERING

β
(%)

γ
(s)

MTTF
Change
(%)

MTTR
Change
(%)

Median
Uptime
Change (%)

Median
Downtime
Change (%)

0 200 168.46 150.29 4998.86 1807.81
0 300 206.2 189.30 7169.13 2446.87
0 900 344.74 341.82 24726.4 6375
60 200 196.71 -18.15 8902.39 1631.25
60 300 240.52 -4.57 14634.09 2234.37
60 900 402.79 49.64 49557.69 5346.87
99.5 200 279.80 -25.37 17362.99 1529.68
99.5 300 334.29 -12.87 26439.19 2128.12
99.5 900 539.55 39.32 93618.61 5284.37

Next, we put the stable prefixes and route convergence filters
together as listed in Table IX. The results show that the trends
of median and mean uptimes and downtimes with each of the
filters are coalesced. For example, with stable prefixes filter
parameter β = 0%, the uptimes get a small boost over the route
convergence filter case and the downtimes are slightly reduced
in their gains from Table VIII. However, with β = 60%, the
MTTF increases by a larger amount over the initial filtering
case and the MTTR is actually reduced. The effect of lowering
the MTTR is reversed as γ crosses 300 seconds, which
shows that route recovery is being (mis)classified as route
convergence with higher values of γ. The median exhibits
similar trends except that the increase in downtime due to
the route convergence filter is high enough that it cannot be
offset by any value of β.

We also compare our results of MTTF and MTTR obtained
above to the results of Labovitz et al. [6]. Specifically, we
compare the values to those depicted in Fig. 6 in [6] where
the authors study the MTTF and MTTR of inter-domain routes
from three ISPs and find the MTTF to be about 12 days (read
from the graph) and the MTTR to be about 15 minutes. The
comparison is shown in Table X.

One immediate difference is in the values of our MTTR
which are very high compared to their counterparts in [6].
This is because the MTTR values in [6] are those for paths
connecting three ISPs, which are backbone paths and expected
to be more stable than a general Internet prefix. Since our
dataset spans 9 months, it is not uncommon to have a signif-
icant number of combinations whose MTTR is of the order

TABLE X
COMPARISON OF MTTF AND MTTR VALUES OF MAR.-NOV. 07 TO

THOSE IN [6] WHERE MTTF = 1036800 S, MTTR = 900 S

β (%) γ (s) MTTF (s) MTTR
(s)

MTTF
Change
(%)

MTTR
Change
(%)

None None 827989 125479 -20.1 13842.11
60 900 4163080 187775 301.53 20763.89
99.5 200 3144780 93639 203.33 10304.33
99.5 900 5295400 174815 410.74 19323.89

of days (physical failure). Our median downtime ranges from
around 17 minutes to up to 1 hour, indicating the reliability
of the median.

However, our MTTF values are significantly higher than
the ones in [6] (except for the initial filtering case). This
confirms that the Internet has become healthier than in the
late 1990s. These results also point to the importance of
filter parameters. If we want to report the “best” possible
results, (i.e., focusing on the healthy Internet), it seems logical
that we should choose the most stable prefixes (hence β =
99.5%), and a time sufficient for route convergence in most
cases (γ = 200 s). This data point shows a reasonably high
MTTF and reasonably low MTTR. This also illustrates the
tradeoff between reporting a high MTTR and a high MTTF;
in many cases, a high MTTF implies a high MTTR as well.
This leads us to investigate the average uptime to downtime
ratio, which cannot be computed by MTTF and MTTR alone.
Hence, we add an instrumentation hook to record for each
(peer, prefix) combination, the uptime and downtime, so that
the up-to-downtime ratio of that combination, or equivalently
the availability of the combination = (1/(1/up-to-downtime
ratio)+1), can be computed. We use this hook to output the
Cumulative Distribution Function (CDF) and histogram of
the availability ratio of all the combinations. Many up-to-
downtime ratios are infinite, since the combinations have a
zero downtime at the end of the run (no failure was reported
or the failure was removed by one of the filters). These ratios
have an availability of 1.

The CDF of availability of various combinations for the
initial filtering case is given in Fig. 1. From this plot, we can
see that about 10% of the combinations are available for less
than 60% of the time. About 80% of the combinations are
available more than 90% of the time. That such a result is
observed even without applying any filter points to the health
of the Internet. However, the long tail of combinations having
low availability cannot be ignored, and it can be concluded
that the Internet is not as healthy as some would like it to be,
e.g., compared to telephone networks.

We also plot the CDF of the availability when the stable
prefixes and route convergence filters are applied with the same
parameters as [6], i.e., β = 60% and γ = 900 s. This plot
is shown in Fig. 2. Comparing this CDF plot with Fig. 4(a)
of [6], we find some combinations with availability around
60% whose number appears to be higher than the plot in [6].
However, the 90th and the 95th percentile values reasonably
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Fig. 1. CDF of combinations for the initial filtering case for Mar.-Nov. 07

match those in their paper. With β = 99.5% and γ = 200 s,
we obtain a CDF with less weight at lower percentages and a
higher weight at cumulative percentage close to 100%.
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Fig. 2. CDF of combinations for Mar.-Nov. 07 with all filters, β = 60% and
γ = 900 s

To better understand the impact of filters, we also plot the
histograms of the availability. For the initial filtering case, the
histogram is shown in Fig. 3. The plot shows that almost a
constant number of combinations (around 0.25%) is available
from close to 0% to about 90% of the time, except for 1.5%
of the combinations which are available around 60% and a
higher percentage is available for more than 90% of the time.
The histogram corresponding to Fig. 2 is shown in Fig. 4. This
plot shows that most of the combinations that have availability
less than 60% are filtered, which is expected as β = 60%.
The combinations causing the spike around 60% were found
to be prefixes originating from a single peer 206.24.210.99,
which belongs to AS 3561 (SAVVIS Corporation). Almost all
prefixes advertised by that peer have availability around 60%.
This indicates why β should be large: since the routing tables
are sampled fairly infrequently, it is easy for a relatively low
availability combination to be present in a high β% of the
routing tables.
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Fig. 3. Histogram of combinations for Mar.-Nov. 07 for the initial filtering
case
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Fig. 4. Histogram of combinations for Mar.-Nov. 07 with all filters, β =
60% and γ = 900 s

C. Impact of Cable Cuts

In this section, we investigate the cable cuts in the Mediter-
ranean sea and in the Middle East in early 2008. Since their
effects are transient in nature (on the order of a few days), we
use a one week window to study the uptimes and downtimes.
We slide the window one day at a time. This allows sufficient
time to investigate up and downtimes, while mitigating the
impact of boundary effects. We consider Jan. and Feb. 2008.
Hence, the first window is from Jan. 1

st - Jan. 7
th, 2008, the

second is from Jan. 2
nd to Jan. 8

th, and so on. Since there
are 60 days in these two months, we have 54 windows of
observation, with indices 1−54.

For each window, we use the observed combinations filter
with α = 10%. We evaluate the initial filtering case, cases
with β= 0%, 60%, and 100%, cases with γ = 200, 300 and
900 s, and finally the filters put back-to-back with the nine
permutations of β and γ for the above stated values. Thus,
there are 16 runs computing uptimes and downtimes for each
window. Note that the maximum uptime or downtime that we
can see will be limited by the observation period of one week,
compared to the previous one or 9 month periods. However,
the trends of uptimes and downtimes with various filters with
time remain the same.

The change of uptimes for the initial filtering case against
window index is depicted in Fig. 5. The figure shows that the
median uptime holds steady at about 600,000 s for most of the
windows, except for window indices between 26 and 34. This
is intuitive since the cable cut occurred around the middle
of window 26 (Jan. 26-Feb. 1). The lowest uptime (434833
seconds) is seen during the 28th window (Jan. 28-Feb. 3) and
is about 28% lower than the value for most of the windows.
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Fig. 5. Median uptime vs. window index with initial filtering for Jan.-Feb.
08

The lowest observed uptime starts increasing as we apply



the stable prefixes filter and the route convergence filter. This
is because these filters prefer stable prefixes and filter away
dynamics so the transient nature of this stress event is filtered
out. The plot of median uptime for β = 60% and γ = 900 s (the
parameters used in [6]) is shown in Fig. 6. The sharp drop from
600000 s to about 435000 s has completely disappeared. While
this demonstrates the effectiveness of filtering, it reiterates the
notion that one cannot use filter parameters without thorough
investigation. In fact, we argue that if we want to observe stress
events, we must use the initial filtering case, whereas if want
to make general conclusions about the health of the Internet,
we should use filters with carefully chosen parameters.
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Fig. 6. Median uptime vs. window index for Jan.-Feb. 08 with all filters, β
= 60% and γ = 900 s

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we explore the methodology for quantifying
reachability and availability of Internet prefixes. We find that
although preprocessing filters on BGP data offer significant
power in eliminating pathological updates and unstable pre-
fixes, they should be used judiciously. In fact, one can modify
the filter parameters to make the Internet look healthy or
unhealthy. We provide recommendations for the values of
the parameters based on our observations, and suggest that
they should be chosen according to the goal of a study. For
example, if the goal is to study the health of the Internet, we
should use both the stable prefixes and the route convergence
filters with high values of β and the minimum value of γ

indicative of route convergence, whereas if the aim is to
identify stress events, it is advisable not to filter the data.

We compute the MTTF and MTTR for a 9-month period
in 2007 with and without filtering. We show the (peer, prefix)
combinations filtered by using a histogram of availability of
the combinations under different filter parameters. We find that
53% of the most “healthy” prefixes have MTTF of about two
weeks and MTTR of about 10 hours, with median uptime of
about 1.4 hours and median downtime of about 53 seconds.
We also study prefix reachability during cable cut events and
show that the median uptime of prefixes fell by as much as
30%.

As future work, we aim to study prefix reachability over a
wider range of periods, and hone the parameter selection of
the filters by studying the distributions of prefix lifetimes and
routing update arrivals. We also plan to investigate the impact
of prefix aggregation. Tying in the prefix reachability to the
resilience of the Internet is our continuing goal.
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