
Content Retrieval using Cloud-based DNS

Ravish Khosla, Sonia Fahmy, Y. Charlie Hu

Purdue University

Email: {rkhosla, fahmy, ychu}@purdue.edu

Abstract—Cloud-computing systems are rapidly gaining mo-
mentum, providing flexible alternatives to many services. We
study the Domain Name System (DNS) service, used to convert
host names to IP addresses, which has historically been provided
by a client’s Internet Service Provider (ISP). With the advent
of cloud-based DNS providers such as Google and OpenDNS,
clients are increasingly using these DNS systems for URL and
other name resolution.

Performance degradation with cloud-based DNS has been
reported, especially when accessing content hosted on highly
distributed CDNs like Akamai. In this work, we investigate this
problem in depth using Akamai as the content provider and
Google DNS as the cloud-based DNS system. We demonstrate
that the problem is rooted in the disparity between the number
and location of servers of the two providers, and develop a
new technique for geolocating data centers of cloud providers.
Additionally, we explore the design space of methods for cloud-
based DNS systems to be effective. Client-side, cloud-side, and
hybrid approaches are presented and compared, with the goal of
achieving the best client-perceived performance. Our work yields
valuable insight into Akamai’s DNS system, revealing previously
unknown features.

I. INTRODUCTION

The Domain Name System (DNS) [13] – mostly used to

convert names to IP addresses – is an integral service in the

Internet. The name resolution service has been traditionally

offered by Internet Service Providers, with servers close to

the client [9] (referred to as local DNS). DNS is often used

by Content Distribution Networks (CDNs) to redirect clients

to the nearest data center [11], [17]. Hence, when the local

DNS server queries CDNs such as Akamai to identify content

servers, the CDNs return servers close to the local DNS, which

in most cases is close enough to the client.

With the emerging trend of cloud computing, a host of

services including DNS are being offered by the cloud, e.g.

Google [6] and OpenDNS [15]. These cloud DNS services not

only provide fast DNS resolution due to larger caches, but may

also provide security benefits, protecting against DNS cache

poisoning and Denial-of-Service (DoS) attacks [6]. However,

there can be potentially high latencies between the client

and the resolved servers, degrading client performance [1].

This effect is pronounced when obtaining servers for a highly

distributed CDN such as Akamai. Huang et al. [9] estimate that

the server latency increases by as much as 193 ms at the 95
th

percentile when using cloud-based DNS systems, compared

to local DNS. This is unacceptable, especially since Akamai’s

network is often used for streaming video.

Akamai is the dominant content provider, delivering be-

tween fifteen and thirty percent of all Web traffic, reaching

more than 4 Terabits per second [2]. This makes the problem of

remote Akamai content servers returned by using cloud-based

DNS systems critical. In this paper, we investigate this problem

with a case study of Akamai-hosted content as accessed by

clients using Google DNS. We first geolocate the Google DNS

and Akamai servers. One of the key challenges we face is that

Google DNS uses IP anycast and hence the location of its

servers hosted at Google data centers cannot be found using

simple IP geolocation. We therefore develop a novel technique

for geolocating Google data centers, and find that Google’s

DNS servers oftentimes do not see closeby Akamai servers.

We also find that the Google DNS servers are placed more

sparsely around the world than Akamai’s servers, yielding poor

client performance when accessing Akamai’s content using

Google DNS.

We then present and compare alternative solutions to the

problem. We posit that cooperation among cloud providers,

those which host content and those which host DNS ser-

vices, is the best solution. However, in the absence of such

cooperation, we design a hybrid client-cloud approach which

queries specific Akamai name servers whose IP address has

been found using cloud DNS. We find that the servers returned

by this hybrid approach are usually the same as those returned

by local DNS, preserving the performance advantage of local

DNS. Our results also shed light onto Akamai’s network,

demonstrating that Akamai’s DNS servers do respond to

queries even when asked out of turn, albeit after a potential

delay.

The contributions of our paper include:

• We present a novel, lightweight geolocation technique for

locating cloud data centers (Section II-B).

• We use our geolocation technique to gain insight into the

problem of poor client performance in accessing content

through cloud-based DNS (Section IV).

• We propose and compare solutions to this problem (Sec-

tion V). We also present a hybrid client-cloud approach

that a client can use in today’s Internet.

The rest of the paper is organized as follows. Section II

provides an overview of DNS systems of Akamai and Google.

Section III defines the problem while Section IV investigates

the causes of this problem. We compare various solutions to

the problem in Section V. We summarize related work in

Section VI and conclude in Section VII.

II. CLOUD-BASED DNS SYSTEMS

We now study DNS systems of two different kinds of

clouds: Akamai’s CDN and Google’s DNS.

2

A. Akamai DNS Primer

Akamai uses two levels of DNS servers to redirect clients

to the closest content server [17]. We use an example of an

iterative DNS query to illustrate the steps involved (Figure 1).

Suppose a client queries its local DNS for videos.buy.com.

Either the local DNS knows the answer from its cache, or

it queries top level and Akamai DNS servers and returns

the canonical name (CNAME) videos.buy.com.edgesuite.net.

The client then queries the local DNS for this CNAME

and receives another CNAME a1507.b.akamai.net. We now

use the command dig +trace [5] from the client to follow

name server referrals during resolution, while eliminating

caching. The client queries the top level domain server j.root-

servers.net for a1507.b.akamai.net, which returns a list of

name servers out of which the client chooses c.gtld-servers.net

and queries it, which gives a list of Akamai’s top level

name servers. The client chooses zh.akamaitech.net for query

in the next step, which returns Akamai second level name

servers whose IP address is dependent upon the client’s

location (i.e., proximity-aware). Overall, there are nine second

level name servers for this CNAME, from n0b.akamai.net

to n8b.akamai.net. The client then chooses n3b.akamai.net,

querying it for a1507.b.akamai.net and obtains the content

server 149.165.180.191.

Fig. 1. Steps taken by a client in obtaining content server for an Akamai-
hosted web site

In our experiments, we start with known Akamai CNAMEs

like a1507.b.akamai.net and observe whether changing the

number (1507) or the letter (b) gives us a CNAME which

resolves to an Akamai content server. The number corresponds

to a channel [23], whereas the letter corresponds to the way

channels are grouped. Using the above technique, we discover

eleven Akamai CNAME categories, listed in Table I with

their respective name servers. We find that for each of the

1While Akamai usually returns two content servers for each query, we use
the first one in this paper.

categories, channel numbers 0 to 4094 lead to valid CNAMEs,

which map to edge servers IPs within the same Class C subnet

or /24 prefix. Since there are at most 256 IPs in a Class C

subnet, the average number of channels mapping to an edge

server is about 16, possibly for load balancing purposes [23].

TABLE I
AKAMAI CNAMES STUDIED IN THIS PAPER WITH THEIR RESPECTIVE

NAMESERVERS

CNAME category Nameservers

x = 0 to 4094 , y = 0 to 8 for all rows unless specified otherwise

a{x}.b.akamai.net n{y}b.akamai.net

a{x}.c.akamai.net n{y}c.akamai.net

a{x}.f.akamai.net n{y}f.akamai.net

a{x}.h.akamai.net n{y}h.akamai.net

a{x}.k.akamai.net n{y}k.akamai.net

a{x}.l.akamai.net n{y}l.akamai.net

a{x}.p.akamai.net n{y}p.akamai.net

a{x}.vmg0.akastream.net n{y}vmg0.akastream.net
y = 0 to 6

a{x}.vmg2.akastream.net n{y}vmg2.akastream.net
y = 0 to 6

a{x}.uqg0.kamai.net n{y}uqg0.kamai.net
y = 0 to 6

a{x}.gi3.akamai.net n{y}gi3.akamai.net

B. Geolocating Servers in the Cloud

Extensive research exists on geolocating IP addresses in the

Internet [14] (a detailed discussion of which is outside the

scope of this paper). In this paper, we use the commercial

geolocation tool GeoIP City provided by MaxMind [12] to

geolocate IP addresses, which is accurate up to 25 miles. Using

this service, we can easily geolocate Akamai content servers

and nameservers with reasonable accuracy. For example, in

Figure 1, we geolocate the end-server 149.165.180.19 to

Bloomington, Indiana, which is found to be 85 miles away

from our client IP with a Geo-RTT [10] of 1 ms, which

matches the measured RTT of 1.5 ms.

However, Google DNS [6] uses IP anycast and both of

its DNS IP addresses resolve to Mountain View, California.

This demonstrates the difficulty of geolocating Google’s data

centers, which host Google DNS servers [4]. One of the

solutions to this problem is presented in [9], which requires an

infrastructure setup and is passive, waiting for clients to visit

a popular web site. In contrast, we design a novel lightweight

active technique for geolocating Google data centers. We run

1000 traceroutes (running for 12 hours) to the Google Public

DNS IP 8.8.8.8 from 575 PlanetLab [19] nodes. We define

VGDNS, which is the Virtual Google DNS IP, as the last

hop right before the Google DNS IP in the traceroutes. We

verify that these IPs indeed belong to Google using BGP

routing tables from RouteViews [24]. We collect all such

VGDNS IPs across the traceroutes from PlanetLab nodes and

obtain 1477 unique IP addresses, with 46 unique locations. To

geolocate Google data centers, we use hierarchical clustering

algorithms [26] to cluster the 46 unique VGFE locations

using Matlab. We compute the distance between two locations

using Haversine Formula [22]. and cluster them using the

3

agglomerative complete link clustering technique [26], using

50 miles as the cutoff distance between clusters. Since the

accuracy of MaxMind is 25 miles, two IPs at the same location

can be no more than 50 miles apart. This gives 40 clusters

out of the 46 unique locations. In the absence of ground truth,

this number cannot be validated. However, it is sufficient for

explaining the cloud interactions in this paper (Section IV).

For locating Akamai data centers, we geolocate the content

servers obtained by PlanetLab clients, as they resolve 11

random Akamai CNAMEs (one each from each row of Table I)

through local as well as cloud-based DNS (1000 iterations

each). We obtain 3223 unique IP addresses, which geolocate

to 260 unique locations and 123 clusters. We point out that

two identical experiments uncover about three times as many

Akamai data centers as Google, indicating more extensive

presence of Akamai, compared to Google.

III. THE PROBLEM

The problem we are investigating in this work is the

high latency to the Akamai content servers that a client is

redirected to when using cloud-based DNS systems. Figure 2

illustrates an example of the problem. We use the CNAME

a1507.b.akamai.net (Section II-A), and resolve it using local

DNS and Google DNS. We choose a case where both reso-

lutions seem to proceed exactly the same as far as the DNS

server names are concerned. However, as Figure 2 shows, the

actual server IP addresses and their latencies from the client

are different, with the Google DNS suffering because Akamai

returns the IP addresses of the name server and content server

which are close to the Google data center. This problem has

been documented in [1], [9].

We now quantitatively demonstrate the existence of the

high latency Akamai servers to the client when cloud-based

DNS is used. As mentioned in Section II-A, each of the

4095 CNAMEs in a category of Table I map to 256 content

servers within the same /24 prefix. We randomly select n

CNAMEs such that we expect to see all 256 edge servers,

with n to be determined. This problem is equivalent to ball-

selection problem, which has been solved in [21] and, using

their result in our context, we find n = 1568. Adding in

the cases with known CNAMEs, (e.g. a1507.b.akamai.net for

videos.buy.com), we obtain 1571 CNAMEs per category of

Table I, which we use for all experiments below.

We probe the CNAMEs using the local DNS of each of the

575 PlanetLab nodes and then using Google DNS. We measure

the quality of servers returned by pinging the servers with three

ICMP echo request packets and noting the minimum RTT,

which reduces RTT inflation due to network congestion to a

certain extent. We use this technique for latency measurement

throughout this paper. For each CNAME category, we compute

the mean difference in latency between the client and the

server resolved through cloud-based DNS and local DNS,

considering the different server cases only. This mean latency

inflation is averaged across all CNAME categories and then

across all nodes. Our results show that the average latency

inflation is 14.15 ms for Google DNS, which is 720.5% in

(a) Resolution through local DNS, indicating IPs and the RTTs from
client

(b) Resolution through Google DNS, indicating IPs and the RTTs from
client

Fig. 2. Comparison of DNS lookup of a1507.b.akamai.net through local
DNS and Google Public DNS

percentage terms. While the absolute latency inflation numbers

do not seem extremely large, they are significant for video

streaming and dynamic content applications.

We plot the CDF of latency and percentage latency inflation

for a typical CNAME in Figure 3. The CDF is computed with

one data point per PlanetLab node. There are a few cases

for which the inflation is negative. However, such cases are

infrequent and are likely caused by large distances between

the client and local DNS [9]. The results also show that the

latency inflation has a heavy tail. While the average inflation is

around 15 ms, around 17% of the clients experience inflation

of more than 1000%.

IV. CAUSES

To identify the causes of latency inflation, for 1000 it-

erations run from PlanetLab nodes, we record the node IP

C, VGDNS IP G, and the Akamai server IP corresponding

to CNAME a1507.b.akamai.net, obtained through local DNS

(server A) and through Google DNS (server A′). We then

geolocate these four IP addresses and compute the geographi-

cal distance between the client C and the Akamai server it is

redirected to A, gC−A. We also compute the distance between

the VGDNS IP G and the Akamai server it is redirected to A′,

4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-150 -100 -50 0 50 100 150 200 250 300 350

F
re

qu
en

cy

Difference between latency of server resolved through Google DNS & local DNS (ms)

(a) CDF of latency inflation when using Google DNS as
observed by a client

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000

F
re

qu
en

cy

Percentage difference in latency to Google DNS server w.r.t. Local DNS. server (%)

(b) CDF of percentage latency inflation when using
Google DNS as observed by a client

Fig. 3. Quantifying performance degradation using cloud-based DNS w.r.t.
local DNS for CNAME a{x}.c.akamai.net

gG−A′ . The results are combined across iterations and across

nodes to obtain median gC−A as 643 miles. The median gG−A′

is 2683 miles, which is substantially higher than gC−A. The

CDF of these two distances is shown in Figure 4. We observe

jumps at discrete distances in Figure 4(b), because of the

small number of data center locations, which will cause some

iterations to be grouped together. The plots show that Google

DNS sees an Akamai server which is much farther away from

it than a client seeing a corresponding Akamai server.

We also compute, for each iteration, the percentage differ-

ence of gG−A′ w.r.t. gC−A and find the median to be 101%,

which implies that gG−A′ is twice as much as gC−A in the

median case. This result is interesting assuming Akamai does

not discriminate among clients. This implies that even if the

client was colocated with the Google DNS server, it would

still attain lower performance than an average Internet client.

We contend that this is due to two reasons. First, Google

performs prefetching of name resolutions [6], which does not

work well for Akamai-hosted dynamic content, which changes

name resolutions in a matter of seconds [17]. Second, Google

as a cloud is spread out over significant distances and may

share its DNS resolutions among its data centers. As a result,

it may not necessarily query Akamai’s server from the DNS

server which resolves client requests.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000 12000

F
re

qu
en

cy

Distance between client and Akamai server (miles)

(a) CDF of gC−A, the geographical distance between
Client and Akamai server resolved through local DNS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000 12000
F

re
qu

en
cy

Distance between Google VDNS and Akamai server resolved through it(miles)

(b) CDF of gG−A′ , the geographical distance between
VGDNS and Akamai server resolved through Google
DNS

Fig. 4. Comparing distances of Akamai content servers from the resolution
node for client and Google DNS

In our experiments, we compute the median gC−G, which

is the distance between the client and the VGDNS IP address.

to be 5374 miles. We also compute the percentage difference

of gC−G w.r.t. gC−A for each iteration and find this to be

88% in the median case, showing that Akamai servers are

usually located closer to the client than Google DNS servers.

This further indicates that Google’s DNS presence is sparse

in the world, as shown by results of Section II-B and [9].

Coupled with the sub-optimal Akamai servers seen by Google

nodes, this leads to significantly poorer performance of clients

in accessing Akamai content through Google DNS.

V. SOLUTIONS

We now explore the solution space of how a client can best

use cloud-based DNS to access content hosted by Akamai. We

summarize the solutions in Table II.

A. Changes to DNS

A possible solution is based on a proposal initiated by

Google researchers (see IETF draft [3]). This proposal requires

changes to the DNS requests and replies by allowing recursive

DNS resolvers to expose a portion of the client IP address

to Akamai’s CDN network, which it may use for returning

5

TABLE II
SOLUTIONS FOR OBTAINING GOOD CLIENT PERFORMANCE WHEN ACCESSING AKAMAI-LIKE CONTENT USING CLOUD-BASED DNS

Solution Pros Cons

Changes to DNS by revealing client IP to Akamai
thereby enabling it to determine its closest server
to the client

Correct Solution The need for complete deployment across the
Internet and ensuring backward compatibility with
existing DNS

Increasing DNS data centers Some performance improvement expected Infrastructure spending and no guarantee of im-
proved performance

Cooperation among clouds Best solution with varying degrees of cooperation
possible

Agreements and trust setup

Hybrid client-cloud approach Good resolved server performance Requires client to potentially wait for resolution.
The technique based on reverse-engineering Aka-
mai is temporary as it depends on Akamai imple-
mentation.

a client-optimized server. The primary drawback of this ap-

proach is that it requires changes to the DNS protocol which

may not be universally adopted.

B. Cooperation among Clouds

We posit that the best solution is to have cloud-based DNS

providers such as Google cooperate with CDNs like Akamai,

similar to AS peering. Various degrees of cooperation are

possible, from where Google will have the responsibility of

selecting an Akamai replica (similar to DONAR [16]) to

where Google DNS forwards client requests to Akamai servers

(similar to [3]). The primary drawback of this technique is

that it requires agreements and trust between cloud providers,

which may be difficult to establish in the real world.

C. Increasing DNS Data Centers

Yet another solution can be for cloud-based DNS providers

such as Google to employ many satellite data centers [25].

This implies that anycast routing will redirect a client to a

closer DNS server which perhaps will see an Akamai server

close enough to the client. However, this solution involves

a significant investment from DNS providers. Moreover, this

does not solve the issue of Google seeing farther Akamai

servers than a normal client due to prefetching (Section IV).

D. Hybrid Approach

The solutions presented above are not deployed in today’s

Internet. Hence, we present a hybrid client-cloud approach

that a client can use to identify low-latency Akamai content

servers while preserving the security and outsourcing benefits

of cloud-based DNS.

In the hybrid approach, the client queries the Akamai

second-level name server directly, which will cause a closeby

content server to be returned. The client obtains the IP address

of the appropriate Akamai name server using cloud-based

DNS. Figure 5 shows the same example as Figure 2 but

using this hybrid approach. The client queries Google DNS

for obtaining the IP address of n7b.akamai.net, which it then

queries for the CNAME obtaining the content server, the

same as that returned by local DNS in Figure 2(a). This is

a hybrid solution because it involves the use of cloud DNS

to resolve the name server IP and a local solution to query

the IP directly to obtain content servers. This solution can

be implemented as a patch for the client-side DNS software.

Its only overhead is unexpected but infrequent DNS queries

to Akamai nameservers, which should be tolerable given

improved client performance while accessing Akamai content.

Fig. 5. Example of a hybrid approach for looking up Akamai content servers
using Google DNS, showing IPs and the RTTs from client

A key aspect of this solution is that the client needs to

know the name of the Akamai second-level name server, e.g.,

n7b.akamai.net. This can be built into the client-side DNS

software, since Akamai uses predictable name server names.

For example, a CNAME of a{x}.{z}.akamai.net will have the
name server n{y}{z}.akamai.net with y ranging from 0 to 6

(Table I). A name server with any value of y will work and

one can even choose y randomly for load balancing purposes.

An alternate way to find the name of the name server is

through the authority section of a dig [5], or to do a dig +trace

for the CNAME using cloud-based DNS as the default DNS

(assuming the client wishes to take advantage of its security

features). This reveals the name of the name server.

Our results indicate that querying an Akamai name server,

provided by cloud-based DNS, may or may not return a

content server IP address. In case it does not, it returns

a CNAME like a1.b.akamai.net.0.1.cn.akamaitech.net. How-

ever, if the client retries the query after some time, it is usually

successful and receives an IP address which is the same as the

one it would have received had it queried using local DNS.

This indicates an Akamai content server returned to a client

is independent of the Akamai name server queried. This is

what makes this hybrid approach successful. We also find that

there may be a slight delay before an arbitrary Akamai name

6

server resolves a CNAME. This delay is most likely due to

background information sharing among various Akamai name

servers, presumably with those close to the client. We find the

typical delay to be less than 15 seconds (which was our retry

period), except for a particular CNAME where the resolution

does not succeed. A few seconds delay is an acceptable setup

penalty for a typical long-lived Akamai session.

We conduct a measurement study similar to Section IV to

investigate the effectiveness of the hybrid approach. We find

that the hybrid approach reduces the median (mean) latency

to a content server by around 7.5 ms (12.7 ms) as compared

to the server obtained through Google DNS. These numbers

are within 1 ms of the actual latency inflation caused by using

cloud-based DNS as opposed to local DNS (Section III).

We also find that the hybrid approach returns the same

server as local DNS in 45.1% of the cases. This is expected

since Akamai returns two content servers and we choose the

first one as the content server returned, resulting in around

a 50% match. When the servers are different, we find the

latency difference between the servers returned by the hybrid

technique and the local DNS is less than a hundredth of

a millisecond. This shows that the hybrid approach returns

essentially the same servers as the local DNS, avoiding latency

inflation due to cloud DNS.

VI. RELATED WORK

Ager et al. [1] compare cloud-based DNS systems. While

they show that the content servers returned by cloud DNS can

be in different ASes from the client, they do not investigate

causes and solutions to the problem. Cloud-based DNS sys-

tems are studied from a data center perspective in [9], demon-

strating non-optimal client redirection using cloud-based DNS.

However, they do not study a deeply distributed CDN like

Akamai which handles dynamic content. Several studies have

investigated data center performance [10], [20]. The WhyHigh

tool [10] diagnoses high latency to Google’s data centers and

finds causes related to inter-domain routing, however effective

solutions are not proposed.

There has been significant work [16], [7], [8], [18] on

Global Traffic Management (GTM). GTM techniques redirect

a client to the closest data center; however, this only enables

the client to reach the closest cloud-based DNS server, which

is not enough to ensure that good quality content servers are

returned to the client.

VII. CONCLUSIONS AND FUTURE WORK

Cloud DNS systems suffer from poor performance when a

client accesses dynamic content hosted on highly distributed

CDNs such as Akamai. In this paper, we have analyzed the

reasons for performance degradation a client sees when using

cloud-based DNS such as Google DNS to access Akamai-

hosted content. We geolocated Google data centers using a

novel technique based on active measurements. Our results

show that sparse placement of Google DNS servers along with

prefetching are likely to blame for sub-optimal content servers

returned by Google DNS. We discussed several solutions to

this problem, and posited that cooperation among clouds is

the best solution. However, since no such solution is deployed

today, we presented a hybrid client-cloud approach which

returns servers comparable to local DNS. Our work raises

important questions about the future cloud-based Internet,

specifically the cooperation among clouds and which services

should be migrated into the cloud. As future work, we plan to

simulate different solutions to gain a better understanding of

their advantages and disadvantages.

REFERENCES

[1] B. Ager, W. Muehlbauer, G. Smaragdakis, and S. Uhlig. Comparing
DNS Resolvers in the Wild. In IMC, pages 15–21, November 2010.

[2] Akamai. Akamai Customer Stories. http://www.akamai.com/html/
customers/index.html, Retrieved December 2011.

[3] C. Contavalli and W. van der Gaast and S. Leach and D. Rodden.
Client IP information in DNS requests. IETF Internet Draft draft-
vandergaastedns-client-ip-00.txt, Jan 2010.

[4] Data Center Knowledge. Google Data Center FAQ. http://www.
datacenterknowledge.com/archives/2008/03/27/google-data-center-faq/,
March 2008.

[5] die.net. dig(1) - Linux man page. http://linux.die.net/man/1/dig,
Retrieved December 2011.

[6] Google. Google Public DNS. http://code.google.com/speed/public-dns/,
Retrieved December 2011.

[7] J. S. Gwertzman and M. Seltzer. The case for geographical push-caching.
In HotOS V, 1995.

[8] C. Huang, N. Holt, Y. A. Wang, A. Greenberg, J. Li, and K. W. Ross.
A DNS reflection method for global traffic management. In USENIX

ATC, 2010.
[9] C. Huang, D. A. Maltz, A. Greenberg, and J. Li. Public DNS system

and global traffic management. In INFOCOM, 2011.
[10] R. Krishnan, H. V. Madhyastha, S. Srinivasan, S. Jain, A. Krishnamurthy,

T. Anderson, and J. Gao. Moving beyond end-to-end path information
to optimize CDN performance. In IMC, pages 190–201, 2009.

[11] T. Leighton. Improving performance on the Internet. Communications

of the ACM, 6(6):20–29, October 2008.
[12] MaxMind. MaxMind GeoIP City Database. http://www.maxmind.com/

app/city, July 2011.
[13] P. Mockapetris. Domain names - implementation and specification. RFC

1035, November 1987.
[14] J. A. Muir and P. C. V. Oorschot. Internet Geolocation: Evasion and

Counterevasion. ACM Comput. Surv., 42:4:1–4:23, December 2009.
[15] OpenDNS. OpenDNS Basic. http://www.opendns.com/solutions/

household/, Retrieved April 2011.
[16] P. Wendell and J. W. Jiang and M. J. Freedman and J. Rexford. DONAR:

decentralized server selection for cloud services. In SIGCOMM, pages
231–242, 2010.

[17] J. Pan, Y. T. Hou, and B. Li. An overview of DNS-based server selections
in content distribution networks. Computer Networks, 43(6):695 – 711,
2003.

[18] C. Partridge, T. Mendez, and W. Milliken. RFC 1546. Host Anycasting
Service. http://www.ietf.org/rfc/rfc1546.txt, November 1993.

[19] PlanetLab. PlanetLab. http://www.planet-lab.org/, Retrieved December
2011.

[20] M. Saxena, U. Sharan, and S. Fahmy. Analyzing Video Services in Web
2.0: A Global Perspective. In NOSSDAV, May 2008.

[21] Thomas M. Sellke. How Many IID Samples Does it Take to See all
the Balls in a Box? The Annals of Applied Probability, 5(1):294–309,
February 1995.

[22] R. W. Sinnott. Virtues of the haversine. Sky and Telescope, 68(2):159,
1984.

[23] A. Su and A. Kuzmanovic. Thinning Akamai. In IMC, pages 29–42.
ACM, 2008.

[24] University of Oregon. Route Views Project. http://www.routeviews.org/.
[25] Y. A. Wang, C. Huang, J. Li, and K. W. Ross. Estimating the perfor-

mance of hypothetical cloud service deployments: A measurement-based
approach. In INFOCOM, 2011.

[26] Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning

tools and techniques. Morgan Kaufmann, San Francisco, 2nd edition,
2005.

