
1

Constructing Maximum-Lifetime Data Gathering
Forests in Sensor Networks

Yan Wu, Zhoujia Mao, Sonia Fahmy, Ness B. Shroff
E-mail: yanwu@microsoft.com, maoz@ece.osu.edu, fahmy@cs.purdue.edu, shroff@ece.osu.edu

Abstract—Energy efficiency is critical for wireless sensor net-
works. The data gathering process must be carefully designed to
conserve energy and extend network lifetime. For applications
where each sensor continuously monitors the environment and
periodically reports to a base station, a tree-based topology is
often used to collect data from sensor nodes. In this work,
we first study the construction of a data gathering tree when
there is a single base station in the network. The objective is to
maximize the network lifetime, which is defined as the time until
the first node depletes its energy. The problem is shown to be NP-
complete. We design an algorithm which starts from an arbitrary
tree and iteratively reduces the load on bottleneck nodes (nodes
likely to soon deplete their energy due to high degree or low
remaining energy). We then extend our work to the case when
there are multiple base stations, and study the construction of a
maximum lifetime data gathering forest. We show that both the
tree and forest construction algorithms terminate in polynomial
time and are provably near optimal. We then verify the efficacy
of our algorithms via numerical comparisons. 1

I. INTRODUCTION

Recent advances in micro-electronic fabrication have al-
lowed the integration of sensing, processing, and wireless com-
munication capabilities into low-cost and low-energy wireless
sensors [1], [2]. An important class of wireless sensor network
applications is the class of continuous monitoring applications.
These applications employ a large number of sensor nodes for
continuous sensing and data gathering. Each sensor periodi-
cally produces a small amount of data and reports to a base
station. This application class includes many typical sensor
network applications such as habitat monitoring [3] and civil
structure maintenance [4].

The fundamental operation in such applications is data
gathering, i.e., collecting sensing data from the sensor nodes
and conveying it to a base station for processing. In this
process, data aggregation can be used to fuse data from
different sensors to eliminate redundant transmissions. The
critical issue in data gathering is conserving sensor energy and
maximizing sensor lifetime. For example, in a sensor network
for seismic monitoring or radiation level control in a nuclear
plant, the lifetime of each sensor significantly impacts the
quality of surveillance.

1Yan Wu is with Microsoft Incorporation. Zhoujia Mao is with the
department of ECE, The Ohio State University. Sonia Fahmy is with the
Department of Computer Science, Purdue University. Ness B. Shroff is with
the departments of ECE and CSE, The Ohio State University. This research
was supported in part by NSF grants 0238294-CNS (CAREER), 0721434-
CNS, 0721236-CNS, and ARO MURI Awards W911NF-07-10376 (SA08-03)
and W911NF-08-1-0238. Part of this work (studying the single base station
case) was published in Proc. of IEEE INFOCOM ’08.

For continuous monitoring applications, a tree or forest
based topology is often used to gather and aggregate sensing
data. The tree or forest is constructed after initial node deploy-
ment, and is rebuilt upon significant topology changes. We
first study the problem of tree construction for maximizing the
network lifetime. Network lifetime is defined as the time until
the first node depletes its energy. We prove that this problem
is NP-complete, and hence too computationally expensive
to solve exactly. By exploiting the unique structure of the
problem, we obtain an algorithm which starts from an arbitrary
tree and iteratively reduces the load on bottleneck nodes, i.e.,
nodes likely to soon deplete their energy due to either high
degree or low remaining energy. We show that the algorithm
terminates in polynomial time and is provably “near optimal”
(i.e., close to optimal, the precise definition will be given in
Section IV A).

In many sensor network applications, there may be multiple
base stations to which the sensor nodes report. Each base
station selects a group of sensors to construct a “local”
data gathering tree. We assume that the base stations have
no energy constraint. We thus extend the tree construction
problem to construct a data gathering forest for a network
with multiple base stations. Each base station should construct
a tree which does not intersect with trees constructed by
other base stations, and the subset of nodes a base station
chooses to construct a tree is not fixed. Hence, it is infeasible
to run the tree construction algorithm independently at each
base station. This is analogous to network clustering, which
cannot be executed independently at each cluster head [4],
[5]. Moreover, as will be shown in the paper, running the
original tree construction algorithm iteratively could result
in poor overall performance. Thus, we need to intelligently
extend our framework to construct a maximum lifetime data
gathering forest.

The remainder of this paper is organized as follows. Sec-
tion II reviews related work on data gathering and aggregation.
Section III describes the system model and formulates the
problem for tree construction. Section IV gives our tree
construction algorithm and discusses implementation issues.
Section V extends the system model to forest case. Section VI
gives our forest construction algorithm and its implementa-
tion. Simulation results are presented in Section VII, and
Section VIII concludes the paper.

II. RELATED WORK

The problem of efficient data gathering and aggregation
in a sensor network has been extensively investigated in the

2

literature. Chang and Tassiulas [6] studied energy efficient
routing in wireless ad-hoc networks, and proposed a maximum
lifetime routing scheme. Since their focus was on general
wireless ad-hoc networks, nodes do not collaborate on a
common task. Hence, intermediate nodes do not aggregate
received data. Krishnamachari et. al. [7] argue that a data-
centric approach is preferable to address-centric approaches
under the many-to-one communication pattern (multiple sensor
nodes report their data to a single base station). In directed
diffusion [8], a network of nodes coordinate to perform dis-
tributed sensing tasks. This achieves significant energy savings
when intermediate nodes aggregate their responses to queries.
Kalpakis et. al. [9] model data gathering as a network flow
problem, and derive an efficient schedule to extend system
lifetime. Hou et. al. [10] study rate allocation in sensor
networks under a lifetime requirement.

For continuous monitoring applications with a periodic traf-
fic pattern, a tree-based topology is often adopted because of
its simplicity [5], [11], [12]. Compared to an arbitrary network
topology, a tree-based topology saves the cost of maintaining
a routing table at each node, which can be computationally
expensive for sensor nodes with limited resources. A number
of studies have investigated tree construction for data gather-
ing [13]–[16] problems. Goel et. al. [13] study the problem of
constructing efficient trees to send aggregated information to a
sink. The goal is to reduce the total amount of data transmitted.
They propose a randomized algorithm that approximates the
optimal tree. Enachescu et. al. [14] consider a grid of sensors,
and propose a simple randomized tree construction scheme
that achieves a constant factor approximation to the optimal
tree. Thepvilojanapong et. al. [15] present a data gathering pro-
tocol that efficiently collects data while maintaining constant
local state, and making only local decisions. Khan and Pan-
durangan [17] propose a distributed algorithm that constructs
an approximate minimum spanning tree (MST) in arbitrary
networks. In contrast to these approaches, we are motivated
by applications with strict coverage requirements. For these
applications, minimizing the total energy consumption may be
insufficient, since some nodes may deplete their energy faster
than others and could cause a loss of coverage.

III. SYSTEM MODEL AND PROBLEM DEFINITION FOR

TREE CONSTRUCTION

Consider a sensor network with N nodes (v1, v2, . . . vN)
and one base station v0. (Our notation is summarized in
Table I.) The nodes monitor the environment and periodically
report to the base station. Time is divided into epochs, and
each sensor node generates one B-bit message per epoch.
The messages from all the sensors need to be collected at
each epoch and sent to the base station for processing. The
nodes are powered by batteries and each sensor vi has a
battery with finite, non-replenishable energy E(i). The energy
values E(i) of different sensor nodes can be different, for
reasons such as heterogeneous sensor nodes, non-uniform node
energy consumption, or redeployment of nodes. As with many
practical systems [18], [19], the base station is connected to
an unlimited power supply, hence E(0) = ∞. The amount of
energy required to send/receive one bit of data is αt/αr.

TABLE I
LIST OF SYMBOLS

N number of nodes
E(i) amount of non-replenishable

energy node vi has
Em mini=0,...,N E(i)
αt amount of energy required

to send one bit of data
αr amount of energy required

to receive one bit of data
c αt/αr − 1
ε algorithm parameter
A(G) set of data gathering

trees for network G
L(T) lifetime of data gathering tree T
C(T, i) number of children for node vi in T
D(T, i) degree of node vi in T
L(T, i) lifetime of node vi in T
r(T, i) inverse lifetime of node vi in T
M number of base stations in network G
B(G) set of data gathering

forests for network G
L(F) lifetime of data gathering forest F
D(F, i) degree of node vi in F
r(F, i) inverse lifetime of node vi in F

A. Assumptions

We make the following assumptions about our system:
(1) Connectivity: We assume that the sensor nodes and

the base station form a connected graph, i.e., there is a path
from any node to any other node in the graph. This can
be achieved by setting the transmission power levels to be
above the critical threshold [20]–[22], which ensures that the
network is connected with probability one as the number of
nodes in the network goes to infinity. For simplicity, we do not
consider dynamically adjusting the transmission power levels,
and assume that all nodes transmit at the same fixed power
level.

(2) Energy expenditure: Measurements show that among
all the sensor node components, the radio consumes the most
significant amount of energy. In Section IV, we will show that
the computational complexity of our scheduling algorithm is
very low. Therefore, in this work, we only account for energy
consumption of the radio.

(3) Data aggregation: We adopt a simple data aggregation
model as in previous works [7]–[9], [23]. We assume that
an intermediate sensor can aggregate multiple incoming B-
bit messages, together with its own message, into a single
outgoing message of size B bits. This models applications
where we want updates of the type min, max, mean, and sum
(e.g., event counts).

(4) Orthogonal transmissions and sleep/wake scheduling:
Measurements show that for short range radio communica-
tions in sensor networks, a significant amount of energy is
wasted due to overhearing, collision, and idle listening. To
conserve energy, we assume that the system adopts a channel
allocation scheme such that transmissions do not interfere
with each other. Such orthogonality can be achieved via joint
frequency/code allocation and time slot assignment. In [24],
we have given an example solution for a cluster hierarchy
topology. Similar arguments can be made for the tree topology
considered in this paper. Further, because the traffic is periodic,

3

we assume that a sensor node puts the radio into sleep
mode during idle times, and turns it on only during message
transmission/reception.

B. The maximum-lifetime tree problem

We consider a connected network G of N nodes. Each
node monitors the environment and periodically generates a
small amount of data. To gather the data from the sensor
nodes, we need to construct a tree-based topology after node
(re)deployment. For critical applications like seismic moni-
toring or radiation level control in a nuclear plant, we need
to both maintain complete coverage and save redeployment
cost. This requires that all the nodes remain up for as long as
possible. To this end, we formulate the following optimization
problem.

For any network G, there exist multiple possible data
gathering trees. For example, Fig. 1 shows two data gathering
trees for the same network. Each tree T has a lifetime L(T),
where L(T) is defined as the time until the first node depletes
its energy2. Our goal is to find the tree that maximizes the
network lifetime:

(A) max L(T)
such that T ∈ A(G),

where A(G) is the set of data gathering trees for G.

Fig. 1. Two data gathering trees for the same network

To obtain an explicit form of the above problem, we must
characterize the energy dissipation for each sensor node in a
given tree T . Let C(T, i) be the number of children for node
vi in T , and D(T, i) be the degree of node vi in T . During
an epoch, node vi needs to:

• receive one B-bit message from each child, and
• aggregate the received messages with its own message

into a single B-bit message, and transmit this aggregate
message to its parent.

Hence, in each epoch, the energy consumption of node vi is
αrBC(T, i) + αtB, and its lifetime (in epochs) is

L(T, i) =
E(i)

αrBC(T, i) + αtB
.

The network lifetime is the time until the first node dies, i.e.,

L(T) = min
i=1...N

L(T, i) = min
i=1...N

E(i)

αrBC(T, i) + αtB
(1)

2Here, we assume that we will lose the corresponding coverage if a node
dies, i.e., there are no redundant nodes. In case of redundancy, we can consider
all nodes covering the same area (e.g., nodes near the same bird nest) as a
single node whose initial energy equals the sum of energy of all the relevant
nodes, and the following results still apply.

Because the base station v0 is connected to a power supply,
its lifetime is infinite and can also be written as

L(T, 0) =
E(0)

αrBC(T, 0) + αtB
.

So we can include v0 in Equation (1) as

L(T) = min
i=0...N

E(i)

αrBC(T, i) + αtB
. (2)

Since T is a tree, we have

C(T, i) = D(T, i) − 1 (3)

for all nodes except the base station. Combining Equation (2)
with Equation (3) and extracting the constant αrB from the
denominator, we can write Problem (A) as

(B) max min
i=0...N

E(i)

D(T, i) + c
such that T ∈ A(G).

where c = αt

αr
− 1 is a non-negative constant because the

transmission power is larger than the reception power.
In Problem (B), the goal is to maximize the minimum

of E(i)
D(T,i)+c

, i = 0 . . .N . This is a load balancing problem.
Intuitively, for this kind of problem, a good solution would
be that nodes with larger capabilities (large E(i)) should
hold more responsibilities by serving more child nodes (large
D(T, i)). In other words, we want to construct a tree such that
the degree of a node is “proportional” to its energy.

IV. SOLUTION AND IMPLEMENTATION FOR TREE

CONSTRUCTION

The difficulty in solving Problem (B) is illustrated by the
following proposition, which shows that it is NP-complete.

Proposition 1: Problem (B) is NP-complete.
Proof: Clearly, the problem is in NP, since we can verify in
polynomial time if a candidate solution is a tree and achieves
the lifetime constraint.

To show the problem is NP-hard, we reduce from the Hamil-
tonian path problem, which is known to be NP-complete [25].
The reduction algorithm takes as input an instance of the
Hamiltonian path problem. Given a graph G, we construct an
auxiliary graph G′ in the following manner. For each vertex
i in G, add a vertex i′, then draw an edge between i and i′

(Fig. 2).

1

2
3

4

G

1

2
3

4

1'

2'

3'

4'

G’

(a) Reducing HAM-PATH to
Problem (B)

1

2
3

4

1

2
3

4

1'

2'

3'

4'

T T’

(b) The correspondence between
T and T ′

Fig. 2. Problem (B) is NP-complete

Then in G′, set the energy as follows: E(1′) = ∞, E(1) =
E(2) = . . . = E(N) = E(2′) = . . . = E(N ′) = 1. In
this manner, G′ becomes an instance of Problem (B). The
construction of G′ and setting the energy values can be easily

4

done in polynomial time. To complete the proof, we show that
G has a Hamiltonian path if and only if G′ has a tree whose
lifetime is greater than or equal to 1

3+c
.

Suppose G has a Hamiltonian path T . Construct T ′ in G′

by adding vertices 1′, 2′, . . . N ′ and edges (1, 1′), . . . (N, N ′)
as depicted in Fig. 2. Clearly, T ′ is connected and acyclic,
thus T ′ is a tree. Further, since T is a Hamiltonian path, the
maximal degree in T is no larger than 2. But T ′ is constructed
by adding one edge to each vertex in T , so the maximal degree
in T ′ is no larger than 3. Therefore, the lifetime of T ′ is

L(T ′) = min
E(i)

D(T ′, i) + c
≥

1

3 + c
.

Similarly, if G′ has a spanning tree T ′ with L(T ′) ≥ 1
3+c

,
then we have D(T ′, i) ≤ 3, i = 1 . . .N . Otherwise, if
D(T ′, j) > 3 for some j, 1 ≤ j ≤ N , then

L(T ′) ≤ L(T ′, j) <
E(j)

D(T ′, j) + c
≤

1

4 + c
,

which is contradictory.
We further observe that in T ′, vertices 1′, 2′ . . . N ′ are all

leaves. We construct T by removing 1′, 2′ . . .N ′ and the cor-
responding edges (1, 1′), . . . (N, N ′) from T ′. T is still a tree
and it spans G. Since in T ′ we have D(T ′, i) ≤ 3, i = 1 . . .N ,
it is easy to see that in T , D(T, i) ≤ 2, i = 1 . . .N . Thus, T is
a spanning tree with maximal degree no larger than 2, which
is exactly a Hamiltonian path.

Since Problem (B) is NP-complete, we next try to find
an approximate solution. However, in the current form of
Problem (B), the variable D(T, i) is in the denominator and
is hard to tune. Hence, we transform the problem into an
equivalent form. Let r(T, i) = D(T,i)+c

E(i) , i.e., r(T, i) is the
inverse lifetime for node i in tree T . Correspondingly, define
the inverse lifetime of a tree T as r(T) = max

i=0...N
r(T, i). We

write Problem (B) as:
(C) min

T∈A(G)
max

i=0...N
r(T, i),

i.e., maximizing the minimal lifetime is equivalent to mini-
mizing the maximal inverse lifetime. Note that in r(T, i), the
variable D(T, i) is in the numerator, while the denominator is
the constant E(i) which does not change during the operation
of the algorithm. Note that Problem (C) is an equivalent
formulation to Problem (A). In the remainder of the paper,
we will study Problem (C), and we refer to the minimum
maximal inverse lifetime as r∗.

A. Two building blocks of the algorithm

Considerable work has been done on the Minimum Degree
Spanning Tree (MDST) problem, i.e., finding a spanning tree
whose maximal degree is the minimum among all spanning
trees. Problem (C) can be viewed as a generalization of
the MDST problem, where the capacity of a node (E(i))
needs to be considered in the tree construction. Frer and
Raghavachari [26] studied the MDST problem and proposed
an approximation algorithm. Our solution utilizes hints from
their approach. Essentially, our solution starts from an arbitrary
tree, and iteratively makes “improvements” by reducing the
degree of the bottleneck nodes, i.e., nodes with a large inverse

lifetime (or short lifetime), at each step. Upon termination, we
will bound r∗ from below, and show that the resulting tree has
inverse lifetime close to the lower bound. In this section, we
describe two building blocks of our algorithm: (1) the notion
of “an improvement,” and (2) the technique to bound r∗ from
below.

1) The notion of an improvement: Given a tree T and an
arbitrary ε > 0, let k = d r(T)

ε
e, i.e., (k − 1)ε < r(T) ≤ kε.

We classify the nodes into three disjoint subsets:
• V1 = {vi : (k−1)ε < r(T, i) ≤ kε}, i.e., V1 contains the

bottleneck nodes that are our “target” in each step.
• V2 = {vi : (k − 1)ε− 1

E(i) < r(T, i) ≤ (k − 1)ε}. These
nodes are “close” to becoming bottleneck nodes in the
sense that they will become bottlenecks if their degree
increases by one. We should not increase the degree of
these nodes in the algorithm.

• V3 = V − V1 − V2, i.e., all the remaining nodes.
These nodes are “safe” nodes as they will not become
bottlenecks even if the degree is increased by one.

Consider an edge (u, v) that is not in T . A unique cycle C will
be generated when we add (u, v) to T . If there is a bottleneck
node w ∈ V1 in C, while both u and v are in V3 (“safe
nodes”), then we can add (u, v) to T and delete one of the
edges in C incident on w. This will reduce the degree of the
bottleneck node w by one. We refer to this modification as an
improvement, and we say that w benefits from (u, v). We will
use this method as a building block to increase the network
lifetime in our algorithm.

In the above example, if either u or v or both are in V2, then
the above modification will turn u or v or both into bottleneck
node(s). Thus, while reducing the degree for one bottleneck
node, we produce additional bottleneck(s). This is undesirable
and we say that w is blocked from (u, v) by u (or v or both).
A node is blocking if it is in V2.

We illustrate the notion of improvement using an example.
Fig. 3(a) shows a tree, where solid lines correspond to edges
in the tree, and dotted lines correspond to edges not in the
tree. For simplicity, we set the initial energy for all nodes in
this example to be 1, so r(T, i) = D(T,i)+c

E(i) = D(T, i) + c for
all nodes except the base station.

Let ε = 1. According to the above definition, w (the dark
grey node) is a bottleneck node, v2 (the light grey node)
is a blocking node and all other nodes are safe. We can
add (u, v1) and delete (w, u). This is an improvement as
it reduces the degree of the bottleneck node w. In contrast,
adding (u, v2) and deleting (w, u) do not prolong the network
lifetime, because doing so produces another bottleneck node
v2 while reducing the degree of w.

2) Method for bounding r∗ from below: We note that given
a tree T , if we can find a subset of nodes S that satisfies the
following property:

the components produced by removing S from T are also
disconnected in G,
then in any spanning tree X , we can connect these components
only through S. This is because there is no edge between
these components in G. Hence, in X any edge external to
these components must be incident on some vertex in S (see
Fig. 4).

5

(a) The tree

(b) Adding (u, v1) and
deleting (w,u) is an im-
provement

(c) Adding (u, v2) and
deleting (w, u) is not an
improvement

Fig. 3. The notion of improvement

(a) The graph

(b) T and S (c) An arbitrary tree X

Fig. 4. Bounding r∗ from below

Now let us assume that we have already found such an S,
and study the components generated by removing S from T .
We can count

∑
i∈S D(T, i) edges incident on S. Since T is a

tree, at most |S| − 1 of these counted edges are within S and
counted twice. Hence, the number of generated components
is:

O ≥
∑

i∈S

D(T, i) − (|S| − 1) + 1 − |S|.

In an arbitrary spanning tree X , we need to connect these O
components and the vertices in S. This requires

O + |S| − 1 ≥
∑

i∈S

D(T, i) − (|S| − 1) (4)

edges. According to the discussion above, all these edges must
be incident on some vertex in S. Thus, by Equation (4),∑

i∈S D(X, i) ≥
∑

i∈S D(T, i) − |S| + 1 and the inverse

lifetime of X is

r(X) = max
i=0...N

r(X, i) ≥ max
i∈S

r(X, i) = max
i∈S

D(X, i) + c

E(i)

≥

∑
i∈S(D(X, i) + c)∑

i∈S E(i)
≥

∑
i∈S(D(T, i) + c) − |S| + 1∑

i∈S E(i)

≥ min
i∈S

r(T, i) −
|S| − 1∑
i∈S E(i)

. (5)

Since X is an arbitrary spanning tree, Equation (5) holds
for any spanning tree including the optimal one. Hence,
Equation (5) gives a lower bound for the minimum maximal
inverse lifetime r∗, which is equivalent to an upper-bound for
the maximum minimal lifetime. Further, we observe that if
(T, S) is chosen such that

min
i∈S

r(T, i) ≈ r(T),

i.e., r(T, i) for all i ∈ S are close to r(T), then Equation (5)
implies that T is a good approximation to the optimal tree.
Specifically, we have the following lemma.

Lemma 1: For a tree T , if there is a subset S such that
(1) the components produced by removing S from T are also
disconnected in G, and (2) S consists of nodes exclusively
from V1 and V2, then r(T) ≤ r∗ + 2

Em
+ ε, where Em =

min
i=0...N

E(i).

Proof: Since S consists of nodes exclusively from V1 and V2,
we have r(T, i) > (k − 1)ε − 1

E(i) , ∀i ∈ S, but (k − 1)ε <

r(T) ≤ kε, thus

r(T, i) > r(T) − ε −
1

E(i)
≥ r(T) − ε −

1

Em

, ∀i ∈ S. (6)

Combined with Equation (5), for any tree X , we have

r(X) ≥ min
i∈S

r(T, i) −
|S| − 1∑
i∈S E(i)

> r(T) − ε −
1

Em

−
|S| − 1∑
i∈S E(i)

> r(T) − ε −
2

Em

.

Since X is arbitrary, this holds for any tree. Hence, r∗ >
r(T) − ε − 2

Em
.

B. The approximation algorithm

The approximation algorithm starts from an arbitrary tree,
and iteratively makes improvements as described in Sec-
tion IV-A1, by reducing the degree of the bottleneck nodes
(V1) in each iteration. Upon termination, we will show that the
resulting tree includes S, which consists of nodes exclusively
from V1 and V2. Hence, from Lemma 1, the resulting tree is
a good approximation to the optimal tree.

We first describe the operations in a single iteration of the
algorithm.

1) A single iteration: Given a tree T , we remove the nodes
in V1 and V2, which will generate a forest with several compo-
nents. If there are no edges between these components in G,
we terminate the algorithm. In this situation, we have found
an S(= V1 +V2) which consists of nodes exclusively from V1

and V2. By Lemma 1, T is already a good approximation to
the optimal tree.

6

In case that there are some edges between these components
in G, let (u, v) be an edge between two components. We
consider the cycle that would be generated had (u, v) been
added to T . There are two cases:

• If the cycle contains a bottleneck node w, then we add
(u, v) to T and remove one edge incident on w. This is
an improvement because both u and v are in V3 and non-
blocking. Thus, we have successfully reduced the degree
of a bottleneck node within this iteration. We move on
to the next iteration with the updated T as the input.

• If there is no bottleneck node in the cycle, the situation
becomes complex and we discuss it in detail below.

If there is no bottleneck node in the cycle, then it must
contain some node(s) from V2. We merge these nodes along
with all the components on the cycle into a single component.
We call this newly generated component a composite compo-
nent, to differentiate it from the basic components originally
generated after removing V1 and V2 from T . As shown in
Fig. 5(a), C1 and C2 are two basic components generated by
removing V1 and V2 from T , and (u1, u2) is an edge between
them. Node u is in V2. By adding (u1, u2) to T , we get a cycle
u1 → u2 → v → u1. Since u ∈ V2, there is no bottleneck
node in this cycle. We thus merge u and all components on
the cycle (C1 and C2 in this example) into a single composite
component C4.

After this merge operation, we go back and check if there
are edges between the components (basic or composite). If
there are no such edges, the algorithm terminates. Otherwise,
we choose an edge between two components. We consider the
corresponding cycle that would be generated and repeat the
above process. Since the graph is finite, eventually we will
either find an S which consists of nodes exclusively from V1

and V2, or we will find a bottleneck node in the cycle.
After finding a bottleneck node, however, we may not be

able to easily reduce its degree if composite components
are involved. This is because, due to the merging of the
components, some composite components may contain nodes
in V2. If the chosen edge happens to be between one or two
nodes from V2, then we cannot simply add it, because that
would generate another bottleneck node(s). For example, in
Fig. 5(a), C1, C2 and C3 are basic components, hence u1, u2

and v are all in V3 by construction of the algorithm. u ∈ V2

(the light grey node) is in the cycle produced had (u1, u2)
been added, and C4 is the composite component generated by
merging C1, C2 and u. A bottleneck node w ∈ V1 (the light
grey node) is in the cycle produced if (u, v) was added. If we
add (u, v) and delete one edge incident on w, then u would
become a bottleneck node.

The above problem can be solved in the following manner.
Since u is in the cycle produced had (u1, u2) been added, and
both u1 and u2 are in V3, we can add (u1, u2) and remove
one edge incident on u (e.g., (u, u1)). This will decrease the
degree of u by one and make it non-blocking. Then, we add
(u, v) and remove one edge incident on w, which reduces
the degree for bottleneck node w. In other words, we first
“unblock” u within its own component C4, then use edge (u, v)
to make an improvement as described in Section IV-A1. This
procedure can be recursively applied if C1, C2 are composite

components and u1, u2 are blocking, since a blocking node
can be made non-blocking within its own component. The
following proposition formalizes this idea.

(a) Node u blocks w from (u, v) (b) Unblock the blocking node

Fig. 5. Unblock a blocking node

Proposition 2: A blocking node merged into a component
can be made non-blocking by applying improvements within
this component.
Proof: Let u1 be a node in component C1, and u2 be a node
in component C2. Let u be a blocking node that is merged
into component C when edge (u1, u2) is checked, along with
C1 and C2. We need to show that u can be made non-blocking
within C. There are two cases:

• If C1 and C2 are both basic components, then both u1

and u2 are non-blocking. Thus, we can add (u1, u2) and
remove one edge incident on u, making u non-blocking.
The improvement is within C.

• If C1 or C2 or both are composite components, then u1 or
u2 or both could be blocking. Under this situation, if we
can make u1 non-blocking by applying improvements in
C1, and make u2 non-blocking by applying improvements
in C2, then we apply the above improvement to “unblock”
u. This is because C1 and C2 are disjoint from the
construction of the algorithm, hence improvements within
one component do not interfere with those in another.
Thus, we check u1, C1 and u2, C2. We recursively repeat
this checking process and eventually we will get to the
basic components, in which all nodes are non-blocking.
We then reverse the process and unblock the nodes in
a bottom-up manner, until u1 and u2 are unblocked.
Then, we unblock u by adding (u1, u2) and removing
one edge incident on u. Note that all the improvements
are within C.

Based upon this, in a single iteration, we will reduce the
degree for some bottleneck node, otherwise we will find an S
and terminate the algorithm.

2) The iterative approximation algorithm: The approxi-
mation algorithm starts from an arbitrary tree (line 1), and
proceeds with the iterations. Lines 2-14 correspond to an
iteration. Finally, it outputs the solution in line 15.

The following proposition gives the quality of the approxi-
mation algorithm.

Proposition 3: (1) Algorithm 1 terminates in finite time,
and after termination, the tree T which it finds has r(T) ≤
r∗ + 2

Em
+ ε;

(2) If there is a polynomial time algorithm which finds a tree
T ′ with r(T ′) < r∗ + 1

Em
for all graphs and energy settings,

then P = NP .

7

Algorithm 1 Approximation Algorithm
Input: A connected network G and a positive parameter ε
Output: A data gathering tree of G that approximates the
maximum-lifetime tree

1: Find a spanning tree T of G.
2: loop
3: Let k = d r(T)

ε
e.

4: Remove V1 and V2 from T . This will generate a
forest with several components. Let F be the set of
components in the forest.

5: while there is an edge (u, v) connecting two different
components of F and no bottleneck nodes are on the
cycle generated if (u, v) was added to T do

6: Merge the nodes and the components on the cycle
into a single component.

7: end while
8: if there is a bottleneck node in the cycle then
9: Follow the procedure in Proposition 2 and find a

sequence of improvements to reduce the degree of
the bottleneck node.

10: Make the improvements and update T .
11: else
12: Break out of the loop. {no edge connecting two

different components of F .}
13: end if
14: end loop
15: Output the tree T as the solution.

Proof: (1) We first show that the algorithm terminates in
finite time. Clearly, each iteration will finish in finite time,
so it suffices to show the algorithm terminates after a finite
number of iterations. We show this by contradiction. Suppose
the algorithm never stops. In each iteration, we will reduce
the degree for some node i with r(T, i) ∈ ((k − 1)ε, kε].
Because the network is finite, all nodes will have an inverse
lifetime smaller than (k − 1)ε within a finite number of
iterations. Repeating this process, within a finite number of
iterations, all nodes will have inverse lifetime smaller than
(k − 2)ε, (k − 3)ε However, by definition, the inverse
lifetime cannot be smaller than r∗. Thus, the algorithm must
terminate in finite time.

The algorithm terminates when there is no edge between
the components in F , i.e., there exists S consisting of nodes
exclusively from V1 and V2. Thus, by Lemma 1, we have
r(T) ≤ r∗ + 2

Em
+ ε.

(2) Similar to Proposition 1, we reduce from the Hamilto-
nian path problem. Given a graph G, we want to decide if
it contains a Hamiltonian path. To this end, we construct an
auxiliary graph G′ as in Fig. 2 and adopt the same setting of
energy values.

We show that the proposition is true by contradiction.
Suppose that there is a polynomial algorithm which finds a
tree T ′ with r(T ′) < r∗ + 1

Em
for all graphs and energy

settings. Running this algorithm on G′ will generate a tree
T ′ with r(T ′) < r∗ + 1. We will show that G contains a
Hamiltonian path if and only if r(T ′) < 4 + c.

Suppose G has a Hamiltonian path P . We construct P ′ in G′

by adding vertices 1′, 2′, . . . N ′ and edges (1, 1′), . . . (N, N ′).
Clearly, P ′ is connected and acyclic, thus T ′ is a tree. Further,
since P is a Hamiltonian path, the maximal degree in P
is no larger than 2. But P ′ is constructed by adding one
edge to each vertex in P , so that the maximal degree in P ′

is no larger than 3. Therefore, the inverse lifetime of P ′ is
r(P ′) = max D(P ′,i)+c

E(i) ≤ 3 + c. Since P ′ is one particular
data gathering tree for G′, for G′ we have r∗ ≤ r(P ′) ≤ 3+c.
Thus, r(T ′) < r∗ + 1 ≤ 4 + c.

Similarly, if r(T ′) < 4 + c, then we have D(T ′, i) ≤ 3, i =
1 . . .N . Otherwise, if D(T ′, j) > 3 for some j, 1 ≤ j ≤ N ,
then r(T ′) ≥ r(T ′, j) ≥ 4 + c.

Further, in T ′, vertices 1′, 2′ . . . N ′ are all leaves. We
construct T by removing 1′, 2′ . . . N ′ and corresponding edges
(1, 1′), . . . (N, N ′) from T ′. T is still a tree and it spans G.
Because D(T ′, i) ≤ 3, i = 1 . . .N , then in T , D(T, i) ≤
2, i = 1 . . . N . Thus, T is spanning tree with maximal degree
no larger than 2, which is exactly a Hamiltonian path for G.

Thus, G contains a Hamiltonian path if and only if r(T ′) <
4 + c. This means for any graph G, we can decide if it
contains a Hamiltonian path by running the algorithm on the
constructed auxiliary graph G′ and checking if r(T ′) < 4+ c.
This can be done in polynomial time. Hence, we can decide
if a graph contains a Hamiltonian path in polynomial time. If
this is true, P = NP .

C. Implementation

In many sensor systems for continuous monitoring applica-
tions [18], [19], the base station is a Pentium-level PC, which
has a high computational capability and sufficient memory
compared to the sensor nodes. Further, the base station is
often connected to an unlimited power supply. Hence, it is
preferable to take advantage of the computing capabilities of
the base station and let it perform the tree computation3.

We first construct a tree rooted at the base station, follow-
ing [27]. After the completion of this process, each node will
report the identity of its neighbors4 to the base station. The
transmission is hierarchical: a node reports to its parent, then
the parent combines its own information with the information
from its children and passes it along to its own parent. To
guarantee that all the information is received by the base
station, reliable data delivery mechanisms such as hop-by-hop
acknowledgments can be used. The base station can construct
the graph from the received information. It then computes the
data gathering tree using Algorithm 1, and informs each node
of its parent.

To combat the fragility of tree topologies, we must recon-
struct the tree whenever a node depletes its energy or fails
(e.g., due to physical damage). This computation of the tree is
only done infrequently, i.e., we compute the tree only once
after network deployment or topology change. Hence, for

3Note that this centralized scheme is effective because the base station
is much more powerful than the sensor nodes. If the base station has a
similar performance to the sensor nodes, a distributed implementation is more
desirable.

4To mitigate transmission errors, when a node detects its neighbors, it can
choose those with which it has good link quality.

8

continuous monitoring applications where nodes are mostly
static, the additional message overhead is insignificant in the
long run.

V. SYSTEM MODEL AND PROBLEM DEFINITION FOR

FOREST CONSTRUCTION

We now extend our framework to the case of mul-
tiple base stations. We use the same assumptions as
in Section III-A. Consider a large sensor network G
with M base stations v0, v1, . . . , vM−1, and N sensor
nodes vM , vM+1, . . . , vM+N−1. Each base station vi (i =
0, 1, . . . , M − 1) selects Ni sensor nodes to construct a local
data gathering tree, where

∑M−1
i=0 Ni = N . Each sensor

node is contained only in one tree. Each sensor node vi

(i = M, M +1, . . . , N +M−1) has a battery with finite, non-
replenishable energy E(i). The base stations are connected
to unlimited power supplies, hence E(0) = E(1) = . . . =
E(M − 1) = ∞. Nodes monitor the environment and period-
ically report to the base station in their local tree.

We need to construct a data gathering forest with M trees
T0, T1, . . . , TM−1. Each tree Ti uses base station vi as the
root node. We need to maintain complete coverage and save
deployment cost, which requires that all nodes in G remain
operational for as long as possible.

Fig. 6. Two data gathering forests for the same network

For a network G, there are two degrees of freedom to
construct the required forest: each base station vi chooses a
disjoint set of Ni (i = 0, 1, . . . , M − 1) nodes to form a tree
with the constraint

∑M−1
i=0 Ni = N ; after choosing the set

of nodes to construct a local tree for each base station, there
still exists multiple possible data gathering trees. For example,
Fig. 6 shows two data gathering forests for the same network.
Algorithm 1 cannot be run independently at each base station
since each base station cannot independently select the set of
nodes to form its local tree. Moreover, running Algorithm 1
iteratively (for one base station first, and then for next base
station on the remaining nodes, and so on) is insufficient since
Algorithm 1 does not prescribe how to choose a subset of
nodes to construct a local tree. We therefore must extend our
framework for this new scenario. As before, each forest F has
a lifetime L(F), which is defined as the time until the first
node depletes its energy. Our goal is to find the forest that
maximizes the network lifetime:

(D) max L(F)
such that F ∈ B(G),

where B(G) is the set of data gathering forest for G.
Similar to the tree case, we can write Problem (D) as:

(E) maxmini=0,1,...,N+M−1
E(i)

D(F,i)+c

such that F ∈ B(G)

where αt(αr) is the amount of energy required to send
(receive) one bit of data, c = αt

αr
− 1, and D(F, i) is the

degree of vi in forest F . Since the energy of base stations is
infinite, we consider all nodes including the base stations in
Problem (E).

VI. SOLUTION AND IMPLEMENTATION FOR FOREST

CONSTRUCTION

From Proposition 1, we know that Problem (E) is NP-
complete, so we search for an approximate solution. Similar
to the tree case, we transform Problem (E) into an equivalent
form. Let r(F, i) = D(F,i)+c

E(i) be defined as the inverse lifetime
of node vi in F . Then Problem (E) can be written as:

(F) min
F∈B(G)

max
i=0,1,...,N+M−1

r(F, i)

Note that Problem (F) is equivalent to Problem (D), so we
will study Problem (F) instead of Problem (D).

A. Approximation bound

Similar to the tree case, our solution starts from an arbitrary
forest, and iteratively makes “improvements” by reducing the
degree of the bottleneck nodes, i.e., nodes with a large inverse
lifetime, at each step. Upon termination, we will bound r∗

from below, and show that the resulting forest has an inverse
lifetime close to the lower bound.

Given a forest F and an arbitrary ε, let r(F) =

maxi=0,1,...,N+M−1 r(F, i), k = d r(F)
ε

e, i.e., (k − 1)ε <
r(F) ≤ kε. As with the tree case (Section IV-A1), we classify
nodes into three disjoint subsets:

• V1 = {vi : (k−1)ε < r(F, i) ≤ kε}, i.e., V1 contains the
bottleneck nodes.

• V2 = {vi : (k − 1)ε− 1
E(i) < r(F, i) ≤ (k − 1)ε}. These

nodes will become bottlenecks if their degree increases
by one5.

• V3 = V − V1 − V2, i.e., all the remaining nodes. These
nodes will not become bottlenecks even if the degree is
increased by one.

From the above categories, we can see that the smaller the
value of ε, the fewer the nodes in V1, which indicates that
the bottleneck nodes are more precisely partitioned and the
approximation will be tighter.

Consider an edge (u, v) that is not in F . Since F is a forest,
either a unique cycle C or a unique root-to-root path P will be
generated when we add (u, v) to F . We define an improvement
and blocking in the same manner as in the tree case: if there
is a bottleneck node w ∈ V1 in C or P , while nodes u and v
are in V3, then we add (u, v) to F and delete one of the edges
in C or P incident on w. We call this an improvement and
say that w benefits from (u, v). If either u or v or both are in
V2, then the above modification will turn u or v or both into
bottleneck node(s). Then, we say w is blocked from (u, v) by
u (or v or both). A node is blocking if it is in V2.

Now we extend the approximation framework for the tree
construction to the forest case. We begin by assuming that we

5Note that the definition of V2 must take into account the impact of the
initial energy. This is different from the MDST problem [26] where only the
node degrees are considered.

9

have already found a nonempty subset of nodes S that satisfies
the following property:

the connected components produced by removing S from F
are disconnected in both F and G.

We break the set S into partitions as follows.
Lemma 2: Suppose that we can find set S for a forest F in

network G with M disjoint trees T0, T1, . . . , TM−1, then
(1) there exists a nonempty set P such that P ⊂ S, and

P is contained and only contained in one of the trees, Tk,
k ∈ {0, 1, . . . , M − 1}.

(2) S = S0

⋃
S1

⋃
. . .

⋃
SL−1, where L ≤ M . Sj is

disjoint, nonempty, and Sj ⊂ Tk for j = 0, 1, . . . , L − 1 and
k ∈ {0, 1, . . . , M − 1}. Further, if Sj1 ⊂ Tk1 , Sj2 ⊂ Tk2 and
j1 6= j2, then k1 6= k2.
Proof: (1) Since S is nonempty, it contains at least one node,
say vi, i ∈ {0, 1, . . . , N + M − 1}. Since vi ∈ F and F =
T1

⋃
T2

⋃
. . .

⋃
TM−1, there exists k ∈ {0, 1, . . . , M − 1}

such that vi ∈ Tk. Let P = {vi}, then P ⊂ S and P ⊂ Tk.
Suppose P ⊂ Tk and P ⊂ Tl, k 6= l, then Tk

⋂
Tl 6= Φ,

which contradicts to the fact that the trees are disjoint. Thus
P is contained and only contained in one tree Tk.

(2) Since S is nonempty, then 1 ≤ |S| ≤ N + M and
each node in S can form a set by itself, say Pi. Thus,
S =

⋃
i Pi, i = 0, 1, . . . , |S| − 1. From (1), Pi ⊂ Tk, i =

0, 1, . . . , |S| − 1, k ∈ {0, 1, . . . , M − 1}. We place the sets
contained by the same tree into one group, then S is divided
into groups. Since Pi is nonempty, contained and only con-
tained by one tree by (1), so these groups are nonempty and
disjoint, i.e., S = S0

⋃
S1

⋃
. . .

⋃
SL−1. By the property of

groups, Sj ⊂ Tk, j = 0, 1, . . . , L − 1, k ∈ {0, 1, . . . , M − 1}
and L ≤ M .

From Lemma 2, the resulting components of Tk produced
by removing Sj can only be connected through Sj for Tk.
Let D(F, i) be the degree of node i in forest F . Then, we can
count

∑
i∈Sj

D(F, i) edges incident on Sj . Since Sj is part of
tree Tk, then at most |Sj |− 1 of these edge are within Sj and
these edges are counted twice. Hence the number of generated
components that are produced by removing Sj from Tk is

Oj ≥
∑

i∈Sj

D(F, i) − 2(|Sj | − 1)

There are M−L trees that contain no nodes in S, and these
trees form entire components by themselves. Thus, the total
number of generated components in a forest F is

O = (M − L) +

L−1∑

j=0

Oj

≥ (M − L) +
L−1∑

j=0

(
∑

i∈Sj

D(F, i) − 2(|Sj | − 1))

= (M − L) +
∑

i∈S

D(F, i) − 2

L−1∑

j=0

(|Sj | − 1)

= (M − L) +
∑

i∈S

D(F, i) − 2(|S| − L)

In an arbitrary forest X with M trees, we can connect these
O components only through S. This is because there is no

edge between these components in G. We need to connect
these components and vertices in S. This requires

L−1∑

j=0

(Oj + |Sj | − 1) = O − (M − L) + |S| − L

≥
∑

i∈S

D(F, i) − (|S| − L) (7)

edges. This is because if we take a component as a single
node, then for the tree Tk, there are Oj + |Sj | “nodes” and we
need Oj + |Sj | − 1 edges to connect them as a tree. Further,
all these edges must be incident on vertices in S, then by
Equation (7),

∑
i∈S D(X, i) ≥

∑
i∈S D(F, i) − |S| + L and

the inverse lifetime of X is

r(X) = max
i=0,1,...,N+M−1

r(X, i)

≥ max
i∈S

r(X, i) = max
i∈S

D(X, i) + c

E(i)

≥

∑
i∈S(D(X, i) + c)∑

i∈S E(i)

≥

∑
i∈S(D(F, i) + c) − |S| + L∑

i∈S E(i)

≥ min
i∈S

r(F, i) −
|S| − L∑
i∈S E(i)

(8)

From Equation (8), we observe that if (F, S) is chosen such
that mini∈S r(F, i) ≈ r(F), then F is a good approximation.

Lemma 3: For a forest F with M disconnected trees in a
connected network G, if there is a subset S such that (1) the
components produced by removing S from F are disconnected
in both F and G, and (2) if S consists of nodes exclusively
from V1 and V2, then r(F) ≤ r∗ + 2

Em
+ ε − L

|S|Em
, where

Em = mini=0,1,...,N+M−1 E(i), L ∈ {1, 2, . . . , M}.
Proof: Since S consists of nodes exclusively from V1 and V2,
we have r(F, i) > (k−1)ε− 1

E(i) , ∀i ∈ S, (k−1)ε < r(F) <
kε by definition of V1 and V2, then

r(F, i) > r(F) − ε −
1

E(i)
≥ r(F) − ε −

1

Em

, ∀i ∈ S (9)

Combined with Equation (8), for any forest X , we have

r(X) ≥ min
i∈S

r(F, i) −
|S| − L∑
i∈S E(i)

> r(F) − ε −
1

Em

−
|S| − L∑
i∈S E(i)

> r(F) − ε −
1

Em

−
|S| − L

|S|Em

= r(F) − ε −
2

Em

+
L

|S|Em

.

Since X is arbitrary, this holds for any forest with M trees
including the optimal forest. Hence, r∗ > r(F) − ε − 2

Em
+

L
|S|Em

.
It is easy to see that the larger the value of L, the better

the bound we can achieve. Compared to Lemma 1 (a tree is
a forest with M = L = 1), as the number of base stations
M increases, the value of L is likely to increase, and the gap

10

between the approximation and optimal solution for that forest
becomes tighter, which means that the approximation becomes
better.

Note that an alternative approach for solving Problem (D)
can proceed as follows:
(1) Construct an auxiliary graph G′ by adding a vir-
tual base station v′ with infinite energy and adding edges
(v′, v0), (v

′, v1), . . . , (v
′, vM−1);

(2) Execute Algorithm 1 on G′ and find the solution tree T ′.
If, in T ′, a base station vi (i = 0, 1, . . . , M−1) is the child of
sensor node vj (j = M, M +1, . . . , N +M −1), then remove
edge (vi, vj) and add edge (v′, vi);
(3) Remove v′ and all edges incident on v′.

With this approach, however, we will lose the approximation
improvement stated in Lemma 3, specifically the L

|S|Em
term.

Further, as we will discuss in Section VI-C, the current solu-
tion naturally lends itself to an implementation scheme where
computations can be shared among multiple base stations.
If we use the alternative approach, it is unclear which node
should perform the computations and whether multiple base
stations can share the computation load.

B. The approximation algorithm

So far, all of our results have been predicated on the
existence of the set S. We next provide an approximation
algorithm. We will prove that this algorithm terminates in finite
steps and finds set S upon termination.

The algorithm starts from an arbitrary forest, and reduces
the degree of the bottleneck nodes in each iteration. The
algorithm terminates when all components produced by re-
moving S (which consists of nodes exclusively from V1 and
V2) have no edges between each other. Then, from Lemma 3,
the resulting forest is a good approximation to the optimal
forest. The intuition behind this algorithm is that since the
lifetime of the forest is determined by the nodes with the
largest inverse lifetime, the goal should be to equalize the
lifetime or inverse lifetime of all nodes.

We first describe the operations in a single iteration of the
algorithm.

1) Single iteration: Adding an edge to a forest may either
result in a unique cycle or a unique root-to-root path. If we
get a cycle, then the situation is the same as the tree case.
Thus, we only study the situation when we get a root-to-root
path after adding a new edge.

Suppose that two components produced by removing S
from F belong to different trees in F . Let (u, v) be an edge
in G but not in F between these two components. Further,
let nodes u and v belong to the trees Ti and Tj respectively.
There are two cases:

• Consider the unique path from u to the root of Ti, and the
unique path from v to root of Tj . If there is a bottleneck
node on either of these paths, then pick one bottleneck,
say w, remove an edge incident on w, and add (u, v).
This new type of improvement reduces the degree of
the bottleneck node by moving a subtree of one tree to
another tree.

• If there are no bottleneck nodes on these two paths, then
the path can either contain nodes from V2 or V3 from

S. We refer to the path from root of Ti → u → v →
root of Tj as the root-to-root path. Then, we merge
the components and nodes along the root-to-root path
into a newly generated component called a composite
component, and proceed to the next iteration.

After finding a bottleneck node, we may not be able
to reduce its degree directly if composite components are
involved (for the same reason as in the tree construction case).
Similar to Algorithm 1, we use the unblock operation when
we have the situation that reducing the degree of a bottleneck
node will increase the degree of nodes in V2. If we want
to unblock a node in V2 of a composite component which
consists of two basic component belonging to two trees, then
we delete an incident edge on this node and add an edge in G
which connects these two components. We can continue this
unblocking operation until there is no blocking according to
Proposition 2.

Algorithm 2 Approximation Algorithm for Forest Construc-
tion
Input: A connected network G and a positive parameter ε
Output: A data gathering forest of G that approximates the
maximum lifetime forest

1: Find an arbitrary spanning forest F of G.
2: loop
3: Let k = d r(F)

ε
e.

4: Remove V1 and V2 from F . This will generate a forest
with several disjoint components. Let C be the set of
components in the forest.

5: while there is an edge (u, v) in G connecting two
different components of C and no bottleneck nodes
are on the cycle or base station-to-base station path
generated if (u, v) was added do

6: Merge the nodes and components on the cycle or path
into a single component.

7: end while
8: if there is a bottleneck node in the cycle or path then
9: Follow the unblocking procedure for either cycle or

path and find a sequence of improvements to reduce
the degree of the bottleneck node.

10: Make the improvements and update F .
11: else
12: Break out of the loop.
13: end if
14: end loop
15: Output the forest F as the solution.

2) The iterative approximation algorithm: Algorithm 2
starts from an arbitrary forest, and iterates until it outputs
forest F . We give an example to illustrate the operation of
the algorithm. Fig. 7(a) shows a connected graph with an
initial spanning forest which contains two trees {0, 2} and
{1, 3, 4, 5, 6, 7}. The dotted lines are links in the network
but not in the forest. Nodes 0 and 1 are base stations. Let
E(i) = 1 for i = 2, 3, 4, 5, 6, 7, c = 1 and ε = 1. Then in
the first iteration, V1 = {6}, V2 = {4}. By removing V1, V2,
we get components {0, 2}, {1}, {3}, {5}, {7}. In Fig. 7(b) we

11

(a) Initial forest (b) Combining
components

(c) Improvement (d) Final forest

Fig. 7. Illustration of Algorithm 2

check link (2, 3) which connects components 1 and 2. This
link is on the root-to-root path 1 → 4 → 3 → 2 → 0.
Since V1 = {6}, there is no node in V1 along this path,
so we combine nodes and components along this path into
a composite component. In Fig. 7(c), we check (4, 5) which
connects component 3 and the composite component. This link
is in the cycle 1 → 4 → 5 → 6 → 1 of tree {1, 3, 4, 5, 6, 7}
and node 6 is in V1, then we perform an improvement. We
first delete an edge incident on node 6 and add (4, 5). Since
node 4 is in V2, we “unblock” in the composite component
and release node 4. The result is in Fig. 7(d). In the second
iteration, V1 = {2, 6}, and V2 = {3, 4, 5, 7}. We remove nodes
in V1 and V2 of Fig. 7(d) and find components {0} and {1}
that are disconnected both in G and F . Thus, the algorithm
terminates, finding S = {2, 3, 4, 5, 6, 7}.

The following proposition characterizes the quality of the
approximation and proves the existence of set S. We omit the
proof since it is a direct extension of Proposition 3.

Proposition 4: Algorithm 2 terminates in finite time, and
after termination, it finds S and the resulting forest F has
r(F) ≤ r∗ + 2

Em
+ ε − L

|S|Em
.

3) Computational complexity: We now analyze the com-
putational complexity of our algorithms6. For any bottleneck
node i in V1, we have (k − 1)ε < D(F,i)+c

E(i) ≤ kε. Hence,
(k − 1)εE(i) < D(F, i) + c. Since M base stations must not
be in V1, then for each tree Tj , there are at most Nj nodes in
V1, where Nj is the number of sensor nodes in Tj . For tree
Tj , there are at most Nj edges incident on Nj nodes (in the
case of Nj edges, at least one edge that is incident on the
base station in Tj is counted). Thus, at most

∑M−1
j=0 Nj = N

edges in F are incident on nodes in V1 (in the case of N

6Note that we cannot directly follow the complexity analysis in [26].
Therein, in each iteration, the number of bottleneck nodes is reduced by one.
Here, due to the impact of Ei, the size of V1 may or may not decrease in
each iteration.

edges, at least M edges that are incident on the base stations
are counted). For a forest with N nodes and M base stations,
the sum of degrees of nodes in V1 is at most 2N − M . So,
we have

(k−1)ε
∑

i∈V1

E(i) <
∑

i∈V1

(D(F, i)+c) ≤ 2N−M +cN (10)

Therefore,

ε
∑

i∈V1

E(i) <
2N − M + cN

k − 1
(11)

and

(k − 1)εEm|V1| ≤ (k − 1)ε
∑

i∈V1

E(i) < 2N − M + cN

⇒ |V1| <
(2 + c)N − M

(k − 1)εEm

(12)

In each iteration, the degree of bottleneck node i will decrease
by one, so the inverse lifetime will decrease by 1

E(i) . After
d ε

1
E(i)

e iterations, the inverse lifetime will be lower than (k −

1)ε. For all bottleneck nodes to have their inverse lifetime
lower than (k − 1)ε, we need a total of

∑

i∈V1

d
ε
1

E(i)

e ≤
∑

i∈V1

(
ε
1

E(i)

+ 1) = ε
∑

i∈V1

E(i) + |V1|

<
(2 + c)N − M

k − 1
(1 +

1

εEm

) (13)

<
(2 + c)N

k − 1
(1 +

1

εEm

)

iterations by Equation (11) and Equation (12).
We can see from Equation (13) that the upper bound on

the total number of iterations decreases as the number of base
stations increases. Since the inverse lifetime cannot exceed
N+c
Em

, k cannot exceed dN+c
Emε

e. Summing up the right hand
side of the above equation over k, the algorithm will terminate
in O((1 + 1

εEm
)N log(N

Emε
)) iterations. Each iteration can

be completed in O(|E|α(|E|, N)) time (as in [26]) using
Tarjan’s disjoint set union-find algorithm [28], where |E|
is the number of edges and α(·) is the inverse Ackerman
function. Therefore, the complexity of the entire algorithm is
O((1 + 1

εEm
)|E|Nα(|E|, N) log (N

Emε
)). The computational

complexity of the optimal solution (exhaustive search) for a
forest with N nodes will increase exponentially as the number
of base stations M grows. Since the computational complexity
of our approximation algorithm remains at the same level as M
increases, the complexity improvement between our approx-
imation scheme and the exhaustive search scheme becomes
more pronounced from the tree (M = 1) to the forest case.

We note that the parameter ε appears both in the approxi-
mation range (as given in Proposition 4) and in the algorithm
complexity. It affects the trade-off between the approximation
quality and the computation time. If ε is chosen to be small,
the approximation quality will be good, but the computation
time will be large. Alternatively, choosing a large ε will reduce
the computation time, but degrade the approximation quality.
We will quantitatively study the impact of ε via simulations
in Section VII-B.

12

C. Implementation

We use the following protocol for the forest construction.
Each base station starts gathering local information by broad-
casting a beacon. This is the same as the protocol used in the
tree computation in Section IV-C; the only difference here is
that the beacon also contains the identity of the base station. If
a node receives beacons from several base stations, it selects
one as its root and ignores others. This broadcast process
terminates once every node is assigned a level and finds a
parent to report to. After that, each node reports the identity
of its neighbors and that of the neighbors’ root base station.
Each base station receives topology information of a subset of
nodes that select it as the root base station. With the received
information, each base station constructs its local tree. We call
two trees “neighboring trees” if there are edges in the network
connecting them. Since all nodes report their neighbors’ root
base station, then each base station knows the neighboring
trees of its local tree.

Each base station knows the node with maximum inverse
lifetime in its local tree and broadcasts its identity and this
inverse lifetime to its neighboring trees. These beacons be-
tween neighboring trees are sent through their adjacent nodes.
Each base station waits for a period of time to confirm that
there are no more beacons, and then it calculates the maximum
inverse lifetime of the forest and learns the categories of the
nodes in its local tree. Thus, base stations locally remove
nodes in V1 and V2 and generated components. Then each
base station checks connecting edges between the components
of its local tree or its neighboring trees. If a base station
needs to perform an “improvement” or “unblock” operation, it
broadcasts a beacon with its identity and indicates that it has
such operations to perform. We adopt a policy that the base
station with the smallest identity value “wins.” After a period
of time, all base stations know which base station should
perform the operations if there are edges between components
in this iteration. After that, each base station waits for a period
of time to ensure that the operation has been completed, and
then updates its local tree.

VII. SIMULATION RESULTS

In this section, we evaluate the performance of our approx-
imation algorithm via simulations. Unless otherwise specified,
we assume that 100 nodes are uniformly dispersed in a 100 m
× 100 m field7. Each node is assigned a randomly-generated
initial energy level between 1 and 10 Joules (J). There is a link
between two nodes if and only if the distance between them
is less than or equal to the transmission range R. Each node
generates B = 2 bytes of data per minute. From previous
measurements [8], the transmission power is about two times
the reception power, then c = αt

αr
− 1 = 1. All the simulation

results are averaged over 100 runs, with each run using a
different randomly generated topology. Table II summarizes
the simulation parameters and other system constants.

7This topology model is for illustration purposes only. Our scheme works
with general topology models.

TABLE II
SIMULATION PARAMETERS AND SYSTEM CONSTANTS

Number of nodes 100
Field 100 × 100
Initial energy (J) U(1, 10)
B (bytes per min.) 2
Data rate (kbps) 19.2
c = αt

αr
− 1 1

R (transmission range) 20
Algorithm parameter ε 0.5
Number of runs 100

A. Lifetime performance

1) Tree construction: To illustrate the lifetime performance
of our approximation algorithm, we compare our scheme with
the initial (random) tree that we described in Section IV-C. In
the random scheme, all 1-hop nodes choose the base station
as the parent node. An n-hop (n ≥ 2) node will choose an
n − 1-hop node as its parent. If there are multiple n − 1-hop
nodes within its transmission range, it randomly picks one of
them.

The base station is located at the center of the field, i.e., its
coordinate is (50, 50). For each run, we compute the lifetime
ratio between our scheme (Algorithm 1) and the random
scheme. We give the histogram over 100 runs in Fig. 8(a).
It can be seen that our scheme significantly outperforms the
random scheme. For all runs, the lifetime achieved by our
scheme is at least 30% larger than the random scheme, and
for most runs, the lifetime of our scheme is three times larger.
This confirms that it is necessary to adopt an intelligent tree
construction algorithm, and validates the effectiveness of our
scheme.

We also compare our scheme with the optimal solution.
To do this, we enumerate all the trees for a given graph,
find the one with maximum lifetime and compare with our
scheme. Because of the high complexity of the enumeration,
we set the number of nodes to 10, the area to 10× 10 m, and
the transmission range to 6.5. We show the histogram of the
lifetime ratios in Fig. 8(b). It can be seen that the performance
of our scheme is close to the optimal solution. For all runs,
the lifetime achieved by our scheme is at least 70% that of
the optimal solution.

0 2 4 6 8
0

10

20

30

40

Lifetime ratio between the two schemes

F
re

qu
en

cy

(a) Histogram of the lifetime ra-
tios between our scheme and the
random scheme

0.7 0.8 0.9 1
0

10

20

30

40

50

60

Lifetime ratio between the two schemes

F
re

qu
en

cy

(b) Histogram of the lifetime ra-
tios between our scheme and the
optimal scheme

Fig. 8. Comparing our scheme with two schemes for tree construction

13

2) Forest construction: We first compare the lifetime per-
formance of Algorithm 2 with the initial (random) forest that
we described in Section VI-C. We place four base stations in
the field, with coordinates (25,25), (75,25), (25,75), (75,75).
For each simulation run, we compute the lifetime ratio between
Algorithm 2 and the random scheme. The random scheme is
implemented as follows: We first randomly arrange the nodes,
and then construct M trees using BFS (Breadth First Search)
with the arranged order of nodes. We show the histogram
over 100 runs in Fig. 9(a). It can be seen that our scheme
(Algorithm 2) significantly outperforms the random scheme.
For most runs, the lifetime achieved by our scheme is two to
three times larger than the random scheme.

(a) Histogram of the lifetime ra-
tios between our scheme and the
random scheme

(b) Histogram of the lifetime ra-
tios between our scheme and the
optimal scheme

Fig. 9. Comparing our scheme with two schemes for forest construction

We also compare our scheme with the optimal solution.
To find the optimal solution, we use exhaustive search to
enumerate all the spanning forests for a given graph and find
the one with the maximum lifetime. Due to the complexity
of the enumeration, we set the number of nodes to 6, the
number of base stations to 2, the field to 10 × 10 m, and
the transmission range to 6.5. The base stations are located at
(2.5,2.5) and (7.5,7.5). We depict the histogram of the lifetime
ratio in Fig. 9(b). It can be seen that for most runs (above
90%), our scheme results in the optimal spanning forest.

B. Impact of ε on lifetime

Fig. 10 depicts the impact of ε on network lifetime. Three
lines represent the following three cases: tree with base station
at (50,50), forest with 5 base stations at (25,25), (75,25),
(25,75), (75,75), (50,50), and forest with 17 base stations at
(12.5,12.5), (37.5,12.5), (62.5,12.5), (87.5,12.5), (12.5,37.5),
(37.5,37.5), (62.5,37.5), (87.5,37.5), (12.5,62.5), (37.5,62.5),
(62.5,62.5), (87.5,62.5), (12.5,87.5), (37.5,87.5), (62.5,87.5),
(87.5,87.5), (50,50). We vary the value of ε, execute our
algorithm, and compute the lifetime for each randomly gen-
erated topology. For each value of ε, we compute the average
lifetime over 100 runs, and show the result in Fig. 10. We
observe that for all cases, the trend is that the network lifetime
achieved by our algorithm decreases as ε increases. This is
consistent with the analytical result given by Proposition 3
and Proposition 4. We also observe that when ε is small (i.e.,
good approximation), the more base stations in the network,
the longer the lifetime we can achieve.

Fig. 10. Impact of ε on lifetime

VIII. CONCLUSIONS

In this work, we study the construction of data gathering
trees and forests to maximize the network lifetime of a
wireless sensor network. The data gathering tree problem turns
out to be NP-complete and hard to solve exactly. However,
by investigating its structure, we provide a polynomial time
algorithm, which is provably close to optimal. We then extend
our solution to the construction of a data gathering forest.
This results in a better approximation ratio for extending the
network lifetime and in decreasing the load on the central base
station. Simulations show that both our schemes successfully
balance the load and significantly extend the network lifetime.
Further, our schemes have a low computational burden, which
is important for on-line implementation.

Our work can be extended in several directions. First, our
definition of network lifetime mainly applies to application
scenarios with strict coverage requirements. We will extend
our framework to consider other definitions of network life-
time, e.g., time until network partitioning. Second, our im-
plementation of tree construction leverages a centralized base
station. In the forest case, the implementation is decentralized
among trees, but each base station still makes centralized
decisions in its local tree. For applications where a powerful
base station is unavailable, distributed implementations of
these algorithms are needed. We plan to investigate a fully
distributed implementation of the algorithms. Third, we will
quantitatively study the impact of wireless transmission errors.
Fourth, our work assumes that all nodes transmit at the same
power and do not dynamically adjust the transmission power
level. Data gathering in the case when nodes dynamically
adjust their transmission power levels is an open issue that we
plan to investigate. Finally, we will study the joint optimization
of lifetime and propagation delay (i.e., tree depth).

REFERENCES

[1] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next Century
Challenges: Scalable Coordination in Sensor Networks,” in Proc. of
MOBICOM, 1999.

[2] J. Kahn, R. Katz, and K. Pister, “Next Century Challenges: Mobile
Networking for ”Smart Dust”,” in Proc. of MOBICOM, 1999.

[3] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson,
“Wireless Sensor Networks for Habitat Monitoring,” in Proc. of WSNA,
September 2002.

[4] N. Xu, S. Rangwala, K. Chintalapudi, D. Ganesan, A. Broad, R. Govin-
dan, and D. Estrin, “A Wireless Sensor Network for Structural Moni-
toring,” in Proc. of SenSys, 2004.

[5] B. Hohlt, L. Doherty, and E. Brewer, “Flexible power scheduling for
sensor networks,” in Proc. of IPSN, 2004.

14

[6] J. H. Chang and L. Tassiulas, “Maximum lifetime routing in wireless
sensor networks,” IEEE/ACM Transactions on Networking, vol. 12, pp.
609–619, August 2004.

[7] L. Krishnamachari, D. Estrin, and S. Wicker, “Modeling Data-Centric
Routing in Wireless Sensor Networks,” in Proc. of INFOCOM, 2002.

[8] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed Diffusion: A
Scalable and Robust Communication Paradigm for Sensor Networks,”
in Proc. of MOBICOM, 2000.

[9] K. Kalpakis, K. Dasgupta, and P. Namjoshi, “Maximum lifetime data
gathering and aggregation in wireless sensor networks,” in Proc. of IEEE
International Conference on Networking, 2002.

[10] Y. T. Hou, Y. Shi, and H. D. Sherali, “Rate allocation in wireless sensor
networks with network lifetime requirement,” in Proc. of MOBI-HOC,
2004.

[11] J. Gehrke and S. Madden, “Query Processing In Sensor Networks,”
Pervasive Computing, vol. 3, no. 1, pp. 46–55, 2004.

[12] A. Woo, T. Tong, and D. Culler, “Taming the Underlying challenges
of Reliable Multihop Routing in Sensor Networks,” in Proc. of SenSys,
2003.

[13] A. Goel and D. Estrin, “Simultaneous optimization for concave costs:
single sink aggregation or single source buy-at-bulk,” in Proc. of the
ACM Symposium on Discrete Algorithms (SODA), 2003.

[14] M. Enachescu, A. Goel, R. Govindan, and R. Motwani, “Scale free
aggregation in sensor networks,” in In Proc. of the First International
Workshop on Algorithmic Aspects of Wireless Sensor Networks, 2004.

[15] N. Thepvilojanapong, Y. Tobe, and K. Sezaki, “On the construction of
efficient data gathering tree in wireless sensor networks,” in Proc. of
ISCAS, 2005.

[16] Y. Zhang and Q. Huang, “A Learning-based Adaptive Routing Tree for
Wireless Sensor Networks,” Journal of Communications, vol. 1, no. 2,
2006.

[17] M. Khan and G. Pandurangan, “A fast distributed approximation algo-
rithm for minimum spanning trees,” in Proc. of International Symposium
on Distributed Computing, 2006.

[18] G. Hackmann, C.-L. Fok, G.-C. Roman, and C. Lu, “Middleware support
for seamless integration of sensor and IP networks,” in Proc. of DCOSS,
2006.

[19] S. Arms, J. Galbreath, A. Newhard, and C. Townsend, “Remotely
reprogrammable sensors for structural health monitoring,” in Structural
Materials Technology conference, 2004.

[20] P. Gupta and P. R. Kumar, “Critical Power for Asymptotic Connectivity
in wireless Networks,” Stochastic Analysis, Control, Optimizations, and
Applications: A Volume in Honor of W. H. Fleming, 1998.

[21] S. Shakkottai, R. Srikant, and N. Shroff, “Unreliable sensor grids:
Coverage, connectivity and diameter,” in Proc. of INFOCOM, 2003.

[22] S. Kumar, T. H. Lai, and J. Balogh, “On k-Coverage in a mostly sleeping
sensor network,” in Proc. of MOBICOM, September 2004.

[23] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “An
Application-Specific Protocol Architecture for Wireless Microsensor
Networks,” IEEE Transactions on Wireless Communications, vol. 1,
no. 4, pp. 660–670, October 2002.

[24] Y. Wu, S. Fahmy, and N. B. Shroff, “Energy efficient sleep/wake
scheduling for multi-hop sensor networks: Non-convexity and approxi-
mation algorithm,” in Proc. of INFOCOM, May 2007.

[25] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[26] M. Frer and B. Raghavachari, “Approximating the minimum-degree
Steiner tree to within one of optimal,” Journal of Algorithms, vol. 17,
pp. 409–423, 1994.

[27] R. Perlman, “An algorithm for distributed computation of a spanning
tree in anextended LAN,” in Proc. of the Ninth Symposium on Data
Communications, 1985, pp. 44–53.

[28] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms. McGraw-Hill, 2001.

AUTHOR BIOGRAPHIES

Yan Wu received the B.S. degree from the University
of Science and Technology of China, the M.S. degree from
the Chinese Academy of Sciences, and the Ph.D. degree in
Computer Science from Purdue University in 2007. He is
currently with Microsoft Corporation. His research interests
lie in resource allocation, optimization and cross-layer design
in wireless and sensor networks.

Zhoujia Mao received the B.S. degree from the University
of Science and Technology of China. He is currently working
toward the Ph.D. degree in the Department of Electrical and
Computer Engineering, The Ohio State University. His re-
search interests include wireless networks, resource allocation,
scheduling and optimization.

Sonia Fahmy [Senior Member] is an associate professor at
the Computer Science department at Purdue University. She
received her PhD degree from the Ohio State University in
1999. Her current research interests lie in the areas of Internet
tomography, network security, and wireless sensor networks.
She received the National Science Foundation CAREER award
in 2003, and the Schlumberger technical merit award in 2000.
She is a member of the ACM. For more information, please
see: http://www.cs.purdue.edu/∼fahmy/

Ness B. Shroff [Fellow] received his Ph.D. degree from
Columbia University, NY in 1994 and joined Purdue Univer-
sity immediately thereafter. At Purdue, he became Professor
of the school of Electrical and Computer Engineering in 2003
and director of CWSA in 2004, a university-wide center on
wireless systems and applications. In 2007, he joined The Ohio
State University as the Ohio Eminent Scholar of Networking
and Communications, and Professor of ECE and CSE. His
research interests span the areas of wireless and wireline
communication networks. For more information, please see:
http://www.ece.ohio-state.edu/∼shroff/

