
Data-driven Resource Flexing for Network Functions
Virtualization

Lianjie Cao
Purdue University
cao62@purdue.edu

Sonia Fahmy
Purdue University

fahmy@cs.purdue.edu

Puneet Sharma
Hewlett Packard Labs

puneet.sharma@hpe.com

Shandian Zhe
University of Utah
zhe@cs.utah.edu

ABSTRACT
Resource flexing is the notion of allocating resources on-
demand as workload changes. This is a key advantage of Vir-
tualizedNetwork Functions (VNFs) over their non-virtualized
counterparts. However, it is difficult to balance the timeli-
ness and resource efficiency when making resource flexing
decisions due to unpredictable workloads and complex VNF
processing logic.

In this work, we propose an Elastic resource flexing system
for Network functions VIrtualization (ENVI) that leverages
a combination of VNF-level features and infrastructure-level
features to construct a neural-network-based scaling deci-
sion engine for generating timely scaling decisions. To adapt
to dynamic workloads, we design a window-based rewind-
ing mechanism to update the neural network with emerging
workload patterns and make accurate decisions in real time.
Our experimental results for real VNFs (IDS Suricata and
caching proxy Squid) using workloads generated based on
real-world traces, show that ENVI provisions significantly
fewer (up to 26%) resources without violating service level
objectives, compared to commonly used rule-based scaling
policies.

CCS CONCEPTS
• Networks→ Network dynamics; Network manageability;
ACM Reference Format:
Lianjie Cao, Sonia Fahmy, Puneet Sharma, and Shandian Zhe. 2018.
Data-driven Resource Flexing for Network Functions Virtualization.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ANCS ’18, July 23–24, 2018, Ithaca, NY, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5902-3/18/07. . . $15.00
https://doi.org/10.1145/3230718.3230725

In ANCS ’18: Symposium on Architectures for Networking and Com-
munications Systems, July 23–24, 2018, Ithaca, NY, USA. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3230718.3230725

1 INTRODUCTION
Virtualization and automated resource orchestration, usually
referred to as cloudification, have transformed IT opera-
tions and management. Virtualization allows applications
and services to be deployed on commodity hardware in pub-
lic or private data centers to reduce capital expenses (CapEx).
Telecommunication providers are now leveraging virtualiza-
tion technologies to move network services (e.g., intrusion
detection systems (IDSes), caching proxies and Evolve Packet
Core (EPC)) from proprietary hardware to virtualized im-
plementations on commodity devices. This adoption, called
Network Functions Virtualization (NFV), increases agility,
scalability, and elasticity of their IT infrastructure.

The savings in operational expenses (OpEx) can only be at-
tained and realized if the virtualized infrastructure is Resource
Proportional. Resource Proportionality can be defined as alloca-
tion and consumption of compute, memory, networking and
storage resources proportionally to the workload incident
on the infrastructure. Most of the cloud computing work-
load is unimodal in terms of resource bottlenecks, e.g., CPU,
memory or network. In contrast, NFV workloads are more
complex and network functions can be bottlenecked at differ-
ent or multiple resources. For example, caching proxies (e.g.,
Squid) can be bottlenecked on both CPU and memory; IDSes
(e.g., Snort and Suricata) are primarily CPU-bottlenecked
and may depend on incoming bit rates; L3 routing/firewall
processing costs are typically proportional to packet rates.
While NFV orchestrators can elastically scale a deploy-

ment to adjust the system capacity and meet the require-
ments of varying workloads, there is a need for more sophis-
ticated resource management. An important part of resource
management is making decisions about when to scale/adjust
resource allocation. Accuracy and timeliness of scaling deci-
sions allow balancing the tradeoffs associated with resource

https://doi.org/10.1145/3230718.3230725
https://doi.org/10.1145/3230718.3230725

ANCS ’18, July 23–24, 2018, Ithaca, NY, USA Lianjie Cao, Sonia Fahmy, Puneet Sharma, and Shandian Zhe

allocation. Making scaling decisions long before actual over-
load causes under-utilization of resources allocated to a VNF
(and hence higher operational expenses). Conversely, scaling
decisions after the fact can incur penalties associated with
violations of service level objectives (SLOs) and even ser-
vice disruption. Designing an elastic resource management
system for NFV can be very challenging due to (1) the lack
of detailed performance specifications of VNFs for different
configurations and workloads; (2) distinct processing logic
of various VNFs; (3) the variable composition and volume
dynamics of workload traffic; and (4) the cascading effects of
scaling VNFs along a service function chain. We elaborate
on these challenges in §2.
Most cloud platforms provide static rules-based policy

interfaces (e.g., OpenStack Heat [30], Amazon EC2 AutoScal-
ing [1], and Google Cloud AutoScaler [13]) for users to de-
fine scaling strategies for their applications and services.
These rules are specified in terms of basic resource utiliza-
tion information (e.g., CPU, memory and network) gathered
by monitoring of the underlying infrastructure. Some re-
searchers model VNF placement and resource allocation as
an optimization problem that minimizes cost or maximizes
system capacity. Although these solutions are successful
in certain scenarios with single resource bottlenecks, most
fail to account for the complex resource consumption be-
havior of today’s services and VNF classes. As is evident
from Figures 1(a) and 1(b), a static rule such as scale when
CPU utilization ≥ 70% is insufficient for different HTTP
workload types.

We observe that service developers and users rely on criti-
cal internal runtime state information to manage the stability
of their operational systems. Such critical internal informa-
tion is recorded in system/application logs and has become a
common source for debugging and monitoring running pro-
grams. Such log data can be found (actively or passively) for
most VNFs. For instance, both the Snort and Suricata IDSes
report packet classification, throughput, and rule matching
statistics in their logs.We collect andmine this log data, along
with infrastructure resource utilization information (referred
to as VNF-level features and infrastructure-level features, re-
spectively) to understand the running status. We argue that
combining these VNF-level features and infrastructure-level
features (as composite feature sets) can enhance our under-
standing of VNF run-time dynamics, and hence increase the
accuracy of elastic scaling.
In this paper, we propose an Elastic resource flexing sys-

tem for Network functions VIrtualization (ENVI) to make
scaling decisions based on an evolving neural network by
periodically collecting data on VNF and infrastructure re-
sources. ENVI uses these VNF-specific and infrastructure
utilization information as input features to train a multi-
layer neural network during offline performance tests (offline

stage). After deployment (online stage), ENVI continues to
collect the same information and uses the previously trained
neural networks as initial classifiers to make scaling deci-
sions. Retraining is activated when false positive or false
negative decisions are observed, in order to adapt neural
networks to new patterns in workload traffic. Our earlier
work [10] briefly explored the offline stage, whereas this
paper introduces the online stage with new algorithms and
experiments.

Due to the complexity of VNF processing logic and work-
load dynamics, it is infeasible to formulate precise mathe-
matical models for VNFs even with a composite feature set.
Therefore, we take an alternative approach. We model the
scaling decision making process as a binary classification
problem by capturing sophisticated relationships between
VNF runtime status and system scaling using a neural net-
work for each VNF. To make scaling decisions prior to actual
VNF overload, the decision boundary generated by neural
network classifiers should be ahead of the actual VNF capac-
ity. However, VNF capacity is affected by a number of factors,
such as composition of workload traffic, type and amount of
virtualized resources provisioned, and VNF processing logic.
We achieve this by enforcing a safety margin or “buffer zone”
between decision boundaries and actual system capacities
during the sample labeling process.
During the online stage, ENVI starts making scaling de-

cisions using the initial neural networks. However, as with
many machine learning algorithms, new input patterns arise
when workload varies, leading to incorrect decisions. We
need to continue updating the initial neural networks to
keep up with dynamic workload traffic. Additionally, ENVI
aims to avoid VNF overload by taking timely scaling actions,
which may lead to a significantly smaller number of 0s (“not
scale”) than 1s (“scale”) decisions produced by neural net-
works. This imbalanced number of the two classes creates a
biased data set for training neural network during the online
stage. To address these problems, we developed a window-
based sample selection mechanism along with a rewinding
mechanism to relabel and select balanced numbers of sam-
ples of the two classes to train the current neural network
whenever false decisions are observed.

The remainder of this paper is organized as follows. §2
discusses the challenges in resource flexing and motivates
the need of a more sophisticated approach. §3 describes the
ENVI design and the tradeoffs involved. §4 discusses our
experimental results and §6 summarizes related work. We
conclude the paper in §7.

2 CHALLENGES
Resource flexing is complicated by the dynamic and com-
posite nature of workload, and the resource consumption

Data-driven Resource Flexing for Network Functions Virtualization ANCS ’18, July 23–24, 2018, Ithaca, NY, USA

behavior of different VNFs or applications. We discuss these
challenges in this section, and explain why they render static
or threshold-based resource flexing ineffective.

2.1 Workload Dynamics
Table 1 shows samples of Internet traffic protocol composi-
tion based on traces collected collected by CAIDA in Chicago
from January 2016 to April 2016 [7]. Workload composition
includes factors such as the mix of protocols used, packet
size distribution, and application-level content. Although
long-term traffic volume patterns (e.g., diurnal and weekly
patters) can be observed on certain links [5, 8, 43], both vol-
ume and composition are not sufficiently predictable to make
scaling decisions at minute or even second time scales.

Table 1: Internet traffic composition collected by
CAIDA in Chicago [7].

Application 01/21/16 02/18/16 03/17/16 04/06/16
HTTPS 52.07% 59.15% 49.91% 40.40%
HTTP 32.55% 28.60% 35.12% 38.76%

Other UDP 7.60% 5.24% 6.96% 5.99%
Other TCP 4.45% 3.66% 5.15% 11.73%

SSH 0.47% 0.44% N/A 0.24%
ICHAT 0.24% 0.36% 0.31% 0.23%
RTMP 0.23% N/A 0.34% 0.47%
Other 2.60% 2.53% 2.21% 2.18%

2.2 VNF Diversity and Complexity
A variety of VNFs is being used, including NAT devices,
firewalls, IDS/IPS systems, load balancers, WAN Optimizers,
traffic shapers, proxies, and VPNs. Each of these consumes
resources in very different ways. Resource consumption is
influenced by a number of factors, including the amount of
state maintained, the type of processing done, and the struc-
ture of the code (e.g., single-threaded or multi-threaded). For
example, some VNFs may terminate or originate TCP con-
nections, and some do not. Some VNFs take actions per TCP
connection, per individual packet, or per source IP address.
Some VNFs inspect and/or modify packet headers only, while
some inspect payloads.
Each VNF or application exhibits very different resource

consumption patterns, based on both the workload and con-
figuration. The workload and configuration impact the pro-
gram paths taken, and hence the resource consumption. To
study this impact, we conducted several experiments to inves-
tigate how resource consumption of the Snort IDS changes
when the traffic is primarily UDP, versus HTTP, versus other
TCP. We found that Snort resource consumption with UDP
traffic scales per-packet (with each rule needing to be eval-
uated on each packet). Certain specific IDS rules interact

badly with Snort design choices, causing unusually poor per-
formance. In contrast, we found that resource consumption
scales per TCP connection, not per TCP packet. In the case
of HTTP, certain IDS rules only need to be evaluated once
per-connection, but other rules are matched with the stream
content, impacting resource consumption patterns.

We also conducted experiments with the Squid web proxy
to quantify the relationship between its throughput (mea-
sured in completed HTTP requests per second) and CPU uti-
lization under different workloads (different HTTP response
sizes in our case). Fig. 1 illustrates the results of two types
of workloads. The figure shows that a single resource usage
indicator such as CPU utilization does not correspond to the
same throughput under the two workloads. We conclude that
taking resource flexing decisions based on a simple threshold
on resource usage (such as CPU utilization) is insufficient.

(a) HTTP workload with 30 KB response size

(b) HTTP workload with 100 KB response size

Figure 1: Different capacities and CPU utilization of
Squid with two types of workloads.

3 ENVI DESIGN
In this section, we describe the design and implementation
of ENVI. ENVI includes two decoupled components: VNF
monitor and scaling decision engine. As shown in Fig. 2,
ENVI can be plugged into existing NFV management frame-
works (e.g., [6, 19, 32, 33]) and works with a control plane
orchestrator/controller to enforce scaling decisions. ENVI
has two operational stages: an offline stage to train an initial
neural network from experimental data sets, and an online

ANCS ’18, July 23–24, 2018, Ithaca, NY, USA Lianjie Cao, Sonia Fahmy, Puneet Sharma, and Shandian Zhe

stage to make scaling decisions and maintain the neural
network up-to-date.

Figure 2: Example usage of ENVI.

3.1 Data Collection
ENVI utilizes both infrastructure-level and VNF-level fea-
tures to understand run-time performance. Priorwork (e.g., [11,
45]) has reported improved performance when leveraging
application information in scheduling. Although such in-
formation may not always be available due to privacy con-
cerns in cloud computing scenarios, in the case NFV, ad-
ministrators usually have access to both application (VNF)
and infrastructure resources, since VNFs are often managed
by service providers. VNF developers decide what informa-
tion to expose. We have found that VNF system logs are
universally-available sources of application information.

A VNF monitor is installed on each VNF instance and con-
tains two agents: an infrastructure monitoring agent and a
VNF monitoring agent. The same infrastructure monitoring
agent is shared across all VNFs, whereas a VNF monitor-
ing agent is developed for each deployed VNF. The VNF
monitoring agents are standalone programs that monitor
VNF system logs and extract critical information (mostly
counters) in a key-value format. For instance, the Suricata
monitoring agent periodically checks the event log file lo-
cated at /var/log/suricata/eve.json and converts it to
data entries we use. 1 The infrastructure monitoring agent
collects 16 features related to CPU, memory, IO, networking
and system usage. The two monitoring agents collect infor-
mation for every time interval T (T = 10 seconds by default)
as a monitoring data point.

3.2 Data Engineering
A scaling decision engine module pulls information consist-
ing of VNF-level and infrastructure-level features from the
VNF monitor every time windowW = nT (n is set to 10
by default) to avoid unnecessary scaling decisions caused
by transient bursts in workload traffic. The module then
1Example features for Suricata and Squid as well as additional data for this
paper can be found at https://www.cs.purdue.edu/homes/fahmy/nfv/envi.
html.

aggregates the n monitoring data points in the sameW . It
computes statistical measures (e.g., max, min, mean, median
and variance) for each feature as extended features to cap-
ture temporal dynamics ofW , and uses these values as one
input sample for classifiers.

Some machine learning algorithms, especially those using
gradient descent or similar algorithms, favor input values
of similar range, since steepest descent is very sensitive to
feature scaling. Based on our observations, value ranges of
VNF-level features usually vary drastically leading to poor
performance of neural networks if we do not scale input
values. Thus, we create and fit standardization (Z-score nor-
malization) scalers for all features during the offline stage to
transform values of samples with a mean of 0 and a standard
deviation of 1 before feeding them into the classifier. These
feature scalers are continuously updated during the online
stage as more samples are collected. More details are given
in §5.

3.3 Training Neural Networks
With the preprocessed samples, ENVI employs a fully con-
nected supervised neural network (using the scikit-learn li-
brary) as the classifier for scaling decisions. We empirically
evaluate the key parameters of the neural network provided
by scikit-learn including the neural network size (up to 6
hidden layers and 300 nodes per layer), activation function
(e.g., logistic, tanh and ReLU), learning rate (1e − 4 to 1e − 1)
and L2 penalty (1e − 7 to 1e − 1). We select the best set of
values for Suricata and Squid in our evaluation (a neural
network with four layers: an input layer, two hidden layers
(with 150 and 50 nodes) and an output layer, tanh activation
function, 1e − 2 learning rate, and 1e − 5 L2 penalty). The
neural network tuning process is part of the offline training
stage and we may need to retune some parameters for dif-
ferent VNFs. We discuss other neural network architectures
in §5.

As discussed above, making timely scaling decisions ahead
of VNF overload while avoiding significant resource over-
provisioning is the major challenge. ENVI addresses this
problem by carefully labeling samples ahead of system ca-
pacities to guide neural networks to make timely scaling
decisions. While the same data collection and data engineer-
ing mechanisms are used in the offline and online stages,
neural network training differs among the two stages.

3.3.1 Offline training. Offline training creates the initial
neural networks. This process can be easily incorporated into
VNF software testing before deployment. In our case, we con-
duct a series of experiments for each VNF using a software
stress testing framework (e.g., [9]) with several synthetic
workloads. We design the experiments with increasing work-
load rates until we reach the capacity with homogeneous

https://www.cs.purdue.edu/homes/fahmy/nfv/envi.html
https://www.cs.purdue.edu/homes/fahmy/nfv/envi.html

Data-driven Resource Flexing for Network Functions Virtualization ANCS ’18, July 23–24, 2018, Ithaca, NY, USA

workloads, then we continue to run experiments with ran-
domly selected workload rates around the capacity value.
Examples are given in Fig. 3.

Figure 3: Samples of offline experiments conducted
for Squid using different response sizes: 10 KB, 40 KB,
70 KB, and 100 KB.

To create a “buffer zone” between scaling decisions and
actual VNF overload, we pick one feature as the key perfor-
mance indicator (KPI) to estimate VNF capacity. We use a
configurable threshold α (e.g., 80%) to control the size of the
buffer zone while labeling the collected samples. The choice
of KPI is based on the functionality of the tested VNF. For
instance, we choose requests/sec for Squid and packets/sec
for Suricata. Then, we label a sample i based on equation 1,
where KPIi is the value of the KPI feature in sample i and
KPIcap is the observed capacity value.

labeli =

{
0 if KPIi ≥ α · KPIcap ,
1 otherwise.

(1)

Labeled samples follow the data engineering steps dis-
cussed in §3.2, and are used to train initial neural networks
in batch mode. This labeling process is designed to guide
neural networks to form a decision boundary away from the
VNF capacity (VNF overload in operation) and reinforce it
through training samples.
Collecting training samples is the key to build the initial

neural networks. Users may select software testing tools
and workload generation methodologies accordingly, but
there are a few guidelines to collect effective offline training
samples:

• A VNF may have several candidate KPIs that can be
used to estimate VNF capacity. We recommend select-
ing the most representative and separable feature to
improve the performance of neural networks using do-
main knowledge. For instance, requests/sec and service

time are equally important to Squid, but we choose
requests/sec as the KPI because it is more separable in
our experiments.

• To construct an accurate classifier, it is best to have
a balanced number of samples of each class. Offline
experiments should be carefully designed to generate
equal numbers of samples of the two classes, while
covering a large range of values around VNF capacity.

• Although VNF capacity is a function of several factors,
our observations are that it is possible to find VNF ca-
pacities with workloads of fixed types (e.g., workload
composition does not change over time) in a strictly
controlled lab environment. In our offline experiments,
we fix all environmental variables (e.g., hardware spec-
ifications, instance sizes) and generate homogeneous
workloads to compute VNF capacities and label train-
ing samples.

• Our experiments on servers with different configura-
tions show that VNFs may have different capacities
with the same type of workload if the baremetal perfor-
mance of servers are significantly different. To address
this problem, we classify physical servers into different
categories each of which share similar bare metal per-
formance, and train initial classifiers for each server
category.

3.3.2 Online updating. During the online stage, ENVI
continues to collect composite feature information. Initially,
ENVI starts making scaling decisions based on the initial
neural networks. However, as with many machine learning
algorithms, the neural networks may fail with unseen input
values if the workload changes over time. For instance, if we
train initial neural networks for Suricata with homogeneous
UDP traffic, they may fail when processing hybrid UDP and
HTTP traffic. The situation improves if we increase the work-
load coverage during offline training. However, it is infeasible
to exhaustively train neural networks with all possible work-
load types for all VNFs. Therefore, instantly updating initial
neural networks with new workload types/patterns during
the online stage becomes a necessary step.

There are two major questions to address when updating
neural networks during the online stage:
(1) How to maintain consistent buffer zones between deci-

sion boundaries of neural networks and VNF capacities
during online stage? For the initial classifiers, the zone
is introduced by labeling samples based on the parame-
ter α and VNF capacities with homogeneous workload
in a lab environment. However, predicting VNF capac-
ity which varies as dynamic workload in real-time is
itself a challenging task.

(2) How to train classifiers with imbalanced numbers of
samples of the two classes? ENVI aims to avoid VNF

ANCS ’18, July 23–24, 2018, Ithaca, NY, USA Lianjie Cao, Sonia Fahmy, Puneet Sharma, and Shandian Zhe

overload by effectively managing virtualized resources.
As a result, we expect a significantly larger number of
0 labels than 1 labels, which naturally leads to imbal-
anced numbers of samples for online training.

3.3.3 Handling false negatives and false positives. Once
scaling decisions are generated, we must validate them by
checking for false negatives (FNs) and false positives (FPs).
Only true negative (TN) and true positive (TP) decisions
are enforced. More specifically, a false negative means that
ENVI fails to scale a VNF when more resources are required,
leading to SLO violations, whereas a false positive indicates
unnecessarily aggressive upscaling decisions resulting in
resource over-provisioning.
ENVI combines domain knowledge and user preferences

to compose predefined policies for identifying inaccurate
scaling decisions. To detect false positive decisions, ENVI
allows users to define lower bounds for resource utilizations
(UF P). For instance, we may consider a scaling decision of 1
as false positive if both CPU and memory usages are lower
than 30% for this sample (e.g.,UF P = 30%). Compared to false
positives, false negatives have worse consequences such as
SLO violations. Due to VNF diversity, ENVI allows users
apply domain knowledge and define their own policies to
detect false negative scaling decisions. In our evaluation (§4),
we use software failures and mismatch of input and output
traffic to detect false negatives for IDS Suricata and caching
proxy Squid. Service time is also a good indicator of SLO
violation.

3.3.4 Window-based rewinding. Classifiers need to adapt
to emerging workload patterns and incorrect online scaling
decisions. As discussed above, due to the imbalanced samples
of the two classes and the difficulty in computing the VNF
capacity for labeling, we cannot simply update the classifiers
with every collected sample. In addition, it is inefficient to
update classifiers with accurate scaling decisions for a large
number of VNF instances. Therefore, we introduce a window-
based rewinding mechanism to select a number of historical
samples as a training window, relabel them with balanced
classes, and update classifiers with the relabeled samples
during the online stage.
Online classifier training is activated when false positive

and false negative decisions are observed. First, a training
window of a fixed size Nwin (Nwin = 40 slots by default) is
created. For false positives, samples are sequentially inserted
at the beginning of the first half of the training window with
new labels of 0 and these false scaling decisions will not
be enforced. When a false negative occurs, we first correct
and enforce the scaling decision to positive. Then we add
this sample to the end of the training window and mark the
value of the KPI feature for this sample as KPImax . We start
to backtrace the previous samples and compare the value of

the KPI featureKPIi withKPImax . IfKPIi ≥ α ·KPImax , then
this sample is inserted in the second last slot in the training
window with a new label of 1. α is the same parameter we
used in offline stage. This backtracing process is paused if
KPIi < α ·KPImax or npos ≥ Nwin

2 , where npos is the number
of samples with positive labels in the training window. The
training window contains npos ∈ (0, Nwin

2] samples with
positive labels in the second half and possibly some samples
with negative labels in the first half. Then we resume the
backtracing to select the same number of samples, insert
them in the first half of the training window starting from
the Nwin

2 th slot in reverse order, and relabel them as 0.
Since we also add samples to the training window when

false positives are detected, it is possible that i) nneд > npos ,
where nneд is the number of samples with negative label,
and ii) we may fail to add samples with negative labels dur-
ing backtracing due to the existence of previously inserted
samples. Considering the consequences of false negative and
false positive scaling decisions, we view the correction of
false negatives as higher priority. In other words, we pop out
the existing samples with negative labels to guarantee the
sample insertion during backtracing when slots in the first
half of the training window are limited. In this case, nneд
may be slightly larger than npos . After the training window
is constructed, the classifier is repeatedly trained with the
selected samples until a certain level of accuracy (e.g., 0.9)
is reached in order to increase the weight of new samples.
Another possible case is that the first half of the training
window can be filled with samples detected as false positive
before backtracing is activated, which means that the VNF is
likely severely over-provisioned. If this happens, we update
the classifier with the current training window. Essentially,
the motivation behind window-based rewinding is to achieve
consistent labeling and training of neural networks in both
stages by approximating KPIcap with KPImax .

Fig. 4 illustrates the mechanism via an example of running
Squid at online stage. vnf.request is selected as the KPI feature.
We set 30% as the default threshold of resource utilization
(i.e., UF P = 30%) to detect false positive decisions. Sample
#1 is detected as a false positive decision, then ENVI creates
an empty training window with 10 slots (e.g.,, Nwin = 10)
and inserts sample #1 in slot #1 in the window. ENVI con-
tinues to collect more samples until sample #12 is detected
as a false negative decision due to software failure which
activates the backtracing process. Samples #12, #11, #10, and
#9 are inserted into slots #10, #9, #8, and #7, respectively, and
relabeled as 1, sinceKPIi ≥ α ·KPImax = 807. ENVI resumes
the backtracing and selects the next four samples from #8
to #5, adding them to slots #5 to #2 in the training window.
Eventually, the training window with 9 samples is used to
update the neural network.

Data-driven Resource Flexing for Network Functions Virtualization ANCS ’18, July 23–24, 2018, Ithaca, NY, USA

Figure 4: Example of window-based rewinding.

3.3.5 Enforcing scaling decisions. In addition to the two
types of scaling decisions (0 for “not scale” and 1 for “scale”)
generated by neural networks, users may also want to re-
duce the amount of resources (scaling in/down) for VNFs if
the workload is reduced, and SLO can be maintained with
fewer resources. VNF downscaling depends on user prefer-
ences. For instance, users may choose to downscale a VNF
if resource usage is below 30% instead of 50% to have less
frequent deployment adjustments at the cost of higher re-
source over-provisioning. ENVI exposes an optional API for
users to define downscaling policies based on resource usage
thresholds (e.g.,UDS).

Eventually, scaling decisions are pushed to the controller
or orchestrator of the NFV management system and trans-
lated to executable commands. Previous studies (e.g., [9])
have shown that scaling methods (up versus out and down
versus in) may affect the overall VNF throughput. However,
identifying the optimal scaling method for a given VNF is
beyond the scope of this work. We offload the translation be-
tween scaling decisions and concrete commands with appro-
priate scaling methods to the underlying NFV management
system.
The majority of the overhead incurred by ENVI comes

from the data collection step performed offline. This can
be incorporated into the software testing plan prior to pro-
duction deployment of a VNF. During the online stage, we
introduce the window-based rewinding mechanism to re-
duce the overhead caused by neural network update which
is only activated when false decisions are detected. With the
default settings (e.g., neural network size and training win-
dow size), it takes less than 5 seconds to update the neural
network in our experiments.

4 EVALUATION
In this section, we experimentally evaluate ENVI using two
different VNFs: IDS Suriata (version 3.2.1) and HTTP caching
proxy Squid (version 3.3.8). Our goal is to address three key
questions:

(1) How effective are initial neural networks with previ-
ously unseen workload traffic?

(2) Does online updating of initial neural networks in-
crease the accuracy of scaling decisions?

(3) Do scaling decisions consistently translate to improved
system performance?

4.1 Methodology
4.1.1 Workload Generation. To train initial neural net-

works in the offline stage, we conduct a series of experi-
ments with different types of homogeneous workloads. Each
type of workload is defined by a combination of elements
depending on the target VNF, such as source/destination ad-
dresses/ports, packets size, network protocol, flow size, and
VNF-specific options. For instance, one type of workload traf-
fic we generated for the IDS Suricata is denoted by < address:

(192.168.2.21:8000,192.168.2.31:8001),packet_size:1450,

protocol:UDP,malicious_ratio:10>. Here, malicious_ratio
is a VNF-specific option for an IDS. We add a rule to the
Emerging Threats rules [39] that matches UDP packets with
the keyword “malicious” in the payload to mimic malicious
traffic. For Squid, HTTP response sizes are used as the VNF-
specific option to denote different workload types. We col-
lected training data with 10 different types of workload for
both Suricata (0 ∼ 90% malicious traffic ratio) and Squid (10
∼ 100 KB HTTP response sizes).
For a given type of workload traffic, we first gradually

increase the workload rate until SLO violation occurs. The
value of the KPI feature is recorded as the VNF capacity
for this specific workload type. We continue to generate
workload traffic with randomly selected rate values within a
custom range of the capacity (e.g., (0.6, 1.1) × capacity). We
repeat this process for multiple types of workload traffic to
generate offline data to train the initial neural network for
each VNF.

Real-world network traffic is a mixture of different types
of traffic generated by myriads of applications. Therefore,
we also generate more complex workload traffic that mimics
traffic captured from real networks. We extract the packet
rate and flow rate information from a week-long network
trace in Netflow format (collected on an access router con-
necting a university to its ISP [43]) and compress it to a
6-hour duration. To test IDS Suricata, we generate workload
traffic that includes packet-level emulation of observed UDP
traffic generated by hping3 [35] and flow-level emulation of
observed TCP traffic generated by Harpoon [38]. For Squid,
we generate HTTP workload using Web Polygraph [15] with
HTTP request rates set to TCP flow rates extracted from the
Netflow trace, and HTTP response sizes drawn frommultiple
statistical distributions.

ANCS ’18, July 23–24, 2018, Ithaca, NY, USA Lianjie Cao, Sonia Fahmy, Puneet Sharma, and Shandian Zhe

4.1.2 Experimental Setup. ENVI is evaluated on a testbed
of one Dell PowerEdge R430, two HP ProLiant DL120 G6
and one Gigabit Dell N2024 Switch and managed by the
OpenStack Ocata release [29]. Details of the server configu-
rations are shown in Table 2. Workload generation and VNF
programs execute in dedicated VMs created and managed
by OpenStack. We use the networking-sfc module of Open-
Stack to create MPLS tunnels on Open vSwitch and redirect
workload traffic through VNF instances.

We tested ENVI with different values of parameters dis-
cussed in §3, such as 0.6 ∼ 0.9 for α and 20% ∼ 50% forUF P
and UDS . Lower values of α and UDS indicate more aggres-
sive upscaling decisions and more conservative downscaling
decisions which lead to higher resource overprovisioning.
We choose the following values for experiments in this sec-
tion: α = 0.8, Nwin = 40, UF P = 30%, and UDS = 30%.
vnf.decoder.pkts and vnf.request are selected as the KPI fea-
tures for Suricata and Squid, respectively.

Table 2: Server and VM configurations

PM/VM CPU Cores RAM
R430 2x Intel Xeon E5-2620 v4 16 64 GB
DL120 1x Intel Xeon X3430 4 8 GB
m1.small 1x vCPU 1 2 GB
m1.medium 2x vCPU 2 4 GB
m1.large 4x vCPU 4 8 GB

4.1.3 Metrics. We use two categories of metrics to eval-
uate the offline and online stages of ENVI. To address the
first two evaluation questions, we use a set of typical sta-
tistical metrics: accuracy = T Ps+T Ns

T Ps+T Ns+F Ps+FNs , precision =
T Ps

T Ps+F Ps , recall =
T Ps

T Ps+FNs . Accuracy indicates the overall
correctness of both positive and negative decisions. Precision
represents the probability that positive decisions are correct,
while recall denotes the coverage of positive decision. For in-
stance, precision of 1 means all positive decisions are correct,
but there may be false negative decisions. Recall of 1 means
all positive events (ground truth) are successfully captured
as positive decisions, but the generated positive decisions
may also contain false ones. In addition, we evaluate all the
methods in terms of the Area under ROC curve (AUC). AUC
is one of the most commonly used metrics to evaluate the
performance of classification algorithms. To calculate the
AUC values, we use the predictive outcome for each test
example as a threshold for classification, and obtain the True
Positive Rate (TPR) and False Positive Rate (FPR). Connect-
ing the (TPR, FPR) pairs for all the test examples, we obtain
the ROC curve from which we calculate the AUC. Note that
AUC measures the classification performance comprehen-
sively, because it integrates the prediction accuracies with
all possible thresholds.

To understand the system performance impact of the scal-
ing decisions generated by ENVI, we sum the number of
VNF instances provisioned for each sample to estimate the
resource utilization, and we compute the number of sam-
ples in which SLOs are violated to estimate the timeliness of
scaling decisions. An optimal scaling method should mini-
mize the number of SLO violations and the total number of
instances. However, reducing service violations is typically
of higher priority if both goals cannot be simultaneously
satisfied.

4.2 Classification Algorithms
We first compare the performance of a neural network (NN)
with other classification algorithms: decision tree (DT), ran-
dom forest (RF) and logistic regression (LR). We also choose
a threshold-based policy which makes upscaling decisions if
resource utilization exceeds 80% as a baseline (BL).
We generated 10 data sets each of which represents a

unique workload type for Squid and Suricata, then we train a
initial neural network model on n data sets and test it on the
remaining 10 − n data sets, where n = 1, 2, · · · , 9. For each
n, we enumerate all possible combinations of data sets and
run 5-fold cross-validation on the selected data sets to avoid
overfitting before testing on the remaining 10 − n workload
types.

Fig. 5 compares the performance of different classification
algorithms and the baseline. For Suricata, the neural network
yields slightly better results than other classification algo-
rithms (e.g., up to 8% in accuracy). However, for Squid, the
neural network significantly outperforms other classification
algorithms by up to 19% in accuracy. This is because Suricata
is a simple VNF that captures packets and generates alerts
based on predefined rule sets, while Squid is a more com-
plex VNF that is capable of maintaining HTTP connections
with clients and servers, caching repeated HTTP requests,
etc. Hence, the relationship between scaling decisions and
the composite features that a classification algorithm needs
to approximate for Squid is more complex, which is one of
the advantages of neural networks. This is consistent with
another observation that the static baseline policy performs
better for Suricata than Squid (72% vs. 43% in accuracy). A
single resource utilization threshold fails to make accurate
scaling decisions for different types of workload in the case
of Squid.
Our earlier work [10] also compared the performance of

classification algorithms using infrastructure-level features,
VNF-level features, and composite feature sets. VNF-level
features yield better results for complex VNFs, while com-
posite feature sets always outperform the other two feature
sets. Hence, we only use composite feature sets in this paper.

Data-driven Resource Flexing for Network Functions Virtualization ANCS ’18, July 23–24, 2018, Ithaca, NY, USA

(a) Results with Suricata

(b) Results with Squid

Figure 5: Comparison of neural network, decision tree,
random forest and logistic regression in offline exper-
iments.

4.3 Online Updating
Fig. 6 shows results with the neural network using training
data comprised of different numbers of workload types. For
both Suricata and Squid, the performance of neural networks
improves as additional workload types are covered during
the offline stage. However, it is not practical or efficient to
exhaustively test all possible workload types for a given VNF.
Therefore, we evaluate how the ENVI online updating mech-
anism improves the performance of initial neural networks.
We first train an initial neural network using one of the ten
data sets we collected for Suricata and Squid during the of-
fline stage. Then we emulate the online operation process by
sequentially feeding samples from the remaining nine data
sets, and we incrementally update the initial neural network
using the online updating mechanism discussed in §3.3.2.
As shown in Fig. 7, the values of statistical metrics im-

prove and stabilize as more samples are collected to update
the initial neural networks for both Suricata and Squid. In-
terestingly, as we train with more samples, the performance
fluctuation of neural networks caused by new workload
types/patterns shrinks. Hence, the neural network becomes
more stable and robust with online updating. Note that the

(a) Results with Suricata

(b) Results with Squid

Figure 6: Neural network results using different num-
bers of workload types for training.

statistical metrics in Fig. 7 are computed based on the origi-
nal decisions produced by neural networks (without the false
decision correction described in §3.3.3, which we incorporate
in the remainder of this section).

4.4 System Performance
In this section, we address the third evaluation question to un-
derstand the performance impact of ENVI scaling decisions
during the online stage. We integrate ENVI with an NFV
orchestrator to evaluate Suricata and Squid. ENVI makes
“not scale” (0) and “scale” (1) decisions and a “scale” decision
is interpreted as scaling out the current VNF deployment
by one additional small instance. However, applying only
these two types of scaling decisions leads to a monotonically
increasing number of VNF instances. Hence, we introduce
a heuristic downscaling policy in the orchestrator that re-
duces the number of instances by 1 if the average resource
utilization is less than 30% and the corrected scaling decision
given by ENVI is “not scale.”
We compare ENVI with baseline threshold-based upscal-

ing policies using different resource utilization threshold
values (50% ∼ 90%). The optimal threshold for the base-
line method uses the smallest number of instances while

ANCS ’18, July 23–24, 2018, Ithaca, NY, USA Lianjie Cao, Sonia Fahmy, Puneet Sharma, and Shandian Zhe

(a) Online updating with Suricata

(b) Online updating with Squid

Figure 7: Online updating of initial neural networks
for Suricata and Squid.

incurring zero SLO violations. We first compare the perfor-
mance of ENVI and baseline method using multiple homo-
geneous workloads, then we evolve the traffic patterns by
injecting temporal statistical variations. For instance, one
workload generated for Squid may include HTTP response
size ∼ N(10 KB, 2 KB) for sample 0 to sample 30, HTTP re-
sponse size ∼ N(80 KB, 16 KB) for sample 31 to sample 50,
HTTP response size ∼ N(30KB, 6KB) for sample 51 to sample
60, and so on. This models changing traffic patterns, e.g., the
increasing sizes of web pages over the past decade [2]. The
hybrid workload for Suricata consists of varying malicious
traffic fractions (0% ∼ 90%) over time.
Homogeneous workloads. Fig. 8(a) and Fig. 8(b) compare
the number of SLO violations and the total number of in-
stances in Squid experiments for a selected group of work-
load types. Each column represents a certain workload type,
while each row indicates a scaling method. We focus on iden-
tifying the optimal scaling method for each workload type
instead of comparing various scaling methods across work-
load types. For a given workload type, reducing the threshold
value of resource utilization in the baseline method reduces
the number of SLO violations (denoted by the lighter color),
while increasing the total number of instances (denoted by

the darker color). For Squid, we found that (i) we can find an
optimal resource utilization threshold for baseline method
with homogeneous workload, and (ii) the optimal thresh-
old varies for different homogeneous workload types. For
instance, with 10 KB HTTP response size, 90% resource uti-
lization (U90) is the optimal baseline method with zero viola-
tions and 560 total instances while 50% resource utilization
(U50) becomes the optimal threshold that uses 410 total in-
stances without any violations. With neural networks, ENVI
is able to automatically generate accurate scaling decisions
for all workload types while avoiding SLO violations or using
too many instances. In the case of Suricata, different work-
load types yield distinct capacity values (packets/second),
but resource utilization at capacity points are consistent. As
shown in Fig. 8(c) and Fig. 8(d), a static threshold of 70% ∼
80% resource usage (U70 or U80) performs well for all tested
workload types.
Hybrid workload. Table 3 shows the SLO violations and
number of instances using hybrid workload for Suricata and
Squid. As the hybrid workload combines all workload types
in a single experiment, the only way to minimize SLO vi-
olations for baseline method is to use the smallest optimal
threshold shown in Fig. 8(a) (U50) and Fig. 8(c) (U70). How-
ever, compared to ENVI, using U50 for Squid significantly
overprovisions resources for some samples (e.g., samples
with smaller HTTP response sizes), leading to 26% more in-
stances and much lower average CPU utilization (39% vs.
48%). For Suricata, U70 and ENVI yield similar results in
terms of SLO violations and number of instances provisioned
due to consistent resource utilization at VNF capacities. Fig. 9
shows how the number of instances tracks the variation of
offered workload. We compare the two cases: when we exe-
cute the upscaling decisions generated by ENVI, versus the
optimal baseline scaling policy. Downscaling decisions use
the rule-based policy. ENVI appears to track the workload
changes more closely.

To conclude, we find that it is feasible to compose a static
threshold-based scaling policy for certain VNFs through ex-
haustive search if the workload type is fixed and known. In
contrast, ENVI can automatically take appropriate scaling
decisions with changing workloads, avoiding the extensive
effort to continuously search for the optimal threshold.

5 DISCUSSION
Offline training data generation. ENVI uses offline exper-
iments as training data to construct initial neural networks.
Although the performance of initial neural networks can be
improved during online updating, we suggest conducting
offline experiments to cover as many workload types as pos-
sible. The motivation for using fixed workloads during the
offline stage is to yield a steady VNF capacity in order to

Data-driven Resource Flexing for Network Functions Virtualization ANCS ’18, July 23–24, 2018, Ithaca, NY, USA

(a) SLO violations for Squid (b) Number of instances for Squid (c) SLO violations for Suricata (d) Number of instances for Suricata

Figure 8: System evaluation using homogeneous workloads with Squid and Suricata.

Table 3: System evaluation using hybrid workload for
Suricata and Squid.

Suricata Squid
Violations Instances Violations Instances

U90 8 580 18 432
U80 3 604 11 470
U70 0 630 9 498
U60 0 663 5 545
U50 0 712 1 607
ENVI 0 600 0 503

label the training data. In practice, this may also be achieved
by heterogeneous workloads as long as the workload com-
position is fixed. For instance, users may generate HTTP
workloads with 50% 10 KB response size and 50% 100 KB
response size for Squid during training. Our experience has
been that using homogeneous workloads can simplify and
speed up the offline training data generation process.
Choice of classification algorithms. We choose a fully
connected small-scale neural network as the classifier for
ENVI. Our evaluation (§4.2) shows that the neural network
outperforms other classification models such decision tree,
random forest and logistic regression. However, tuning a
neural network with the right set of features/parameters is
a challenging task. Creating a deep neural network may not
necessarily improve the performance depending on the prob-
lem itself, and it usually requires extensive training. Since the
composite feature data we collect for VNFs is a typical time
series, it may be possible to exploit the temporal correlation
among consecutive samples via more complex algorithms
(e.g., long short-termmemory (LSTM)) for makingmore accu-
rate scaling decisions. ENVI intentionally decouples scaling
decision generation and execution to be compatible with
existing NFV management systems. Another option is to
model our problem as a decision under uncertainty problem
that combines the two processes of decision generation and

(a) Suricata experiment

(b) Squid experiment

Figure 9: Variation of hybrid workload and number of
instances using ENVI with Suricata and Squid.

execution, and to leverage a reinforcement learning frame-
work.
Feature scaling. Our experience shows that standardiza-
tion performs best among feature scaling methods (e.g., nor-
malization, min-max and unit length scaling). In the ENVI
prototype, we implemented a standardization scaler for each
input feature in a neural network and we update the scalers

ANCS ’18, July 23–24, 2018, Ithaca, NY, USA Lianjie Cao, Sonia Fahmy, Puneet Sharma, and Shandian Zhe

during the online stage. Intuitively, it would seem that creat-
ing multiple standardization scalers for each feature would
work better, since workload changes may shift the center
of scalers which can be significant if the workload changes
drastically. Creating new scalers allows the neural network
to track changes faster than updating the original scaler. We
implemented this multi-scaler idea using a Dirichlet process.
Interestingly, we did not observe a performance boost in our
evaluation, compared to the simpler single-scaler idea. One
possible explanation is that the traces we use to generate
online workloads do not contain significant changes; hence
multi-scaler is unnecessary in that case.
Scaling decision validation.During the online stage, ENVI
validates scaling decisions before pushing them to the orches-
trator for execution. False negative decisions are detected
based on service quality violations while static rule-based
policies (e.g., resource utilization thresholds) are used to de-
tect false positive decisions. Another approach we are plan-
ning to investigate is to apply statistical hypothesis testing to
validate the correctness of a positive decision by leveraging
the distribution of the latest resource utilization. Compared
to static policies, this approach allows us to take the dynam-
ics of workload and VNF status into consideration.

6 RELATEDWORK
Previous work, e.g., [12, 14, 16, 20, 22, 24, 26, 27, 37, 42], con-
sidered VNF resource allocation together with VNF place-
ment, and modeled them as an optimization problem (e.g.,
Integer Linear Programing (ILP)) that minimizes the total
number of VNF instances, communication cost, or deploy-
ment cost under constraints of network traffic and physical
network topology. This line of work assumes VNF capacities
are known and static, ignoring performance characteriza-
tion challenges. The work does not consider the impact of
dynamic network traffic on different types of VNFs.
Stratos [18] and E2 [31] propose comprehensive NFV or-

chestration frameworks which manage VNF instances and
distribute flows efficiently. However, E2 [31] relies on the
VNF developer to give the overload indicator for scaling a
VNF with more instances. The resource provisioning strat-
egy in Stratos [18] bears some similarity to our approach.
However, Stratos monitors OS-level statistics only and does
not specify how they are used to detect overload. Woo et
al. [44] propose to elastically scale network functions with-
out compromising performance by organizing VNF state as a
distributed shared object for stateful VNFs. ResQ [40] tackles
the the high variability and unpredictability in throughput
and latency for consolidated network functions by applying
processor cache isolation to enforce performance service
level objectives.

Resource allocation has also been studied in the context
of cloud computing. In the public cloud, neither the provider
nor the user is willing to share information, which hin-
ders making efficient resource allocation decisions. In addi-
tion, the chaining requirements in NFV introduces special
constraints. Most cloud platforms and third-party develop-
ers simply provide policy-based interfaces (e.g., OpenStack
Heat [30], Amazon AWS AutoScaling [1], Google Compute
Engine AutoScaler [13] and RightScale [34]) to users to scale
their application by monitoring basic infrastructure-level
information. Some research work (e.g., [21], [36] and [41])
assumes certain workload patterns exist, and identifies and
stores resource assignment solutions for future use.

Learning approaches have proven effective in solving sys-
tem problems. Nagaraj et al. [28], Liu et al. [23] and Arzani
et al. [3] apply machine learning techniques to investigate
system/network anomalies. Nagaraj et al. [28] compare dis-
tributed system logs using statistical tests and dependency
networks to identify performance degradation. Liu et al. [23]
and Arzani et al. [3] train random forest models on histori-
cal network data to determine network anomalies and root
causes of failures, respectively. Gao et al. [17] predict power
usage effectiveness (PUE) in Google data centers. Bao et al [4]
guide cellular network resource allocation using user expe-
rience prediction. Mao et al. [25] solve the multi-resource
allocation problem in a reinforcement learning framework.
These approaches are orthogonal to our work.

7 CONCLUSIONS
An effective resource flexing system is important to take full
advantage of the flexibility and scalability of network func-
tions virtualization. Dynamic workload and complex VNF
processing logic make timely resource flexing a challeng-
ing task. This paper presents ENVI, a modular component
that works with existing NFV management systems, to make
scaling decisions while balancing timeliness and resource ef-
ficiency. ENVImodels VNF resource flexing as a classification
problem and leverages a neural network to generate scaling
decisions, using both infrastructure-level and VNF-level in-
formation as input features. Evaluation of IDS Suricata and
HTTP caching proxy Squid shows that, compared to rule-
based policies, ENVI can automatically scale complex VNFs
to avoid overload for varying workloads while achieving
good resource utilization.

ACKNOWLEDGMENTS
This work is sponsored in part by NSF grants CNS-1717493
and OAC-1738981, and was started and initially supported
by HPE. We would like to thank Vinay Saxena (HPE) and
our shepherd Michio Honda for their valuable input.

Data-driven Resource Flexing for Network Functions Virtualization ANCS ’18, July 23–24, 2018, Ithaca, NY, USA

REFERENCES
[1] Amazon. 2018. Amazon EC2 Auto Scaling. https://aws.amazon.com/

ec2/autoscaling/. (2018).
[2] HTTP Archive. 2018. HTTP Archive: Page Weight Report. https:

//httparchive.org/reports/page-weight. (2018).
[3] Behnaz Arzani, Selim Ciraci, Boon Thau Loo, Assaf Schuster, and Geoff

Outhred. 2016. Taking the Blame Game out of Data Centers Operations
with NetPoirot. In Proceedings of ACM Conference on Special Interest
Group on Data Communication (SIGCOMM). 440–453.

[4] Yanan Bao, HuasenWu, andXin Liu. 2016. FromPrediction to Action: A
Closed-Loop Approach for Data-Guided Network Resource Allocation.
In Proceedings of ACM International Conference on Knowledge Discovery
and Data Mining (SIGKDD). 1425–1434.

[5] Theophilus Benson, Aditya Akella, and David A Maltz. 2010. Network
traffic characteristics of data centers in the wild. In Proceedings of ACM
SIGCOMM Conference on Internet Measurement. 267–280.

[6] Anat Bremler-Barr, Yotam Harchol, and David Hay. 2016. OpenBox: A
Software-Defined Framework for Developing, Deploying, and Manag-
ing Network Functions. In Proceedings of ACM Conference on Special
Interest Group on Data Communication (SIGCOMM). 511–524.

[7] CAIDA. 2016. The CAIDA UCSD Trace Statistics for CAIDA Passive
OC48 and OC192 Traces - 2016. http://www.caida.org/data/passive/
trace_stats/chicago-A/2016/. (2016).

[8] Lianjie Cao, Thibaut Probst, and Ramana Kompella. 2013. Phishlive:
A view of phishing and malware attacks from an edge router. In Pro-
ceedings of International Conference on Passive and Active Network
Measurement (PAM). 239–249.

[9] Lianjie Cao, Puneet Sharma, Sonia Fahmy, and Vinay Saxena. 2015.
NFV-VITAL: A framework for characterizing the performance of vir-
tual network functions. In Proceedings of IEEE Conference on Network
Function Virtualization and Software Defined Network (NFV-SDN). 93–
99.

[10] Lianjie Cao, Puneet Sharma, Sonia Fahmy, and Vinay Saxena. 2017.
ENVI: Elastic resource flexing for Network function VIrtualization. In
Proceedings of Workshop on Hot Topics in Cloud Computing (HotCloud).
1–11.

[11] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. 2014. Efficient
Coflow Scheduling with Varys. In Proceedings of ACM Conference on
Special Interest Group on Data Communication (SIGCOMM). 443–454.

[12] Stuart Clayman, Elisa Maini, Alex Galis, AntonioManzalini, and Nicola
Mazzocca. 2014. The dynamic placement of virtual network functions.
In Proceedings of IEEE Network Operations and Management Symposium
(NOMS). 1–9.

[13] Google Cloud. 2018. Autoscaling Groups of Instances. https://cloud.
google.com/compute/docs/autoscaler/. (2018).

[14] Rami Cohen, Liane Lewin-Eytan, Joseph Seffi Naor, and Danny Raz.
2015. Near optimal placement of virtual network functions. In Proceed-
ings of IEEE International Conference on Computer Communications
(INFOCOM). 1346–1354.

[15] Measurement Factory. 2016. Web Polygraph. http://www.
web-polygraph.org/. (2016).

[16] Xincai Fei, Fangming Liu, Hong Xu, and Hai Jin. 2018. Adaptive VNF
Scaling and Flow Routing with Proactive Demand Prediction. In Pro-
ceedings of IEEE International Conference on Computer Communications
(INFOCOM).

[17] Jim Gao and Ratnesh Jamidar. 2014. Machine learning applications for
data center optimization. Google White Paper (2014).

[18] Aaron Gember, Robert Grandl, Ashok Anand, Theophilus Benson, and
Aditya Akella. 2012. Stratos: Virtual middleboxes as first-class entities.
Technical Report. University of Wisconsin-Madison.

[19] Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash,
Robert Grandl, Junaid Khalid, Sourav Das, and Aditya Akella. 2014.
OpenNF: Enabling Innovation in Network Function Control. In Pro-
ceedings of ACM Conference on Special Interest Group on Data Commu-
nication (SIGCOMM). 163–174.

[20] Milad Ghaznavi, Aimal Khan, Nashid Shahriar, Khalid Alsubhi, Reaz
Ahmed, and Raouf Boutaba. 2015. Elastic virtual network function
placement. In Proceedings of IEEE International Conference on Cloud
Networking (CloudNet). 255–260.

[21] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. 2010. Press: Predic-
tive elastic resource scaling for cloud systems. In Proceedings of IEEE
International Conference on Network and Service Management (CNSM).
9–16.

[22] Xin Li and Chen Qian. 2016. An NFV Orchestration Framework for
Interference-Free Policy Enforcement. In Proceedings of IEEE Interna-
tional Conference on Distributed Computing Systems (ICDCS). 649–658.

[23] Dapeng Liu, Youjian Zhao, Haowen Xu, Yongqian Sun, Dan Pei, Jiao
Luo, Xiaowei Jing, and Mei Feng. 2015. Opprentice: towards practi-
cal and automatic anomaly detection through machine learning. In
Proceedings of ACM Internet Measurement Conference (IMC). 211–224.

[24] Marcelo Caggiani Luizelli, Leonardo Richter Bays, Luciana Salete Bu-
riol, Marinho Pilla Barcellos, and Luciano Paschoal Gaspary. 2015.
Piecing together the NFV provisioning puzzle: Efficient placement and
chaining of virtual network functions. In Proceedings of IFIP/IEEE Inter-
national Symposium on Integrated Network Management (IM). 98–106.

[25] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kan-
dula. 2016. Resource Management with Deep Reinforcement Learning.
In Proceedings of ACM Workshop on Hot Topics in Networks (HotNets).
50–56.

[26] Michael J McGrath, Vincenzo Riccobene, Guiseppe Petralia, Georgios
Xilouris, and Michail-Alexandros Kourtis. 2015. Performant deploy-
ment of a virtualised network functions in a data center environment
using resource aware scheduling. In Proceedings of IFIP/IEEE Inter-
national Symposium on Integrated Network Management (IM)n. 1131–
1132.

[27] Hendrik Moens and Filip De Turck. 2014. VNF-P: A model for efficient
placement of virtualized network functions. In Proceedings of IEEE
International Conference on Network and Service Management (CNSM).
418–423.

[28] Karthik Nagaraj, Charles Killian, and Jennifer Neville. 2012. Struc-
tured comparative analysis of systems logs to diagnose performance
problems. In Proceedings of USENIX conference on Networked Systems
Design and Implementation (NSDI). 26–26.

[29] OpenStack. 2018. OpenStack. http://www.openstack.org/. (2018).
[30] OpenStack. 2018. OpenStack - Heat. https://github.com/openstack/

heat. (2018).
[31] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda,

Sylvia Ratnasamy, Luigi Rizzo, and Scott Shenker. 2015. E2: a frame-
work for NFV applications. In Proceedings of ACM Symposium on
Operating Systems Principles (SOSP). 121–136.

[32] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar,
and Minlan Yu. 2013. SIMPLE-fying Middlebox Policy Enforcement
Using SDN. In Proceedings of ACM Conference on Special Interest Group
on Data Communication (SIGCOMM). 27–38.

[33] Shriram Rajagopalan, Dan Williams, Hani Jamjoom, and Andrew
Warfield. 2013. Split/Merge: System Support for Elastic Execution
in Virtual Middleboxes. In Proceedings of USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI). 227–240.

[34] RightScale. 2018. RightScale Optima. https://www.rightscale.com/
products-and-services/products/rightscale-optima. (2018).

[35] Salvatore Sanfilippo. 2006. hping. http://www.hping.org/. (2006).

https://aws.amazon.com/ec2/autoscaling/
https://aws.amazon.com/ec2/autoscaling/
https://httparchive.org/reports/page-weight
https://httparchive.org/reports/page-weight
http://www.caida.org/data/passive/trace_stats/chicago-A/2016/
http://www.caida.org/data/passive/trace_stats/chicago-A/2016/
https://cloud.google.com/compute/docs/autoscaler/
https://cloud.google.com/compute/docs/autoscaler/
http://www.web-polygraph.org/
http://www.web-polygraph.org/
http://www.openstack.org/
https://github.com/openstack/heat
https://github.com/openstack/heat
https://www.rightscale.com/products-and-services/products/rightscale-optima
https://www.rightscale.com/products-and-services/products/rightscale-optima
http://www.hping.org/

ANCS ’18, July 23–24, 2018, Ithaca, NY, USA Lianjie Cao, Sonia Fahmy, Puneet Sharma, and Shandian Zhe

[36] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes.
2011. Cloudscale: elastic resource scaling for multi-tenant cloud sys-
tems. In Proceedings of ACM Symposium on Cloud Computing (SoCC).
1–14.

[37] Runyu Shi, Jia Zhang, Wenjing Chu, Qihao Bao, Xiatao Jin, Chen-
ran Gong, Qihao Zhu, Chang Yu, and Steven Rosenberg. 2015. MDP
and machine learning-based cost-optimization of dynamic resource
allocation for network function virtualization. In Proceedings of IEEE
International Conference on Services Computing (SCC). 65–73.

[38] Joel Sommers, Hyungsuk Kim, and Paul Barford. 2004. Harpoon: A
Flow-level Traffic Generator for Router and Network Tests. SIGMET-
RICS Performance Evaluation Review 32, 1, 392–392.

[39] Emerging Threats. 2018. Emerging Threats rules. https://rules.
emergingthreats.net/. (2018).

[40] Amin Tootoonchian, Aurojit Panda, Chang Lan, MelvinWalls, Katerina
Argyraki, Sylvia Ratnasamy, and Scott Shenker. 2018. ResQ: Enabling
SLOs in Network Function Virtualization. In Proceedings of USENIX
Symposium on Networked Systems Design and Implementation (NSDI).
283–297.

[41] Nedeljko Vasić, Dejan Novaković, Svetozar Miučin, Dejan Kostić, and
Ricardo Bianchini. 2012. DejaVu: accelerating resource allocation in vir-
tualized environments. In Proceedings of ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 423–436.

[42] Xiaoke Wang, Chuan Wu, Franck Le, Alex Liu, Zongpeng Li, and
Francis Lau. 2016. Online VNF scaling in datacenters. arXiv (2016).

[43] Simple Web. 2018. Simpleweb Traces. https://www.simpleweb.org/
wiki/index.php/Traces. (2018).

[44] ShinaeWoo, Justine Sherry, Sangjin Han, Sue Moon, Sylvia Ratnasamy,
and Scott Shenker. 2018. Elastic Scaling of Stateful Network Functions.
In Proceedings of USENIX Symposium on Networked Systems Design and
Implementation (NSDI). 299–312.

[45] Timothy Wood, Prashant Shenoy, Arun Venkataramani, and Mazin
Yousif. 2009. Sandpiper: Black-box and gray-box resource management
for virtual machines. Elsevier Computer Networks 53, 17 (2009), 2923–
2938.

https://rules.emergingthreats.net/
https://rules.emergingthreats.net/
https://www.simpleweb.org/wiki/index.php/Traces
https://www.simpleweb.org/wiki/index.php/Traces

	Abstract
	1 Introduction
	2 Challenges
	2.1 Workload Dynamics
	2.2 VNF Diversity and Complexity

	3 ENVI Design
	3.1 Data Collection
	3.2 Data Engineering
	3.3 Training Neural Networks

	4 Evaluation
	4.1 Methodology
	4.2 Classification Algorithms
	4.3 Online Updating
	4.4 System Performance

	5 Discussion
	6 Related Work
	7 Conclusions
	Acknowledgments
	References

