
ENVI: Elastic resource flexing for Network function VIrtualization

Lianjie Cao Puneet Sharma
Hewlett Packard Labs

Sonia Fahmy
Purdue University

Vinay Saxena
Hewlett Packard Enterprise

Abstract

Dynamic and elastic resource allocation to Virtual Net-
work Functions (VNFs) in accordance with varying
workloads is a must for realizing promised reductions
in capital and operational expenses in Network Func-
tions Virtualization (NFV). However, workload hetero-
geneity and complex relationships between resources al-
located to a VNF and the resulting capacity makes elas-
tic resource flexing a challenging task. We propose an
NFV resource flexing system, ENVI, that uses a com-
bination of VNF-level features and infrastructure-level
features to construct a machine-learning-based decision
engine for detecting resource flexing events. ENVI also
extracts the dependence relationship among VNFs in de-
ployed Service Function Chains (SFCs) to carefully plan
the sequence of resource flexing steps upon scaling de-
tection. We present preliminary results for the accuracy
of ENVI’s resource flexing decision engine with two dif-
ferent VNFs, namely, the caching proxy Squid and the
intrusion detection system Suricata. Our preliminary re-
sults show that using a combination of features to train a
neural network model is a promising approach for scal-
ing detection.

1 Introduction

Motivated by the success of cloud computing, Com-
munication Service Providers (CSPs) are adopting Net-
work Functions Virtualization (NFV) to virtualize net-
work functions (NFs) and deploy them on commodity
compute, storage and networking resources. The goal of
NFV is to bring agility to NF deployment and leverage
elastic scaling to reduce overall operational expenses.
Elastic resource flexing in the NFV ecosystem allows an
orchestrator to provision appropriate resources to a par-
ticular VNF for matching workload dynamics, either by
increasing (or reducing) the resource allocations of al-
ready deployed VNF instances or increasing (or reduc-

ing) the number of VNF instances. This paper considers
elastic resource flexing mechanisms for VNF manage-
ment.

NFV deployments comprise sets of VNF instances im-
plementing network services (e.g., intrusion detection
systems (IDSes), load balancers, caching proxies) hosted
on private or public cloud platforms such as virtual ma-
chines (VMs) or containers. It is common to connect
VNF instances in a particular order that network traf-
fic needs to traverse, referred to as a Service Function
Chain (SFC). Virtualization allows each VNF to be elas-
tically scaled to use more (or less) virtualized resources
on demand. We observe that resource consumption-
based thresholds for detecting overload in standard cloud
computing environments are insufficient for NFV de-
ployments. Accuracy and timeliness of scaling detection
allow balancing the tradeoffs associated with VNF re-
source allocation. Detecting scaling long before actual
overload causes under-utilization of resources allocated
to a VNF (and hence higher operational expenses). Al-
ternatively, detection after the fact can incur penalties as-
sociated with service disruption.

Several challenges complicate the design of effective
VNF scaling detection mechanisms. First, unlike hard-
ware implementations, VNF vendors may not provide
detailed capacity/performance specifications of VNFs.
This is because system performance/capacity of VNFs
depends on underlying NFV infrastructure, resource siz-
ing and workload dynamics [5] which makes it chal-
lenging for VNF vendors to provide complete perfor-
mance/capacity information. For instance, the maxi-
mum throughput of an IDS running in a VM is related
to the configuration of the physical server, e.g., a vCPU
mapped to an Intel Xeon processor offers different traf-
fic processing power from an AMD Opteron processor.
Second, each VNF has a distinct processing logic de-
pending on incident network traffic and events. Even if
certain VNFs share packet processing functionality such
as packet header analysis, the differences in upper-layer



processing and implementation can exhibit unique re-
source usage patterns. Third, the dynamics of network
traffic in volume and composition may trigger different
processing units of the same VNF (e.g., rule match in
IDS) and hence consume different amounts of resources.
As an example, Table 1 shows different capacity values
(number of completed HTTP requests per second) and
CPU usage on our testbed for Squid, a caching proxy
NF, when varying HTTP response size from 10 KB to
100 KB. Fourth, unlike similar scenarios (e.g., cloud ap-
plications), network traffic (constituting the VNF work-
load) is forwarded through VNFs based on the SFC for-
warding graph.

Table 1: Squid capacity for different HTTP response
sizes

Response Size 10 KB 50 KB 90 KB
Capacity

(requests/sec) 2767 1232 723

CPU Usage (%) 74 51 54

In this paper, we describe ENVI, a modular VNF
resource management system that periodically collects
VNF-specific and infrastructure resource utilization in-
formation, and detects VNF scaling using this informa-
tion and pre-trained machine learning models. ENVI
generates resource flexing plans considering SFC rela-
tionships. ENVI makes three novel contributions:

(i) Composition of VNF-specific information and
infrastructure resource usage information for detec-
tion of VNF scaling. Most VNFs (actively or pas-
sively) report internal statistics to administrators for de-
bugging, monitoring and security. This internal informa-
tion (such as request queue size) is critical to ensure op-
timal functioning. Although VNFs of the same type may
differ in implementation, they usually use similar met-
rics. For instance, both Snort and Suricata, as IDSes, re-
port packet classification, throughput, and rule matching
statistics. We argue that combining VNF-specific infor-
mation with resource utilization information (referred to
as VNF-level features and infrastructure-level features,
respectively) can enhance our understanding of VNF dy-
namics at runtime, and hence yield more accurate scaling
detection.

(ii) Modeling scaling detection as a classification
problem. Most systems today use a static policy-based
mechanism on one or multiple resource usage statistics
to detect overload. This approach fails to consider the
impact of the VNF processing logic, implementation de-
tails, and traffic dynamics. While it is almost impossible
to establish precise mathematical relationships among all
factors, it is feasible to train machine learning models to
detect scaling online. ENVI uses machine learning mod-
els to capture sophisticated relationships between VNF

runtime status and system scaling.
(iii) Resource flexing planning based on service

chain relationships. ENVI’s resource provisioning sys-
tem not only captures the VNF status, workload and
infrastructure information in real-time, but also con-
siders the chaining relationship between VNF instance
sets. This consideration allows concerted resource flex-
ing across all components of a service function chain,
thus reducing transition times and service disruptions.

In this paper, we demonstrate the use of VNF-level
and infrastructure-level information as input features to
train machine learning models for scaling detection. We
report preliminary experimental results on the caching
proxy Squid and the IDS Suricata.

2 Related Work

Previous work (e.g.,, [21, 8, 18, 28, 20, 7, 13, 32, 16])
considered VNF resource allocation together with VNF
placement, and modeled them as an optimization prob-
lem (e.g., Integer Linear Programing (ILP)) that mini-
mizes the total number of VNF instances, communica-
tion cost, or deployment cost under constraints of net-
work traffic and physical network topology. This line of
work assumes VNF capacities are known and static, ig-
noring the performance characterization challenges. The
work does not consider the impact of dynamic network
traffic on different types of VNFs. Hence, the resource
allocation solutions may not work well in real-world de-
ployments.

Stratos [12] and E2 [25] propose comprehensive NFV
orchestration frameworks which manage VNF instances
and distribute flows efficiently. However, E2 [25] relies
on the VNF developer to give the overload indicator for
scaling a VNF with more instances. The resource provi-
sioning strategy in Stratos [12] is the closest to our solu-
tion. However, Stratos monitors OS-level statistics only
and does not specify how they are used to detect over-
load.

In the cloud computing domain, resource allocation is
an important problem. However, on the public cloud,
neither the provider nor the user is willing to share
information, which limits the ability to make efficient
resource allocation decisions. In addition, the strict
chaining requirements in NFV introduces special con-
straints. Most cloud platforms and third-party develop-
ers simply provide policy-based interfaces (e.g., Open-
Stack Heat [24], Amazon AWS AutoScaling [2], Google
Compute Engine AutoScaler [15] and RightScale [26])
to users to scale their application by monitoring basic
infrastructure-level information. Some research work
(e.g., [14], [27] and [31]) assumes certain workload pat-
terns exist, and identifies and stores resource assignment
solutions for future use.

2



Learning approaches have proven effective in solving
system problems. Nagaraj et al. [22], Liu et al. [17] and
Arzani et al. [1] apply machine learning techniques to in-
vestigate system/network anomalies. Nagaraj et al. [22]
compare distributed system logs using statistical tests
and dependency networks to identify performance degra-
dation. Liu et al. [17] and Arzani et al. [1] train random
forest models on historical network data to determine
network anomalies and root causes of failures, respec-
tively. Gao et al. [11] predict power usage effectiveness
(PUE) in Google data centers. Bao et al [3] guide cel-
lular network resource allocation using user experience
prediction. Mao et al. [19] solve the multi-resource al-
location problem in a reinforcement learning framework.
These approaches are orthogonal to our work.

3 ENVI Design

ENVI introduces three novel mechanisms to VNF re-
source management: (i) combination of VNF-specific in-
formation (VNF-level features) and system resource uti-
lization (infrastructure-level features) for a deeper un-
derstanding of VNF runtime dynamics, (ii) application
of machine learning to detect VNF scaling, and (iii) re-
source adjustment leveraging chaining relations.

As shown in Fig. 1, we design ENVI with four de-
coupled modules leveraging the NFV architecture from
ETSI [10]: VNF monitor, scaling decision engine, re-
source flexing engine and placement engine. We inten-
tionally decouple these building blocks to test different
algorithms and reuse existing solutions. In this section,
we explain each module and how it interacts with other
modules.

Figure 1: ENVI Architecture.

3.1 Detecting Scaling

Prior work (e.g., [6, 34]) reports improved performance
when leveraging application information in scheduling.
Such information, however, is not always available due
to privacy concerns. Fortunately, in NFV, the infrastruc-
ture and VNFs are typically owned by the same admin-
istrator who has access to both. In ENVI, a VNF moni-
tor queries each VNF instance to collect VNF-level and
infrastructure-level feature information using two sepa-
rate lightweight monitoring threads every time interval
T . ENVI uses a distinct monitoring agent for each VNF.
Most VNFs report key metrics through log files or APIs
which are inexpensive to query. The VNF monitor con-
verts and stores all metric values in a key-value format as
VNF-level feature time-series information.

Our goal is to determine the appropriate time when
a VNF needs to be scaled and allocate additional re-
sources to it at that time. If we are too late, the VNF gets
overloaded, leading to service quality violations. If we
are too early, we allocate unnecessary resources which
causes inefficient resource usage. To this end, we must
formulate the relation among VNF runtime status, re-
source utilization, and scaling decision. We find that it
is infeasible to formulate exact mathematical models that
consider the inherent heterogeneity in VNF functionality
and implementation and the physical infrastructure. We
propose to use machine learning models for our scaling
decision engine (SDE) to learn how to make scaling de-
cisions based on data collected from offline performance
tests, and then use and update the learned models in our
operational environment.

The SDE module pulls the values of VNF-level and
infrastructure-level features from the VNF monitor ev-
ery time window W = nT to avoid overreaction (n is set
to 10 by default) and converts these values to numerical
values (if needed). The module then computes statistical
measures (e.g., max, min, mean, median and variance)
over W to capture temporal dynamics and use these val-
ues as a data point. SDE includes two phases: an offline
training phase and an online operation phase.

During the offline training phase, we conduct a series
of training experiments covering as many types of work-
loads as possible using our VNF performance testing
framework [5]. We label each data point for time win-
dow W in the collected training data with a 0 or 1 mean-
ing “do not scale” and “scale,” respectively. Extending
the methodology in our previous work [5], our tests de-
termine the maximum capacity Ci for VNF i. We label a
data point 1 if the input workload rate Ri j >αCi,0<α ≤
1 during the jth time window Tj, which means that we
attempt to scale the VNF before reaching its maximum
capacity. The parameter α controls the time to enforce
the scaling decision and appropriate resource allocation.

3



Note that the labeling process can be VNF-specific, since
users can define service quality violations for different
VNFs differently. We then use the collected data to train
an initial model. We evaluate our initial model on differ-
ent workload types in Section 4.

The initial model is used to predict scaling events dur-
ing the online operation phase. To cope with workload
variations that were not captured during offline training,
ENVI continues collecting and labeling new operational
data and updating the initial model in a background pro-
cess using online learning algorithms. In some cases,
the SDE may be late in generating “scale” events due to
model inaccuracies. To address this contingency, we al-
low the SDE to generate a third type of event, “urgent
scale” (with value 2), if VNF failure or severe overload
is detected. This event is pushed to the resource flexing
engine immediately, and the SDE performs a model up-
date immediately as well.

3.2 Neural Network Model

We explored multiple machine learning models (e.g.,
decision tree, random forest, logistic regression, Lasso
and naı̈ve Bayes) for the SDE. we selected a fully con-
nected neural network model with four layers: input
layer, two hidden layers and output layer. We select this
approach because: (1) a neural network is able to con-
struct new features through customizable hidden layers
and fit nonlinear functions when an explicit mathemati-
cal formulation is unavailable, and (2) the neural network
can model dependence of input features and data points,
which is important for VNF-level features and VNF op-
erational data. For instance, for Suricata, VNF-level
feature decoder.bytes is related to decoder.pkts,
decoder.max pkt size and decoder.avg pkt size.
Our experiments show that the neural network model is
able to effectively capture VNF scaling behavior if we
label data points appropriately, and VNFs report relevant
features. However, interpreting a trained neural network
and feature importance remain open problems.

Machine learning models need retraining when the
underlying hardware used for initial training changes.
Fig. 2 shows the cross-test of initial neural network mod-
els on different hardware configurations. The results
demonstrate that 90% to 95% of the accuracy is achieved
on the same hardware configuration by standardizing the
values of input features with composite features. The ini-
tial models can be improved during operation. However,
the initial models may not perform well if VNFs undergo
major software updates that affect their capacity and per-
formance. For example, we have observed that Suricata,
starting with version v3.1, significantly improved its pat-
tern matching performance. In such cases, retraining the
initial neural network model is important.

Figure 2: Cross-testing initial neural network mod-
els (using composite, infrastructure-level and VNF-level
features) for Suricata on different hardware configura-
tions. Each bar represents normalized values over the
same measure derived from 5-fold cross-validation.

During the online operation phase, the SDE updates
the initial neural network models periodically based on
newly collected data. We use the previous values as ini-
tial weights to train the model on new data. If the work-
load shows significant difference, we increase the weight
of new data to keep up with workload variations.

3.3 Flexing Resources

When “scale” or “urgent scale” events are generated,
the SDE pushes a scale array indicating scaling require-
ments for each instance to the resource flexing engine
(RFE), along with related VNF-level and infrastructure-
level feature information. We extend the strategy in
Stratos [12] to a “multi-stage resource adjustment” strat-
egy. On receiving the scale array from the SDE, the RFE
first scales VNF instances that are labeled “urgent scale.”
It then reduces the multi-VNF adjustment (e.g., more
than one VNF needs to be scaled) to multiple single-VNF
adjustments by leveraging the chaining relation defined
by the SFC policy graph. For each single-VNF adjust-
ment, the RFE first attempts to adjust the VNF status
by redistributing the workload among all instances of
a VNF. If this is possible, we redistribute flows by re-
configuring traffic forwarding rules. Otherwise, the RFE
scales out/up the affected VNF based on the scaling pref-
erences obtained during the offline phase.

Once the resource flexing plan is generated, the RFE
pushes it to the placement engine (PE). The PE converts
the received plan to executable and platform-dependent
commands (e.g., OpenStack Heat templates) and sends
these commands to the NFV orchestrator to enforce.
This stage involves optimization to determine how to
place new VNF instances to reduce costs and process-
ing overhead. PE details are beyond the scope of

4



this work: users can plug in existing solutions (e.g.,
[21, 8, 4, 18, 28, 20, 7, 13, 32, 16]).

4 Prototype Evaluation

We implemented a prototype of ENVI and evaluated it
on a testbed with three HP DL360p blade servers and two
HP Z420 workstations, connected by an HPE 3500yl Gi-
gabit switch (for the management network) and an HPE
5820X 10 Gigabit switch (for the instance network).
All the compute and network resources are managed by
OpenStack Kilo [23].

Due to the lack of public traces for VNF benchmark-
ing, we synthetically generate the workload by extend-
ing the methodology used in NFV-VITAL [5] to eval-
uate ENVI with two VNFs: caching proxy Squid [29]
(version 3.3.8) and IDS software Suricata [30] (version
3.2.1). Each VNF is tested with ten different workloads:
different HTTP response sizes (10 to 100 KB) for Squid
and different malicious traffic fractions (0 to 90%) for
Suricata. For each workload, we first gradually increase
the workload generation rate until the VNF reaches
the maximum system capacity where System T hroughput

Input Workload ≥
99%. Then, we randomly pick a workload generation
rate that is smaller than the maximum system capacity to
collect data to train and test the SDE. We do not overload
the VNF frequently in our experiments, since the goal of
the SDE is to generate “scale” notifications prior to VNF
overload. We collected over 1000 data points over 10
workload types for each VNF in our experiments.

Ideally, we want to train an initial model for each VNF
using offline experimental data and gradually improve it
online as more workload patterns are observed. In this
section, we evaluate the performance of a neural net-
work model that is trained and tested on disjoint work-
load types. More specifically, we train the neural net-
work model on n workload types and test it on the re-
maining 10 − n workload types, where n = 1,2, · · · ,9.
For each n, we enumerate all possible combinations of
workload types and run 5-fold cross-validation on se-
lected data sets to avoid overfitting before testing on the
remaining 10− n workload types. We compare the per-
formance of the neural network (NN) with three other
machine learning (ML) classification models: decision
tree (DT), random forest (RF) and logistic regression
(LR), using different performance measures: accuracy,
precision, recall, receiver operating characteristic (ROC)
and area under ROC curve (AUROC). We also compare
with a baseline method that uses a scaling policy based
on a CPU usage threshold. A similar training and evalua-
tion methodology is used for other classification models.

4.1 Suricata Results

We configure Suricata with the latest Emerging rule
set [9] and generate UDP traffic as benign traffic. For
malicious traffic, we target a single rule which matches
UDP port number and payload content. Suricata reports
100 quantities in its log file which are used as VNF-level
features. Our resource monitor collects 8 basic resource
utilization metrics as infrastructure-level features.

Fig. 3 compares the performance of different clas-
sification models trained with three different feature
sets: VNF-level only, infrastructure-level only, and
composite features. Compared to VNF-level features,
infrastructure-level features yield up to 6% higher ac-
curacy, 8% higher precision, 3% higher recall, and 6%
higher AUROC. For Suricata, infrastructure-level fea-
tures are generally better indicators for detecting “scale”
events. This is because Suricata is a simple VNF that
captures packets and generates alerts based on rule sets.
The performance of Suricata is highly correlated to CPU
utilization. This is consistent with the observed 72% ac-
curacy of the baseline method, which only uses a CPU
threshold to detect scaling. With composite features,
all machine learning models give performance close to
that with infrastructure-level features. The neural net-
work model outperforms other classification models and
consistently yields close to 90% accuracy even with only
VNF-level features. The standard error for all measures
is small, indicating that machine learning models are sta-
ble when trained on different numbers and types of work-
loads. This increases our confidence that the initial neu-
ral network model can offer a reasonable starting point
for the online phase.

4.2 Squid Results

We use a caching proxy benchmarking tool, Web Poly-
graph [33], to generate HTTP requests from clients and
simulate different types of workload by varying HTTP
response sizes from 10 to 100 KB. We use squidclient
(provided by Squid) to monitor the runtime status of
Squid and collect 150 VNF-level features.

As shown in Fig. 4, infrastructure-level features yield
significantly worse performance for all measures, un-
like what we observed with Suricata. Squid is a more
complex VNF than Suricata, and its performance is not
highly correlated to CPU usage. To handle an HTTP
request, Squid must accept a connection from a client,
establish a connection with a server, and forward data
from the server to the client. Therefore, infrastructure-
level features are inadequate for accurate scaling detec-
tion. The baseline method also reports poor performance
(44% accuracy). Performance with composite features
and VNF-level features is better. The neural network

5



(a) Infrastructure-level features (b) VNF-level features (c) Composite features

Figure 3: Statistical measures of Suricata tests.

(a) Infrastructure-level features (b) VNF-level features (c) Composite features

Figure 4: Statistical measures of Squid tests.

model again outperforms other models in all measures by
5%˜19% with small standard error. The baseline method
reports a high recall value for both Suricata and Squid
even when accuracy and precision are low: the baseline
method generates more positive results than other models
using our labeling mechanism. Reducing its CPU usage
threshold increases its performance in some cases, but
it still performs worse than other models, especially for
complex VNFs like Squid.

5 Discussion
Model Feature Set. The performance of any machine
learning (ML) model is limited by the availability of the
right feature set for decision making. ENVI’s decision
engine will suffer if VNF vendors do not expose ap-
propriate operational information. It is worth exploring
the possibility of supplementing infrastructure-level in-
formation with OS-level information, such as memory
allocation statistics, page fault information, device I/O
information and system call information. Are there indi-
rect mechanisms for extracting VNF specific features if
they are not readily available?

Model Training Overhead. Our evaluation (Sec. 4)
shows that the neural network model outperforms other
classification models such decision tree, random forest
and logistic regression. However, tuning a neural net-
work model with the right set of features/parameters is
a challenging task. Creating deep neural network mod-

els may also suffer from lack of training data and high
training overhead. We believe that temporal correla-
tion among features can be exploited for improved over-
load prediction. How should temporality be captured in
ENVI’s ML models? Could convolutional neural net-
works (CNN) or recurrent neural networks (RNN) im-
prove the results?

Model Evolution. False negatives and false posi-
tives have different impacts on operation. False negatives
mean that a VNF does not scale when it is should and re-
sult in service disruption. False positives lead to resource
overprovisioning since a VNF unnecessarily scales. We
need a utility/scoring function to capture the impact of
both in terms of service quality and resource efficiency.
While offline models are a good starting point, monitor-
ing overload and failures in production environments can
be used for online-training. What mechanisms are re-
quired for handling imbalanced labeling and using utility
functions to bias model evolution during operation?

Finer-grained Resource Flexing. Currently the re-
source flexing engine performs coarse-grained search
over a limited set of VM sizing options. More flexible
resource allocation strategies are possible in highly cus-
tomized or containerized deployments. Can reinforce-
ment learning approaches, based on monitoring the im-
pact of fine-grained resource allocation, benefit ENVI?

6



References

[1] B. Arzani, S. Ciraci, B. T. Loo, A. Schuster, and
G. Outhred. Taking the blame game out of data
centers operations with netpoirot. In Proceedings
of the 2016 conference on ACM SIGCOMM 2016
Conference, pages 440–453. ACM, 2016.

[2] Amazon AWS - Auto Scaling. https://aws.

amazon.com/autoscaling/.

[3] Y. Bao, H. Wu, and X. Liu. From prediction to
action: A closed-loop approach for data-guided
network resource allocation. In Proceedings of
the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
1425–1434. ACM, 2016.

[4] M. F. Bari, S. R. Chowdhury, R. Ahmed, and
R. Boutaba. On orchestrating virtual network
functions. In Network and Service Management
(CNSM), 2015 11th International Conference on,
pages 50–56. IEEE, 2015.

[5] L. Cao, P. Sharma, S. Fahmy, and V. Saxena. NFV-
Vital: A framework for characterizing the perfor-
mance of virtual network functions. In Network
Function Virtualization and Software Defined Net-
work (NFV-SDN), 2015 IEEE Conference on, pages
93–99. IEEE, 2015.

[6] M. Chowdhury, Y. Zhong, and I. Stoica. Effi-
cient coflow scheduling with varys. In ACM SIG-
COMM Computer Communication Review, vol-
ume 44, pages 443–454. ACM, 2014.

[7] S. Clayman, E. Maini, A. Galis, A. Manzalini,
and N. Mazzocca. The dynamic placement of vir-
tual network functions. In Network Operations
and Management Symposium (NOMS), 2014 IEEE,
pages 1–9. IEEE, 2014.

[8] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz.
Near optimal placement of virtual network func-
tions. In Computer Communications (INFO-
COM), 2015 IEEE Conference on, pages 1346–
1354. IEEE, 2015.

[9] Emerging Threats. https : / / rules .

emergingthreats.net/.

[10] ETSI Network Functions Virtualisation (NFV) Ar-
chitectural Framework. http://www.etsi.org/

deliver/etsi_gs/NFV/001_099/002/01.02.

01_60/gs_NFV002v010201p.pdf.

[11] J. Gao and R. Jamidar. Machine learning applica-
tions for data center optimization. Google White
Paper, 2014.

[12] A. Gember, A. Krishnamurthy, S. S. John,
R. Grandl, X. Gao, A. Anand, T. Benson, A. Akella,
and V. Sekar. Stratos: A network-aware orchestra-
tion layer for middleboxes in the cloud. Technical
report, Technical Report, 2013.

[13] M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi,
R. Ahmed, and R. Boutaba. Elastic virtual network
function placement. In Cloud Networking (Cloud-
Net), 2015 IEEE 4th International Conference on,
pages 255–260. IEEE, 2015.

[14] Z. Gong, X. Gu, and J. Wilkes. Press: Predictive
elastic resource scaling for cloud systems. In Net-
work and Service Management (CNSM), 2010 In-
ternational Conference on, pages 9–16. Ieee, 2010.

[15] Google Compute Engine - AutoScaler.
https : / / cloud . google . com / compute /

docs/autoscaler/.

[16] X. Li and C. Qian. An nfv orchestration framework
for interference-free policy enforcement. In Dis-
tributed Computing Systems (ICDCS), 2016 IEEE
36th International Conference on, pages 649–658.
IEEE, 2016.

[17] D. Liu, Y. Zhao, H. Xu, Y. Sun, D. Pei, J. Luo,
X. Jing, and M. Feng. Opprentice: towards prac-
tical and automatic anomaly detection through ma-
chine learning. In Proceedings of the 2015 ACM
Conference on Internet Measurement Conference,
pages 211–224. ACM, 2015.

[18] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P.
Barcellos, and L. P. Gaspary. Piecing together the
nfv provisioning puzzle: Efficient placement and
chaining of virtual network functions. In Integrated
Network Management (IM), 2015 IFIP/IEEE In-
ternational Symposium on, pages 98–106. IEEE,
2015.

[19] H. Mao, M. Alizadeh, I. Menache, and S. Kan-
dula. Resource management with deep reinforce-
ment learning. In Proceedings of the 15th ACM
Workshop on Hot Topics in Networks, pages 50–56.
ACM, 2016.

[20] M. J. McGrath, V. Riccobene, G. Petralia,
G. Xilouris, and M.-A. Kourtis. Performant de-
ployment of a virtualised network functions in
a data center environment using resource aware
scheduling. In Integrated Network Management
(IM), 2015 IFIP/IEEE International Symposium
on, pages 1131–1132. IEEE, 2015.

7



[21] H. Moens and F. De Turck. Vnf-p: A model for effi-
cient placement of virtualized network functions. In
Network and Service Management (CNSM), 2014
10th International Conference on, pages 418–423.
IEEE, 2014.

[22] K. Nagaraj, C. Killian, and J. Neville. Structured
comparative analysis of systems logs to diagnose
performance problems. In Proceedings of the 9th
USENIX conference on Networked Systems Design
and Implementation, pages 26–26. USENIX Asso-
ciation, 2012.

[23] OpenStack. http://www.openstack.org/.

[24] OpenStack - HEAT. https : / / www .

openstack . org / software / releases /

newton/components/heat.

[25] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Rat-
nasamy, L. Rizzo, and S. Shenker. E2: a frame-
work for nfv applications. In Proceedings of the
25th Symposium on Operating Systems Principles,
pages 121–136. ACM, 2015.

[26] RightScale. http://www.rightscale.com/.

[27] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. Cloud-
scale: elastic resource scaling for multi-tenant
cloud systems. In Proceedings of the 2nd ACM
Symposium on Cloud Computing, page 5. ACM,
2011.

[28] R. Shi et al. Mdp and machine learning-based
cost-optimization of dynamic resource allocation
for network function virtualization. In Services
Computing (SCC), 2015 IEEE International Con-
ference on, pages 65–73. IEEE, 2015.

[29] Squid. http://www.squid-cache.org/.

[30] Suricata. https://suricata-ids.org/.

[31] N. Vasić, D. Novaković, S. Miučin, D. Kostić,
and R. Bianchini. Dejavu: accelerating resource
allocation in virtualized environments. In ACM
SIGARCH computer architecture news, volume 40,
pages 423–436. ACM, 2012.

[32] X. Wang, C. Wu, F. Le, A. Liu, Z. Li, and F. Lau.
Online vnf scaling in datacenters. arXiv preprint
arXiv:1604.01136, 2016.

[33] Web Polygraph. http://www.web-polygraph.

org/.

[34] T. Wood, P. Shenoy, A. Venkataramani, and
M. Yousif. Sandpiper: Black-box and gray-box
resource management for virtual machines. Com-
puter Networks, 53(17):2923–2938, 2009.

8


