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Abstract—Large-scale sensor-based decision support systems
are being widely deployed. Assessing the trustworthiness of
sensor data and the owners of this data is critical for quality
assurance of decision making in these systems. Trust evaluation
frameworks use data provenance along with the sensed data
values to compute the trustworthiness of each data item.
However, in a sizeable multi-hop sensor network, provenance
information requires a large and variable number of bits in
each packet, which, in turn, results in high energy dissipation
with extended period of radio communication, making trust
systems unusable. We propose an energy-efficient provenance
transmission and construction scheme, which we refer to
as Probabilistic Provenance Flow (PPF). To the best of our
knowledge, ours is the first approach to make the Probabilistic
Packet Marking (PPM) approach of IP traceback feasible for
sensor networks. We propose two bit-efficient complementary
provenance encoding and construction methods, and combine
them to handle topological changes in the network. Our
TOSSIM simulations demonstrate that PPF requires at least
33% fewer packets and consumes 30% less energy than PPM-
based approaches to construct provenance, yet still provides
high accuracy in trust score calculation.1
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I. I NTRODUCTION

With the recent advances in developing small and smart
sensors, wireless sensor networks (WSNs) are being de-
ployed on a larger scale to gather real-time data from
the physical world [1], [2]. Investigating permafrost in the
Swiss Alps [3], Berkeley’s habitat monitoring in Great Duck
Island [4], and studying volcanic activity in Ecuador [5] are
example applications that exploit WSNs to audit changes in
the environment or climate. Sensor-based decision support
systems have been implemented for the management of
critical infrastructure systems [6] and power grid networks
[7]. Global sensor networks [8], sensor networks for large-
scale urban environments [9], and physical infrastructure
systems [10] indicate potential deployments of hundreds of
sensor nodes.

In many sensor applications, the network operates in
a multi-hop fashion where battery-powered sensor nodes
collect application-specific information and relay through
intermediate nodes to a base station. Information collected at
the base station is processed and made available to decision

1This work has been sponsored in part by NSF grant CNS-0964294.

makers for further analysis. As quality of decision making
is critically dependent on the quality of transmitted infor-
mation [9], trustworthiness of information and information
publishing nodes is important. The identity of the publishers
of sensor data is useful for both historical and real-time
values [11]. In a multi-hop network, provenance provides
knowledge about the publisher and processing path of data
since its generation. While some provenance-based trust
evaluation frameworks [12], [13] have been proposed, they
do not investigateenergy dissipationdue to transmission of
provenance throughout the network.

Provenance of an information item can be represented as
a tree which is embedded as meta-data with the information
item, and updated along the path used to forward the item
to the base station. Hence, every intermediate node carries
provenance of length proportional to the hop count between
that node and the source of the associated information
item. In a network with a large diameter (hop count), this
increased meta-data length results in an extended period
of radio communication and energy dissipation at every
intermediate node. We consider a real deployment of a
46-hop network [14] in our simulations, and observe that
aggregated energy dissipation of the network increases by
27% when a traditional trust framework is employed. Al-
though large networks can be hierarchically organized [15],
they still require a significant number of hops [16], with
non-negligible energy usage for aggregated provenance.
If we simply incorporate identities of all relay nodes as
provenance, practical usability of trust frameworks becomes
questionable.

Provenance encoding and transmission has a similar na-
ture to the well-knownIP tracebackproblem [17], [18]. IP
traceback aims to determine the forwarding paths of spoofed
packets in traditional wired networks. Among the many
proposed solutions to this problem, Probabilistic Packet
Marking (PPM) can be most easily adapted to WSNs [19].
However, PPM assumes trustworthy routers (intermediate
nodes) and static routes. Moreover, as we will show via
simulations, PPM requires a large number of packets to con-
struct the forwarding path, which makes direct application
of PPM to WSNs infeasible.

In this paper, we devise an energy-efficient provenance
transmission and construction scheme for large and slowly-
varying WSNs. Like PPM, the intuition behind our approach



is to reduce the expected length of provenance information
through probabilistic incorporation of node identity, instead
of embedding the identity of every node along the informa-
tion forwarding path. But unlike PPM, our method incor-
porates a connected subgraph of the forwarding path into a
packet and is able to trace the evolution of provenance as
topology changes. This reduces the number of packets (and
hence convergence time) required to construct provenance.
Our simulation results show that the proposed methods
consume approximately 30% less energy than the traditional
approach, which significantly increases the network life-
time.

The remainder of this paper is organized as follows.
We formulate the problem of energy-efficient provenance
transmission and define our network and trust models in
section II. Section III discusses related work. Section IV
explains our approaches to embed and construct provenance.
In section V, we discuss practical implementation issues.
Section VI presents simulation results. Finally, section VII
includes a few concluding remarks.

II. PROBLEM FORMULATION

A. Network Model

We consider a multi-hop wireless sensor network where
changes in topology due to failure or mobility can occur,
but are not frequent. We make the following assumptions
regarding the network and traffic:

• A Base Station (BS) acts as a central command author-
ity and the root of a routing tree. It has no resource
constraints and cannot be compromised by an attacker.

• The network may or may not be clustered. A clustered
network can be constructed by protocols like [20],
[21]. A typical cluster consists of a single cluster head
and a variable number of cluster members. Some data
aggregation functions (e.g., min, max, average) are
implemented at the cluster head, which aggregates data
from member nodes and forwards the resulting data
towards the base station.

• Sensor nodes monitor their surroundings and period-
ically report to the base station or their designated
cluster head (if any).

• Multiple sensors are used for monitoring an event.
Thus, within a particular time window, independent
observations obtained at cluster heads or the base
station from different sensors are concerned with the
same event.

• The underlying MAC protocol can be a variant of B-
MAC [22] or X-MAC [23], which are compatible with
the TinyOS stack. Sleep-wake scheduling is performed
in low power listening mode [24].

• A provenance based trust management method such
as [12], [13] is used in the application layer to establish
and manage trust in an adaptive manner. Provenance
information is embedded into sensor data packets as
meta-data.

B. Provenance and Trust Model

In a provenance-based trust framework [12], atrust score
is associated with each data item, and areputation valueis
attributed to the provider of information. Trust scores and
reputation values gradually evolve in an adaptive manner.
Specifically, upon reception of an item, the receiver esti-
mates the trustworthiness of the item based on thevalue
similarity andprovenance similarityof information received
via multiple paths. The receiver then adjusts the reputation
of the information owner based on the newly calculated
trust score of the item. This process of trust calculation is
typically performed at the base station. However, in a clus-
tered network, nodes that are responsible for aggregation can
also compute reputation values of their descendant nodes,
and assign a new trust score to the aggregated item based
on these reputation values. Every node that manipulates
or forwards an information item can update provenance
information by embedding its own identity with that item.
At the base station, the complete provenance of the item is
received in the form of a directed acyclic graph (DAG) of
manipulator or forwarder (relay) nodes.
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Figure 1. An example sensor network and sample provenance graphs.

Consider figure 1(a) where a number of sensor nodes peri-
odically send packets towards the base station through mul-
tiple paths. As shown in figures 1(b) and 1(c), provenance
forms subgraphs of the network graph – more specifically,
trees rooted at the base station.

C. Challenges

Our focus is on how provenance is transmitted and
constructed without modifying the basic trust framework.
Ideally, each packet should contain identities of all nodes
that forward or manipulate that packet, so that the packet
contains the entire provenance when it arrives at the base
station. However, this requires a large and variable number
of bits in the meta-data of the packet, and thus consumes
significant energy in the long run. To mitigate this prob-
lem, we consider probabilistic incorporation of provenance
information – every node embeds its identity into the packet
with some probability, and after collecting sufficient packets



at the base station, the entire provenance tree or path can
be constructed. The higher the percentage of nodes along
the forwarding tree that embed their identities into a single
packet, the less time it takes to construct the full provenance.

The invariably energy-constrained nature of sensor net-
works and topological changes caused by failure or mo-
bility of nodes impose the following three challenges to
this probabilistic provenance approach: (1) The number of
bits required per packet to transmit provenance information
should be fixed and small; (2) The number of packets
required to construct full provenance should be small. Fast
convergence of provenance construction is critical; and (3)
Any topological changes should be rapidly reflected in
provenance, so that trust score calculation can be performed
at the base station with up-to-date provenance information.

D. Problem Statement

We consider a network ofN nodes, where the maximum
length (depth) of any forwarding path (tree) isL. Assume
that the maximum number of bits that can be used to embed
provenance information in a single packet isB. Based upon
this bit budget, there is an integerm, 1 < m ≤ L such
that at mostm consecutive node identities (that is,m − 1
consecutive edges) can be embedded into a single packet.
We must perform the following three operations:

(1) Provenance Embedding: In a forwarding treeG =
(V,E) rooted at the base station, each nodeni ∈ V makes
an independent decision whether to embed its identity into
the packet, starting a connected sub-graph, with probability
pi. We need to design a provenance embedding method to
carry a partial pathP =< ni1 , ni2 , · · ·nim > into a single
packet wherenij ∈ V, 1 ≤ j ≤ m and(nik , nik+1

) ∈ E, 1 ≤
k ≤ m− 1. This problem is a simple extension of the edge
sampling approach in IP traceback [17].

(2) Provenance Construction: On the base station side,
we must construct the entire provenance treeG = (V,E) by
exploiting partial path information collected from a number
of received packets, with an upper bound on the number of
packets required to construct the provenance.

(3) Evolution of Provenance: After topological changes,
e.g., due to failures or mobility, we must bound the time that
it takes to reflect the changes in the constructed provenance.

III. R ELATED WORK

A few provenance-based trust frameworks have been
proposed to date [12], [13]. These frameworks do not focus
on energy-efficiency in wireless sensor networks. We can
relate the problem of provenance transmission to the IP
traceback problem that determines the forwarding path of
spoofed packets [25]. IP traceback methods include hop-by-
hop tracing [26], [27], out-of-band ICMP traceback [28], and
in-band probabilistic packet marking [17], [18]. Hop-by-hop
tracing is not well-suited to wireless sensor networks due
to its large storage requirement. Hot-spot based traceback
methods designed for mobile ad-hoc networks [29], [30]

store packet information at the nodes, and traceback is
performed hop-by-hop to determine the hot-spot where the
attacker is located. In our case, provenance information is
continuously required at the base station to compute trust
scores of descendant nodes. Hot-spot based methods would
incur unnecessary delay in trust score calculation. Out-
of-band ICMP traceback requires out-of-band communica-
tion and increased bandwidth which limit its usability in
resource-constrained wireless sensor networks.

In this work, we adapt Probabilistic Packet Marking
(PPM) since it does not require additional storage or out-of-
band communication. PPM assumes trustworthy routers and
static routes which may not hold in our case. Additionally,
PPM requires a significant number of packets to construct
the forwarding path. Network coding variants of PPM [31],
[32] require fewer packets to construct the forwarding path.
Network coding approaches, however, have a high compu-
tational complexity and increase the length of the packet as
marking coefficients are transmitted with the packet. Cheng
et al. [33] determine the optimal marking probability for
each node to reduce the number of packets required to
construct the forwarding path.

IV. PROBABILISTIC PROVENANCE FLOW

In this section, we discuss our probabilistic provenance
transmission and construction method named Probabilistic
Provenance Flow (PPF). We first discuss the assignment of
a unique number to every node as a node identifier (ID)
before deployment. Then, we propose two complementary
provenance embedding methods that differ in how they
encode node identifiers. We present provenance construction
mechanisms for both encoding methods, and show how
the two methods can be combined to handle topological
changes.

A. Node ID Assignment

For a network ofN nodes, we pick a setQP =
{q1, q2, · · · qz} with the smallestz such that z ≥ N .
An in-place randomized algorithm is used to produce a
random permutation ofQP , σ(QP ) = {qa1

, qa2
, · · · qaz

}
and members ofσ(QP ) are assigned to allN nodes se-
quentially. For example, in an 8-node network, we can
pick IDs for the nodes from a random permutation of
Q11 = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11}.

Definition 1. Let Pn be the largest prime number that is
less than or equal to the positive integern. We define the
set of usable IDs,QP whereP is a prime number:

QP = {n ∈ N | 2 ≤ n ≤ P and 0 ≤ n− Pn ≤ 7}

Definition 2. The rank of any noden ∈ QP , denoted
as rank(n), is the position ofn in the same random
permutation ofQP , σ(QP ) that was used to generate IDs.
Particularly, in anN -node network,1 ≤ rank(n) ≤ N ≤
|QP |.



Definition 3. For any positive integern ∈ QP , for someP ,
we define two functions:

• prime(n) = The largest prime number that is less than
or equal ton = Pn.

• offset(n) = The difference betweenn andPn = n−Pn.

B. Embedding Provenance with Juxtaposition of Ranks

In the rank method, instead of embedding the node ID
directly into a packet,rank(ID) (defined in Definition 2)
of the node is embedded, since every node ID is uniquely
identifiable using its rank. Here, we use the termsrank and
identity interchangeably. Assume that the packet meta-data
has space to hold identities of up tom nodes. We use
a counter oflog2 m bits to track the number of already
embedded identities in the packet. Initially, the buffer and
counter contain zeros. Every nodeni decides to start a
connected sub-graph with its identity probabilitypi. Once
it decides to do so, it overwrites the previous information
by doing the following: it zeros out the entire provenance
field and then incorporates its identity at the beginning of
the buffer and sets the counter to one. If a node decides
not to overwrite, it checks for empty buffer space using the
counter field. If there is space, it adds its identity into the
first available slot in the buffer and increments the counter.
Figure 2 shows an example of this method where the buffer
space can hold at most four node identities in a single packet.
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Figure 2. Probabilistic incorporation of provenance usingjuxtaposition of
ranks (numbers inscribed in the circles indicaterank of nodes).
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Figure 3. Probabilistic incorporation of provenance usingprime multipli-
cation (numbers inscribed in the circles indicate ID of nodes).

C. Embedding Provenance with Prime Multiplication

The rank method is easy to decode, but requires a rela-
tively large number of bits for provenance data. For example,
in a 1000-node network, we need a total of 42 bits to transmit
provenance information of four nodes in a single packet. We
can reduce these bit requirements by using the following
prime methodwhich still has a simple decoding process.

To store provenance information, we divide the prove-
nance buffer into two parts:productandoffset. Every node
ni has an ID, sayIDi, that is a member ofQP for someP .

As before, once a nodeni decides to start a connected sub-
graph, it overwrites previously stored information by clear-
ing the entire provenance buffer. It then insertsprime(IDi)
into the product part andoffset(IDi) into the offset part of
the buffer (as defined in Definition 3). If a nodenj decides
not to overwrite, it retrieves the value stored in the product
and offset parts. Then, it multiplies the value of the product
part with prime(IDj), addsoffset(IDj) to the offset part,
and stores the newly calculated values into the respective
parts. We will later show that, for a given bit budget, we can
determine an upper bound and a lower bound for the number
of identities of nodes (m) that can be stored in a single
packet using this approach. Figure 3 shows an example with
m = 2.

We no longer need a counter field to track the number
of node identities encoded in the provenance buffer because
there is always a unique prime factorization of theproduct
part which gives the number of participating nodes.

D. Decoding Partial Provenance

When a packet is received at the base station, the prove-
nance buffer is examined to retrieve the embedded partial
provenance (or path) information. With the rank embedding
approach, we can easily extract the embedded identities from
the provenance buffer using the length field as each node
ID uses a fixed number of bits. With the prime embedding
method, we assume that information about ordering among
nodes is known beforehand (as discussed in the next section).
We apply a standard prime factorization algorithm over the
product part of the provenance buffer to retrieve the nearest
prime numbers and map to node identities.

Retrieving information from the offset part is a version
of the subset sum problem [34]. If the number of identities
of participating nodes ism, we use a dynamic program-
ming approach to determine possible non-empty subsets
of {0, 1, 2, 3, 4, 5, 6, 7} with cardinalitym that sum to the
offset value. For every possible subset, we form partial
paths of lengthm − 1 by combining the retrieved nearest
prime numbers (say,X1, X2, · · ·Xm) and the members
of the considered subset (say,o1, o2, · · · om). From prior
knowledge, we also identify partial paths of lengthm − 1
such that the nearest prime numbers of node IDs on the
paths are (X1, X2, · · ·Xm). Then, we consider all possible
pairs of newly formed partial paths and the partial paths
considered from the past, and calculate a difference score
between them using the following formula:

δ =

m∑

i=1

(oi − (IDai
−Xi))

2

where< IDa1
, IDa2

, · · · IDam
> indicates the partial path

based on previous knowledge. Finally, we determineδmin,
the lowest difference score over all the possible combina-
tions, and record the corresponding partial path information.
Whenδmin becomes zero, the recorded information is used.
Otherwise, topological changes may have occurred in the



network and the previously stored provenance information
may not be up-to-date. Further processing is necessary to
determine the provenance, such as checking other combina-
tions of partial paths by considering nodes that are 1 or 2-
hop away from the nodes on the recorded path, or triggering
the rank ID embedding approach to recover the order. These
extensions will be the subject of our future work.

E. Construction and Evolution of Provenance

With our identity embedding methods, provenance con-
struction is straightforward once we have decoded partial
path information from the received packet. After collecting
sufficient packets with embedded provenance (i.e., when we
have at least one ID from each node), we combine the
partial paths to produce the complete provenance graph.
However, decoding using the prime approach needs previous
knowledge about the order of nodes. This can be obtained by
applying the rank method first. After a configurable period of
time (generally greater than provenance convergence time)
during which the provenance is constructed using the rank
method, the prime embedding method can be employed.

In order to keep node order information up-to-date, nodes
utilize the rank approach everytembedding seconds. Thus,
any topological changes are reflected in the provenance.
Based on the frequency of mobility or failures in the
network, tembedding can be adjusted. However, a small
value of tembedding will reduce the benefits of applying
the bit-efficient prime embedding method. We are currently
considering a reactive approach to trigger the rank approach
only when necessary.

V. PRACTICAL CONSIDERATIONS

A. Bit Requirements

Consider a 1000-node network where the maximum num-
ber of bits allocated for provenance per packet (B) is 32.
Using the rank approach for embedding IDs, at mostm=3
ranks of nodes can be encoded into 30 bits and the remaining
2 bits can be used to track the number of encoded nodes. In
case of the prime embedding approach, 5 bits can store the
sum of the offset values of at mostm = 4 nodes since offset
values vary between 0 and 7. The remaining 27 bits can
hold prime multiplication of node IDs. In a static network,
careful node ID assignment ensures encoding at least 4 node
IDs in a single packet. Our simulations show that randomly
assigning node IDs allows encoding 3 or more node IDs in
most cases.

B. Convergence Time and Topological Change

Let the average number of IDs received from a packet
bemavg (regardless of the embedding method). Assume the
probabilityp of embedding a sub-graph into the provenance
buffer is fixed (∀ipi = p). With traditional PPM [32], the
time for convergence is constrained by the time until the ID
of the farthest node is received at the base station which is

1
p(1−p)L−1 . In our method, we are receivingmavg unique

IDs instead of one. Thus, the expected number of packets
required to construct provenance,

E(S) <
1

mavg

.
L

p(1− p)L−1

A value ofp that is less than or equal to1
L

produces a near-
optimal result (i.e., reduces the number of required packets).

Convergence timetconvergence is nothing but the time
required to receiveE(S) packets at the base station. If the
rank approach of embedding IDs is used everytembedding

seconds, then any topological change will be reflected within
tevolution ≤ tembedding + tconvergence seconds.

VI. PERFORMANCEANALYSIS

We compare our PPF method with two variants of prob-
abilistic packet marking (PPM [17], [18] and PPM with
Network Coding [31], [32]) as they are the closest to
our approach (though they were designed for wired IP
networks). We conduct simulations using TOSSIM [35] for
networks with hop counts ranging from 2 to 30, and number
of nodes ranging from 3 to 50. For energy analysis, we use
POWERTOSSIMZ [36] which uses themicazenergy model.
All experiments are performed using the transmission rate
of 250 kbps, the default transmission rate of themicazmote,
where every data-generating sensor sends data towards the
base station every 2000 ms (2 s). All results are averaged
over 1000 runs.

To make the comparison fair, we place the same con-
straint on usable bits (32 bits) for provenance embedding
in a packet for all three approaches. Though the size of
the network can grow arbitrarily, we assume that 1 byte
is enough to represent the maximum hop count. Hence,
PPM with Network Coding (PPM+NC) requires 14 bits
to accommodate three coefficients and the distance field.
The remaining 18 bits can be used to store the linear
combinations of node IDs. However, embedding 4 node IDs
into a packet in PPM+NC requires more than 32 bits. Thus,
the maximum number of node IDs carried in a single packet
is 1, 3, and 4 for PPM, PPM+NC, and PPF respectively. The
probability for embedding a node ID isp = 1

25 .
Figures 4(a) and 4(b) show the number of packets and

energy consumption required to construct provenance using
the three schemes for increasing numbers of hops. With 1000
runs, the 95% confidence intervals of these experiments have
deviations in the range of 0 to 5 from the experimental
averages, which statistically assures the correctness of our
experiments. The experimental results reveal that PPF re-
quires at least 33% fewer packets and consumes 30% less
energy than both PPM-based schemes.

We also integrate PPF with a provenance-based trust
model to iteratively compute trust scores. Figure 4(c) shows
that the trust score calculated using PPF evolves correctly
as soon as the entire provenance is constructed at the base
station. PPF accuracy in trust score calculation is similarto
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the traditional approach that includes every node ID on the
forwarding path in the provenance.

VII. C ONCLUSIONS

We have presented an energy-efficient provenance trans-
mission and construction approach for large-scale multi-hop
wireless sensor networks, based on the idea of probabilistic
incorporation of node identities. We adapt the probabilis-
tic packet marking (PPM) approach for IP traceback, and
propose two complementary provenance encoding methods
with a space constraint on the size of provenance data in the
packet. Further, we present efficient provenance construction
schemes for the two encoding methods, and combine them to
deal with topological changes in the network. In contrast to
PPM, our proposed approach requires fewer packets to con-
struct network-wide provenance, and significantly reduces
the aggregate energy consumption of the network. Most
importantly, integration of our scheme with a provenance-
based trust model on the TinyOS emulator TOSSIM reveals
no degradation in accuracy of trust score calculation. As
future work, we plan to design a reactive approach that will
accurately reflect topological changes. We will also study
how well a complete trust framework can detect and react
to various attack and failure scenarios.
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