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Abstract—Large-scale sensor-based decision support systems makers for further analysis. As quality of decision making
are being widely deployed. Assessing the trustworthinessfo s critically dependent on the quality of transmitted infor
sensor data and the owners of this data is critical for qually — ation [9], trustworthiness of information and informatio
assurance of decision making in these systems. Trust evatien S o . . .
frameworks use data provenance along with the sensed data publishing nodes_ is important. The 'd_e”“t}’ of the publrsh_e
values to compute the trustworthiness of each data item. Of sensor data is useful for both historical and real-time
However, in a sizeable multi-hop sensor network, provenare  values [11]. In a multi-hop network, provenance provides
information requires a large and variable number of bits in  knowledge about the publisher and processing path of data
each packet, which, in turn, results in high energy dissipaon  gjnce jts generation. While some provenance-based trust

with extended period of radio communication, making trust X
systems unusable. We propose an energy-efficient provenanc evaluation frameworks [12], [13] have been proposed, they

transmission and construction scheme, which we refer to dO not investigatenergy dissipatiomiue to transmission of
as Probabilistic Provenance Flow (PPF). To the best of our provenance throughout the network.
knowledge, ours is the first approach to make the Probabilist Provenance of an information item can be represented as
Packet Marking (PPM) approach of IP traceback feasible for 5 yrae which is embedded as meta-data with the information
sensor networks. We propose two bit-efficient complementgr it d undated al th th dto f d the it
provenance encoding and construction methods, and combine ltem, and up a_e along the pa _use 0 _orwar e 'e_m
them to handle topological changes in the network. Our tO the base station. Hence, every intermediate node carries
TOSSIM simulations demonstrate that PPF requires at least provenance of length proportional to the hop count between
33% fewer packets and consumes 30% less energy than PPM- that node and the source of the associated information
based approaches to construct provenance, yet still provigs e |n a network with a large diameter (hop count), this
high accuracy in trust score calculation. . . :
increased meta-data length results in an extended period

Keywords-provenance; trust framework; probabilistic packet  of radio communication and energy dissipation at every

marking; energy-efficiency; sensor networks intermediate node. We consider a real deployment of a
46-hop network [14] in our simulations, and observe that
. INTRODUCTION aggregated energy dissipation of the network increases by

With the recent advances in developing small and smar27% when a traditional trust framework is employed. Al-
sensors, wireless sensor networks (WSNs) are being déhough large networks can be hierarchically organized,[15]
ployed on a larger scale to gather real-time data fronthey still require a significant number of hops [16], with
the physical world [1], [2]. Investigating permafrost ineth non-negligible energy usage for aggregated provenance.
Swiss Alps [3], Berkeley’s habitat monitoring in Great Duck If we simply incorporate identities of all relay nodes as
Island [4], and studying volcanic activity in Ecuador [Spar provenance, practical usability of trust frameworks beesm
example applications that exploit WSNs to audit changes irfluestionable.
the environment or climate. Sensor-based decision support Provenance encoding and transmission has a similar na-
systems have been implemented for the management &fre to the well-knowrlP tracebackproblem [17], [18]. IP
critical infrastructure systems [6] and power grid network traceback aims to determine the forwarding paths of spoofed
[7]. Global sensor networks [8], sensor networks for largefackets in traditional wired networks. Among the many
scale urban environments [9], and physical infrastructurg@roposed solutions to this problem, Probabilistic Packet
systems [10] indicate potential deployments of hundreds oMarking (PPM) can be most easily adapted to WSNs [19].
sensor nodes. However, PPM assumes trustworthy routers (intermediate

In many sensor applications, the network operates imodes) and static routes. Moreover, as we will show via
a multi-hop fashion where battery-powered sensor nodesimulations, PPM requires a large number of packets to con-
collect application-specific information and relay thrbug struct the forwarding path, which makes direct application
intermediate nodes to a base station. Information colleate 0f PPM to WSNs infeasible.

the base station is processed and made available to decisionIn this paper, we devise an energy-efficient provenance
transmission and construction scheme for large and slowly-

1This work has been sponsored in part by NSF grant CNS-0964294 varying WSNs. Like PPM, the intuition behind our approach
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is to reduce the expected length of provenance informatioB. Provenance and Trust Model
through probabilistic incorporation of node identity, tiead

of embedding the identity of every node along the mforma-is associated with each data item, anteputation valugs

tion forwarding path. But unlike PPM, our method inCor- ojp ted to the provider of information. Trust scores and
porates a co_nnected subgraph of the f_orwardmg path into Peputation values gradually evolve in an adaptive manner.
packet and is able to.trace the evolution of provenance ag ecifically, upon reception of an item, the receiver esti-
topology changes. Th,'s reduce§ the number of packets (a ates the trustworthiness of the item based on\alee
hence convergence time) required to construct provenancgijarity andprovenance similaritpf information received

Our simulation FeS“'tS shoow that the proposed me_thOd§ia multiple paths. The receiver then adjusts the reputatio
consume approximately 30% less energy than the traditiongf¢ e jnformation owner based on the newly calculated

approach, which significantly increases the network life-y st score of the item. This process of trust calculation is

time. . . ) , typically performed at the base station. However, in a clus-

The remainder of this paper is orgam;ed as follows.o e g network, nodes that are responsible for aggregadion c
We formulate the problem of energy-efficient provenance, s, compute reputation values of their descendant nodes,
transmission ar!d defln(_a our network and trust mo_dels Mnd assign a new trust score to the aggregated item based
section Il. Section Il discusses related work. Section Ivon these reputation values. Every node that manipulates
explains our approaches to embed and construct provenange. ¢ ords an information item can update provenance
In section V, we discuss practical implementation issuesinformation by embedding its own identity with that item.
Section VI presents S".““'a“O“ results. Finally, sectioh V At the base station, the complete provenance of the item is
includes a few concluding remarks. received in the form of a directed acyclic graph (DAG) of

Il. PROBLEM FORMULATION manipulator or forwarder (relay) nodes.

A. Network Model

We consider a multi-hop wireless sensor network where
changes in topology due to failure or mobility can occur,
but are not frequent. We make the following assumptions
regarding the network and traffic:

« A Base Station (BS) acts as a central command author-
ity and the root of a routing tree. It has no resource
constraints and cannot be compromised by an attacker.

« The network may or may not be clustered. A clustered
network can be constructed by protocols like [20],
[21]. A typical cluster consists of a single cluster head
and a variable number of cluster members. Some data (a) Network (b) simple (c) Aggregated prove-
aggregation functions (e.g., min, max, average) are provenance  nance
implemented at the cluster head, which aggregates datggyre 1. An example sensor network and sample provenamgngr
from member nodes and forwards the resulting data
towards the base station. Consider figure 1(a) where a number of sensor nodes peri-

« Sensor nodes monitor their surroundings and periododically send packets towards the base station through mul-
ically report to the base station or their designatedtiple paths. As shown in figures 1(b) and 1(c), provenance
cluster head (if any). forms subgraphs of the network graph — more specifically,

« Multiple sensors are used for monitoring an event.trees rooted at the base station.

Thus, within a particular time window, independent
observations obtained at cluster heads or the basg: Challenges

station from different sensors are concerned with the Our focus is on how provenance is transmitted and
same event. constructed without modifying the basic trust framework.

« The underlying MAC protocol can be a variant of B- Ideally, each packet should contain identities of all nodes
MAC [22] or X-MAC [23], which are compatible with that forward or manipulate that packet, so that the packet
the TinyOS stack. Sleep-wake scheduling is performedontains the entire provenance when it arrives at the base
in low power listening mode [24]. station. However, this requires a large and variable number

« A provenance based trust management method suabf bits in the meta-data of the packet, and thus consumes
as [12], [13] is used in the application layer to establishsignificant energy in the long run. To mitigate this prob-
and manage trust in an adaptive manner. Provenandem, we consider probabilistic incorporation of proveranc
information is embedded into sensor data packets amformation — every node embeds its identity into the packet
meta-data. with some probability, and after collecting sufficient patsk

In a provenance-based trust framework [12{rwest score

) BS
Base Station




at the base station, the entire provenance tree or path catore packet information at the nodes, and traceback is
be constructed. The higher the percentage of nodes alomerformed hop-by-hop to determine the hot-spot where the
the forwarding tree that embed their identities into a @ngl attacker is located. In our case, provenance information is
packet, the less time it takes to construct the full proveean continuously required at the base station to compute trust
The invariably energy-constrained nature of sensor netscores of descendant nodes. Hot-spot based methods would
works and topological changes caused by failure or moincur unnecessary delay in trust score calculation. Out-
bility of nodes impose the following three challenges toof-band ICMP traceback requires out-of-band communica-
this probabilistic provenance approach: (1) The number ofion and increased bandwidth which limit its usability in
bits required per packet to transmit provenance informatio resource-constrained wireless sensor networks.
should be fixed and small; (2) The number of packets In this work, we adapt Probabilistic Packet Marking
required to construct full provenance should be small. FasfPPM) since it does not require additional storage or out-of
convergence of provenance construction is critical; ad (3band communication. PPM assumes trustworthy routers and
Any topological changes should be rapidly reflected instatic routes which may not hold in our case. Additionally,
provenance, so that trust score calculation can be perfbrmd?PM requires a significant number of packets to construct
at the base station with up-to-date provenance informationthe forwarding path. Network coding variants of PPM [31],
[32] require fewer packets to construct the forwarding path
D. Problem Statement Network coding approaches, however, have a high compu-
We consider a network oV nodes, where the maximum tational complexity and increase the length of the packet as
length (depth) of any forwarding path (tree) is Assume marking coefficients are transmitted with the packet. Cheng
that the maximum number of bits that can be used to embeelt al. [33] determine the optimal marking probability for
provenance information in a single packetdsBased upon each node to reduce the number of packets required to
this bit budget, there is an integet,1 < m < L such construct the forwarding path.
that at mostm consecutive node identities (that is, — 1
consecutive edges) can be embedded into a single packet. IV. PROBABILISTIC PROVENANCE FLOW
We must perform the following three operations: In this section, we discuss our probabilistic provenance
(1) Provenance Embedding In a forwarding treeG =  transmission and construction method named Probabilistic
(V, E) rooted at the base station, each nade= V makes Provenance Flow (PPF). We first discuss the assignment of
an independent decision whether to embed its identity int@ unique number to every node as a node identifier (ID)
the packet, starting a connected sub-graph, with prolabili before deployment. Then, we propose two complementary

pi. We need to design a provenance embedding method terovenance embedding methods that differ in how they
carry a partial path? =< n;,,n4,,---n;, > into a single encode node identifiers. We present provenance constnuctio

packetwherey;, € V,1 < j < mand(n;,,n;,,,) € E,1 < mechanisms for both encoding methods, and show how
k < m — 1. This problem is a simple extension of the edgethe two methods can be combined to handle topological
sampling approach in IP traceback [17]. changes.
(2) Provenance Construction On the base station side, A. Node ID Assignment
we must construct the entire provenance ttee (V, E) by )
exploiting partial path information collected from a numbe  FOr @ network of N nodes, we pick a seQp =
of received packets, with an upper bound on the number of¢1,¢2;" -~ 4=} With the smallestz such thatz > N.
packets required to construct the provenance. An in-place rand_omlzed algorithm is used to produce a
(3) Evolution of Provenance After topological changes, @ndom permutation of)p, o(Qp) = {da:; e~ da. }
e.g., due to failures or mobility, we must bound the time tha@"d members ob(Qp) are assigned to alN' nodes se-

it takes to reflect the changes in the constructed provenanc@Uéntially. For example, in an 8-node network, we can
pick IDs for the nodes from a random permutation of

I1l. RELATED WORK Q11 =12,3,4,5,6,7,8,9,10,11}.

A few provenance-based trust frameworks have beemefinition 1. Let P, be the largest prime number that is
proposed to date [12], [13]. These frameworks do not focusess than or equal to the positive integer We define the
on energy-efficiency in wireless sensor networks. We camet of usable IDsQ » whereP is a prime number:
relate the problem of provenance transmission to the IP
traceback problem that determines the forwarding path of @r={n €N |2<n <P and 0 <n—P, <7}

spoofed packets [25]. IP traceback methods include hop-byyefinition 2. The rank of any node: € Qp, denoted
hop tracing [26], [27], out-of-band ICMP traceback [28]dan a5 qnj(n), is the position ofn in the same random
in-band probabilistic packet marking [17], [18]. Hop-bggh permutation ofQp, o(Qp) that was used to generate IDs.

tracing is not well-suited to wireless sensor networks duggrticularly, in an N-node network] < rank(n) < N <
to its large storage requirement. Hot-spot based tracebaquL B -

methods designed for mobile ad-hoc networks [29], [30]



Definition 3. For any positive integen € Q p, for someP,  As before, once a node; decides to start a connected sub-

we define two functions: graph, it overwrites previously stored information by ctea
« prime(n) = The largest prime number that is less than ing the entire provenance buffer. It then insgrtsme(1D;)
or equal ton = P,. into the product part andffse{/D;) into the offset part of

. offsetn) = The difference betweenand P, = n—P,. the buffer (as defined in Definition 3). If a nodg decides
not to overwrite, it retrieves the value stored in the praduc

B. Embedding Provenance with Juxtaposition of Ranks and offset parts. Then, it multiplies the value of the praduc
, , part with prime(ID;), addsoffset/D;) to the offset part,

_In the rank method instead of embedding the node ID 3ng stores the newly calculated values into the respective
directly into a packetyank(ID) (defined in Definition 2) = parts we will later show that, for a given bit budget, we can
of the node is embedded, since every node ID is uniquelyjetermine an upper bound and a lower bound for the number
identifiable using its rank. Here, we use the temaisk and ¢ identities of nodesr) that can be stored in a single

identity interchangeably. Assume that the packet meta'datBacket using this approach. Figure 3 shows an example with
has space to hold identities of up te nodes. We use ,, _ o

a counter oflog, m bits to track the number of already  \we no longer need a counter field to track the number
embedded identities in the packet. Initially, the buffedan 4 node identities encoded in the provenance buffer because
counter contain zeros. Every node decides to start @ here js always a unique prime factorization of greduct

connected sub-graph with its identity probabilify. Once a1t which gives the number of participating nodes.
it decides to do so, it overwrites the previous information

by doing the following: it zeros out the entire provenanceP- Decoding Partial Provenance
field and then incorporates its identity at the beginning of When a packet is received at the base station, the prove-
the buffer and sets the counter to one. If a node decidesance buffer is examined to retrieve the embedded partial
not to overwrite, it checks for empty buffer space using theprovenance (or path) information. With the rank embedding
counter field. If there is space, it adds its identity into theapproach, we can easily extract the embedded identities fro
first available slot in the buffer and increments the counterthe provenance buffer using the length field as each node
Figure 2 shows an example of this method where the buffelD uses a fixed number of bits. With the prime embedding
space can hold at most four node identities in a single packeiethod, we assume that information about ordering among
nodes is known beforehand (as discussed in the next section)

Decision: - Overwrite - Not Overwite  Overwrite - Not Overwiite We apply a standard prime factorization algorithm over the
- - product part of the provenance buffer to retrieve the neares
prime numbers and map to node identities.
5 o1] [se Tro][se  [o1] [o20 J1of Retrieving information from the offset part is a version
Ranks Binary counter of the subset sum problem [34]. If the number of identities

of participating nodes isn, we use a dynamic program-
Figure 2. Probabilistic incorporation of provenance ugindaposition of ming approach to determine possible non-empty subsets
ranks (numbers inscribed in the circles indicea@k of nodes). of {0’ 1,2,3,4,5,6, 7} with cardinality m that sum to the
Decision: Overwrite  Not Overwrite Overwrite  Not Overwrite Oﬁset Value' For every pOSSIlﬁ?lQ SUbset' VYG form partlal
paths of lengthm — 1 by combining the retrieved nearest
- @_@' - prime numbers (sayXi, Xo,---X,,) and the members
s o] B [ 1] o] of the considered sgbset_ (sa%,92,~--om). From prior
knowledge, we also identify partial paths of length— 1
such that the nearest prime numbers of node IDs on the
Figure 3. Probabilistic incorporation of provenance ugimigne multipli- pa_ths are K1, Xo, -+ Xon). T_hen, we consider all p_ossnble
cation (numbers inscribed in the circles indicate 1D of rg)de pairs of newly formed partial paths and the partial paths

considered from the past, and calculate a difference score
C. Embedding Provenance with Prime Multiplication between them using the following formula:

Prime Multiplication OffSet

The rank method is easy to decode, but requires a rela- m
tively large number of bits for provenance data. For example 6= Z(Oi — (ID,, — X3))?
in a 1000-node network, we need a total of 42 bits to transmit i=1
provenance information of four nodes in a single packet. Wevhere< ID,,,ID,,,---ID,, > indicates the partial path
can reduce these bit requirements by using the followingased on previous knowledge. Finally, we determipg,,
prime methodvhich still has a simple decoding process. the lowest difference score over all the possible combina-
To store provenance information, we divide the prove-tions, and record the corresponding partial path inforomati
nance buffer into two partgroductandoffset Every node WhenJ,,;, becomes zero, the recorded information is used.
n; has an ID, say D;, that is a member of) p for someP. Otherwise, topological changes may have occurred in the



network and the previously stored provenance informationiDs instead of one. Thus, the expected number of packets

may not be up-to-date. Further processing is necessary tequired to construct provenance,

determine the provenance, such as checking other combina- 1 I

tions of partial paths by considering nodes that are 1 or 2- E(S) < .

hop away from the nodes on the recorded path, or triggering Mavg P(1=P)

the rank ID embedding approach to recover the order. Thes& value ofp that is less than or equal tp produces a near-

extensions will be the subject of our future work. optimal result (i.e., reduces the number of required pagket
Convergence timé&convergence 1S NOthing but the time

required to receivéZ(S) packets at the base station. If the

With our identity embedding methods, provenance conygnk approach of embedding IDs is used evaryicdding

struction is straightforward once we have decoded partiabeconds, then any topological change will be reflected withi
path information from the received packet. After collegtin ¢, , .. 4 4 ding + Leonvergence SECONAS.

sufficient packets with embedded provenance (i.e., when we
have at least one ID from each node), we combine the Vi
partial paths to produce the complete provenance graph.
However, decoding using the prime approach needs previous We compare our PPF method with two variants of prob-
knowledge about the order of nodes. This can be obtained babilistic packet marking (PPM [17], [18] and PPM with
applying the rank method first. After a configurable period ofNetwork Coding [31], [32]) as they are the closest to
time (generally greater than provenance convergence timeur approach (though they were designed for wired IP
during which the provenance is constructed using the ranketworks). We conduct simulations using TOSSIM [35] for
method, the prime embedding method can be employed. networks with hop counts ranging from 2 to 30, and number
In order to keep node order information up-to-date, node®f nodes ranging from 3 to 50. For energy analysis, we use
utilize the rank approach evemy,,icdding S€CONds. Thus, POWERTOSSIMZ [36] which uses thmicazenergy model.
any topological changes are reflected in the provenancdll experiments are performed using the transmission rate
Based on the frequency of mobility or failures in the of 250 kbps, the default transmission rate of thieazmote,
network, tempedding Can be adjusted. However, a small where every data-generating sensor sends data towards the
value of tempeading Will reduce the benefits of applying base station every 2000 ms (2 s). All results are averaged
the bit-efficient prime embedding method. We are currentlyover 1000 runs.
considering a reactive approach to trigger the rank approac To make the comparison fair, we place the same con-
only when necessary. straint on usable bits (32 bits) for provenance embedding
in a packet for all three approaches. Though the size of
the network can grow arbitrarily, we assume that 1 byte
A. Bit Requirements is enough to represent the maximum hop count. Hence,
Consider a 1000-node network where the maximum numPPM with Network Coding (PPM+NC) requires 14 bits
ber of bits allocated for provenance per packB) (s 32. to accommodate three coefficients and the distance field.
Using the rank approach for embedding IDs, at mast3 ~ The remaining 18 bits can be used to store the linear
ranks of nodes can be encoded into 30 bits and the remainirgPmbinations of node IDs. However, embedding 4 node IDs
2 bits can be used to track the number of encoded nodes. IAto a packet in PPM+NC requires more than 32 bits. Thus,
case of the prime embedding approach, 5 bits can store ttfe maximum number of node IDs carried in a single packet
sum of the offset values of at mast = 4 nodes since offset is 1, 3, and 4 for PPM, PPM+NC, and PPF respectively. The
values vary between 0 and 7. The remaining 27 bits camrobability for embedding a node ID js= 5.
hold prime multiplication of node IDs. In a static network, Figures 4(a) and 4(b) show the number of packets and
careful node ID assignment ensures encoding at least 4 no@@ergy consumption required to construct provenance using
IDs in a single packet. Our simulations show that randomlythe three schemes for increasing numbers of hops. With 1000
assigning node IDs allows encoding 3 or more node IDs irruns, the 95% confidence intervals of these experiments have
most cases. deviations in the range of 0 to 5 from the experimental
averages, which statistically assures the correctnessiof o
experiments. The experimental results reveal that PPF re-
Let the average number of IDs received from a packetuires at least 33% fewer packets and consumes 30% less
bemg., (regardless of the embedding method). Assume thenergy than both PPM-based schemes.
probability p of embedding a sub-graph into the provenance We also integrate PPF with a provenance-based trust
buffer is fixed {;p; = p). With traditional PPM [32], the model to iteratively compute trust scores. Figure 4(c) show
time for convergence is constrained by the time until the IDthat the trust score calculated using PPF evolves correctly
of the farthest node is received at the base station which iss soon as the entire provenance is constructed at the base
W- In our method, we are receiving.,,, unique station. PPF accuracy in trust score calculation is sintdar

L—-1

E. Construction and Evolution of Provenance

. PERFORMANCEANALYSIS

V. PRACTICAL CONSIDERATIONS

B. Convergence Time and Topological Change



1 T

= 1.4e+06 4 Traditional Trust Model—— ‘
] 2 P Trust Model with PPF——x-—
§%) ~ 1.2e+06 1 b
] s
X =
S B < 1e+06 1 o
o £ 3 -
5 ] Z 800000 , @
5 S 3
o o 600000 4 2 04f 1
: 1 % g
Z 2 400000 4
] c 0.2 B
% 200000 —
o ol 0 . . . . .
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 10 20 30 40 50
Number of hops Number of hops Number of iterations
(a) Number of packets (b) Aggregate energy consumption (in.J) (c) Change of trust scores in a 10-hop network

Figure 4. Provenance construction for different hop coamts change of trust scores for different iterations.

the traditional approach that includes every node ID on the[i2

forwarding path in the provenance. [13]

VII. CONCLUSIONS

We have presented an energy-efficient provenance trans*4
mission and construction approach for large-scale moilti-h
wireless sensor networks, based on the idea of probabilisti *°/
incorporation of node identities. We adapt the probabilis-
tic packet marking (PPM) approach for IP traceback, and
propose two complementary provenance encoding methods
with a space constraint on the size of provenance data in thé&”!
packet. Further, we present efficient provenance congruct [1g]
schemes for the two encoding methods, and combine them tog
deal with topological changes in the network. In contrast to
PPM, our proposed approach requires fewer packets to CONgy,
struct network-wide provenance, and significantly reduces
the aggregate energy consumption of the network. Most?!
importantly, integration of our scheme with a provenance-
based trust model on the TinyOS emulator TOSSIM reveals
no degradation in accuracy of trust score calculation. As[23]
future work, we plan to design a reactive approach that will
accurately reflect topological changes. We will also study [24]
how well a complete trust framework can detect and react?®
to various attack and failure scenarios. [26]

[16]
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