
An Empirical Case for Container-driven Fine-grained
VNF Resource Flexing

Amit Sheoran∗, Xiangyu Bu∗, Lianjie Cao∗, Puneet Sharma†, Sonia Fahmy∗
∗Purdue University †Hewlett Packard Labs

e-mail: {asheoran, xb, cao62}@purdue.edu, puneet.sharma@hpe.com, fahmy@purdue.edu

Abstract—In this paper, we make a case for using lightweight
containers for fine-grained resource flexing for Virtualized Net-
work Functions (VNFs) to meet the demands of varying work-
loads. We quantitatively compare the VNF performance and
infrastructure resource usage of three instantiations (bare metal,
virtual machine, and container) of three selected VNFs. The three
VNFs we experiment with are the Mobility Management Entity
(MME) of the Evolved packet core (EPC) architecture for cellular
networks, the Suricata multi-threaded Intrusion Detection System
(IDS), and the Snort single-threaded IDS. Our results show
that container-based instantiations not only incur lower resource
usage but also have shorter boot time. This makes containers
an attractive choice for fine-grained VNF resource flexing. The
lessons learned from our empirical case studies with EPC and
IDS provide important guidelines for building an elastic micro-
service architecture for NFV deployments.

I. INTRODUCTION

Communication Service Providers (CSPs) are increasingly
adopting Network Functions Virtualization (NFV) in their
infrastructure. Two primary factors driving NFV adoption are
efficient resource usage, and agility in terms of elastic resource
allocation [1]. However, CSPs face key challenges in this NFV
transformation [2]. While virtualization allows service and
resource allocation agility, virtualization of network functions
needs to be implemented with minimal overhead for efficient
resource usage. Virtual machines (VMs) and containers are
the two most widely deployed virtualization mechanisms in
the cloud. Containers such as LXC [3] and Docker [4] are
becoming popular for tenant and application isolation in cloud
ecosystems. Compared to VMs, containers exhibit lower over-
head and higher performance.

In this paper, we compare the performance and resource
usage of three Virtualized Network Functions (VNFs) with
bare metal (BM), container, and Virtual Machine (VM) in-
stantiations, at a variety of load levels and resource allocation
configurations. The three VNFs we benchmark are: (1) The
Mobility Management Entity (MME) of the Evolved packet
core (EPC) architecture for cellular networks, (2) the Suricata
multi-threaded Intrusion Detection System (IDS), and (3) the
Snort single-threaded IDS. To the best of our knowledge, ours
is the first extensive empirical study that compares resource
usage efficiency and elastic resource flexing of VMs and
containers for VNF deployment.

We demonstrate that container-based deployments incur
significantly lower overhead than VM-based deployments, and
reduce the system initialization time. This makes containers
an ideal choice for systems where booting delays directly

affect how quickly additional resources can be allocated to
VNFs (agility), and higher elasticity is desired to reduce
the overall operational cost. We experiment with deploying
multiple instances on the same hardware platform, and find
that such an elastic deployment model provides high resource
utilization without the need for re-architecting sub-optimal
VNF implementations such as single-threaded applications.

Thus, the contribution of this paper is threefold:

1) We benchmark the performance of the Mobility Manage-
ment Entity, Suricata, and Snort VNFs on bare metal,
containers and VMs under varying workloads and with
different numbers of instances.

2) We analyze the time required by the VNFs to start on
VMs and containers.

3) Based on our results, we make several recommendations
for resource flexing of VNFs, including VNFs based on
legacy single-threaded software.

II. VIRTUAL NETWORK FUNCTIONS

We consider two types of VNFs for our empirical study:
(1) an evolved packet core (EPC) control plane VNF, MME,
and (2) two IDS VNFs (Snort and Suricata).

The selection of these VNFs is based upon the following
criteria: (1) Plane of operation: An MME is primarily a
control plane element. Typical control plane elements are CPU-
intensive and do not stress the data plane of the network.
An IDS, in contrast, is a data plane entity that monitors
all incoming packets in the network and thus is network-
intensive. (2) Software architecture: Snort is single-threaded,
and can only utilize a single CPU core. MME and Suricata
are multi-threaded systems. Due to implementation choices,
MME only saturates two CPU cores at peak capacity whereas
Suricata can scale to utilize all available CPU cores. (3)
Network positioning: MME is a stateful transactional element
that communicates with other EPC elements to handle user
requests. IDSes are typically deployed as stand-alone middle-
boxes, and do not depend on message exchange with other
elements. The results allow us to gain insight into the impact
of virtualization techniques on VNFs with different system
design and requirements.

A. EPC Control Plane

We give a brief introduction to the EPC network and its
role in managing the User equipment (UEs) [5]. The basic

This work has been sponsored in part by NSF grant CNS-1319924.978-1-5090-0933-6/16/$31.00 c© 2016 IEEE

LTE architecture is shown in Fig. 1. An LTE network consists
of a Radio access network (RAN) and Evolved packet core
(EPC). The RAN comprises the eNodeB, which provides radio
connectivity to the users. The EPC network consists of the
MME, Home Subscriber Server (HSS), Serving Gateway (S-
GW) and Packet Data Network Gateway (P-GW). The MME
and HSS are control plane entities responsible for signaling,
mobility, and security functions for UEs attaching over the
RAN. S-GW and P-GW are data path entities responsible for
data transfer to and from the UEs.

Fig. 1: LTE network architecture [6].

B. Intrusion Detection Systems

Suricata http://suricata-ids.org/ and Snort https://www.
snort.org are popular intrusion detection systems. The reason
we use both is that Snort is single-threaded whereas Suricata is
multi-threaded. This difference allows us to evaluate the impact
of the implementation on total system throughput when NFV
orchestration systems scale-out by creating additional instances
of the same VNF.

III. EXPERIMENTAL SETUP

We conduct our experiments on a server cluster in which
each server has the following hardware configuration: CPU
Intel Xeon X3430 @ 2.40 GHz; Nehalem; EIST disabled;
HT not supported, RAM 2 x 2GB DDR3-1333 and NIC 2
x Broadcom 1 Gbps.

In each experiment, a sender host runs a traffic generator
and a receiver host runs our VNF. The traffic generator runs
directly on the hardware while the receiver uses one of the
following three setups: (1) Bare metal (BM): The MME/IDS
run on the native hardware and read incoming data directly
from the NIC. (2) Virtual Machine (VM): The VNF is
deployed in a guest VM created using QEMU/KVM [7] and a
Linux bridge is used to connect the VMs to external hosts. We
select KVM as a representative hypervisor for our experiments
as KVM-based VMs incur lower overhead while handling CPU
and network intensive workloads [8] compared to other popular
hypervisors like Xen. (3) Container (Docker): The VNF runs
in a Docker container and a Linux bridge is used for external
connectivity. Unless otherwise noted, the memory limit is set
to 2 GB for VMs and containers.

The VM and Docker setups closely resemble their bare
metal counterparts. They run the same version of operating
system, compiler and VNFs and use the same configuration
files and rule sets. Our experiments also include setups where
multiple instances of the same VNF are deployed within
one physical host; in such cases, the hardware resources are

proportionally divided among the VNF instances and a Linux
bridge is used to direct traffic to the correct instance.

In the EPC experiments, the MME, S-GW and P-GW
nodes use one of the setups discussed above, whereas the HSS
and eNodeB emulator are hosted on two physical machines
connected via a switch (Fig. 2). We use Ubuntu 14.04.4 64-bit
LTS (kernel version 3.19.3-031903-generic) with the following
software: gcc 4.8.4, docker 1.11.0, libvirt 1.2.2, and qemu
2.0.0.

Fig. 2: Setup for EPC tests.

In the IDS experiments, the sender generates test traffic
by replaying trace files using multiple instances of TCPreplay
(Fig. 3). The IDS receiver host runs Ubuntu 15.10 64-bit
with the following software: gcc 5.2.1, docker 1.11.0, libvirt
1.2.16, and qemu 2.3. The sender host uses tcpreplay 4.1.1
to generate load. We use suricata 3.0.1 or snort 2.9.8.2 with
EmergingThreat Rules 20160414. Unless otherwise noted,
all 4 CPU cores are accessible, and VT-d is enabled.

Fig. 3: Setup for IDS tests.

In addition to the setups described earlier, the IDS ex-
periments study performance with the following virtualized
networking technologies: (1) Docker with host NIC: In this
case, the host NIC is directly (exposed to the IDS process in
the container instances. (2) macvtap: Instead of exposing the
host NICs to containers, we create a macvtap device to direct
traffic to the IDS process. We use “DockerV” to refer to this
setup. We experimented with different means of forwarding
traffic, including bridging and Virtual Ethernet Port Aggregator
(VEPA), and found that macvtap of mode “passthrough” and
model “virtio” incurs the lowest overhead. This is consistent
with the findings of Anderson et al [9] for macvlan.

IV. EPC EXPERIMENTS

A. Methodology

We use openair-cn [10] to benchmark the EPC control
plane. Openair-cn is a 3GPP-compliant implementation of EPC
components that can be executed on general purpose hardware.
Our test setup includes an MME node connected to the HSS
and a client emulator framework based on the “openairinterface

oaisim” [11] application. The MME is co-located with the
S-GW, and all communication between them is handled via
internal queues. The client emulator connects to the MME
over the S1 interface, and generates attach requests emulating
multiple UEs at a constant rate per second.

The eNodeB emulator is used to generate registration
requests which result in the exchange of several control plane
messages between eNodeB, MME, HSS and the S-GW. During
the experiments, we measure the time taken by the MME to
successfully process UE registration requests. The experiments
are run multiple times to obtain at least 20 samples, and the
average time over all samples is used.

The emulator generates registration requests at a constant
rate of 400 registration requests per second and the total time
taken by MME to respond to a total of 4000, 6000 and 8000
registration requests is measured. We measure the performance
of the system with 1, 2 and 4 CPU cores enabled. Since the
MME implementation handles most of the processing in a
single thread, enabling multiple cores allows us to analyze the
scale-out capability of the VM and container deployments.

B. Results

We analyze the time taken by each setup to handle the
registration requests. The results in Fig. 4 show that VMs incur
significantly higher overhead than the bare metal setup and
Docker containers. The VM can result in 10-22% overhead,
whereas the overhead of Docker is 0-3%. The traffic generation
rate for these experiments is 400 registrations/second. It takes
10, 15 and 20 seconds to generate the required 4000, 6000
and 8000 requests, respectively. We note that time taken by
the MME to handle these sessions increases as the number of
concurrent sessions handled increases. More sessions timeout
when the system load is higher.

Fig. 4: Time taken to handle registration requests.

Since MME is a transaction-based system and stores all the
active sessions in memory, the maintenance overhead increases
with number of active sessions. This includes the indexing
time required to fetch and store session-related data in the
internal data structures, and timers maintained to handle events
like timeout and heartbeats. The current implementation of
MME uses a hash-based indexing mechanism to store the
UE information. The likelihood of collisions and chaining
increases when the number of active sessions being handled
by an instance increases.

As noted earlier, the MME is co-located with the S-GW
and P-GW. Consequently, when only a single CPU core is

available, performance of the system is constrained by the
available processing power. When two cores are available to
the system, performance of the MME significantly increases
because the processing thread uses one of the CPU cores,
and other features can use the second core. However, this
performance benefit is not observed when four cores are
available, confirming that the system is single-threaded. This
implementation limits the ability of the MME to utilize all
available cores in the system as only a single instance of the
application can be instantiated.

C. MME Performance Evaluation with Scale-out

A key advantages of virtualization is the ability to deploy
multiple instances of the VNF on the same physical machine.
While VMs emulate virtual hardware on the guest OS using
hypervisors, containers leverage operating system-level isola-
tion using Linux kernel features like cgroups and namespace.
Having determined the inability of the MME to utilize all
available CPU cores, we now investigate deploying multiple
MME instances on the same host. This technique, commonly
referred to as scale-out, is used in data center environments
and enables CSPs to exercise fine-grained resource flexing to
meet requirements on-demand.

In this test setup, we use two MME instances that share
available resources. Both instances are configured at the eN-
odeB, and the emulator sends the request to each instance in a
round-robin fashion. We generate the same number of registra-
tion requests as the earlier setup, but the number of registration
requests handled by each instance is halved. Consequently,
the number of active sessions handled by each instance is
reduced to 2000, 3000 and 4000. We also double the request
generation rate from the client to 800 registrations/second,
so that each MME instance receives the requests at 400
registrations/second. To establish a baseline, we first show the
results when a single MME instance handles traffic at the rate
of 800 registrations/second on a bare metal machine. These
results are presented in Fig. 5. We find that increasing the
traffic generation rate does not have a significant impact on
performance. This is because the bottleneck when using a
single instance of the system is the MME application thread
and not the transport receive thread.

Fig. 5: Time taken to handle registration requests when varying
the request rate.

Fig. 6 shows that the time taken to handle the registration
requests is considerably reduced when traffic is split across
two instances with similar processing resources. Additionally,

Fig. 6: Time taken to handle registration requests by bare metal
and two instances of VMs or containers.

as the number of CPU cores increase from 2 to 4, we find
that the time taken by the MME to handle registration re-
quests decreases which indicates better utilization of available
processing resources, compared to the case when only a
single MME instance was used. While these results reflect
the behavior of our MME implementation and may not be
directly applicable to other commercial deployments, they can
be used to infer the benefits of a micro-services architecture
in transaction-based systems.

D. Instantiation Time

In cases when on-demand virtual instances are created to
meet network demand, it should be possible to provision a
new instance of the MME without incurring significant delay.
The MME boot time is the time taken to initialize internal
data structures, create transport connections and establish the
diameter application-level connection.

TABLE I: Comparison of activation time.

Metric Bare Metal Docker VM
Time(s) 4.77 4.81 12.01

As shown in Table I, the time taken by the Docker container
to start is much closer to the time taken by bare metal, whereas
the time taken by the VM is considerably higher, due to the
overhead involved in loading and booting the guest-OS kernel
and hypervisor.

V. SURICATA EXPERIMENTS

A. Methodology

We benchmark Suricata based on statistics it reports and
resource usage of the entire host machine. The reason why
we examine resource usage of the entire system is that both
Docker and QEMU have overhead not reported by their APIs.
For example, Docker’s stat API only reports resource usage
inside the container and excludes Docker itself. The CPU and
RAM overhead of forwarding traffic is not included in the
Suricata, Docker, or QEMU processes. Therefore, comparing
resource usage of the entire system is more comprehensive.
Trace Files: We use two trace files: (1) bigFlows.pcap
provided by TCPreplay. According to the TCPreplay site, it
captures “real network traffic on a busy private network’s
access point to the Internet” and contains 40686 flows and 132

network protocols [12]. It sends 359,457 KB of data in 791,615
packets in 5 minutes, and (2) snort.log.1425823194 –
one of the ISTS ’12 trace files [13]. It generates 155,823 KB of
data in 22 seconds. Increasing Load: To increase load, more
TCPreplay processes may run in parallel. We will use “load
level” to denote how many concurrent processes are used. For
example, “4X load” means that a test has four TCPreplay
processes concurrently replaying the trace file. Aggregating
the Results: We run each test configuration at least 30 times
and take the median of the samples to generate a representation
of the test. Before generating a sample, the receiver host
is rebooted to restore system state back to the original. We
measure host memory and CPU usage, and the number of
packets captured, analyzed (decoded), and dropped by the IDS.
We do not examine the number of alerts triggered because it
is highly affected by the packet drops.

B. Results

We first analyze resource usage by comparing memory and
CPU utilization of the Suricata host running different setups at
various load levels, then compare the performance of Suricata
in different setups.

1) Memory Usage: Our results indicate that the memory
overhead of Docker is trivial compared to bare metal, whereas
the VM setup consumes substantially more memory. Table II
shows the memory usage (average and standard deviation σ) of
Suricata in VM, Docker and bare metal setups at 1X workload.
Docker has a small memory footprint since the host and
Docker container have shared libraries of the same version,
eliminating the need to load more libraries. Although the VM
runs the same software setup, a full-fledged guest operating
system must be maintained, which results in high memory
overhead.

TABLE II: Memory usage of Suricata at 1X workload.

Metric Bare Metal Docker DockerV VM
Average 9.85 10.20 10.22 23.83

σ 0.33 0.33 0.34 2.29

We also tested Docker, DockerV, and VM with 4X
bigFlows.pcap and a smaller 512 MB memory limit.
While the first two worked without problems, memory thrash-
ing occurred with the Suricata VM before CPU became the
bottleneck.

2) CPU Usage: Table III shows the CPU usage of Suricata
with Docker, VM and bare metal with 1X workload. Docker
does not impose significant CPU overhead, while the CPU
usage of the VM setup is considerably higher.

TABLE III: CPU usage of Suricata at 1X workload.

Metric Bare Metal Docker DockerV VM
Average 19.65 20.92 21.81 269.39

σ 4.61 4.66 4.90 49.66

Comparing Table III to Table IV, we find that the CPU
usage of the bare metal, Docker and DockerV setups multiplies
corresponding to load level, but the VM setup saturates the
CPU at 2X workload. This results in the CPU becoming a
bottleneck at workloads greater than 2X. We also observe that

TABLE IV: CPU usage of Suricata at 2X workload.

Metric Bare Metal Docker DockerV VM
Average 40.75 42.11 44.00 399.90

σ 9.87 9.90 10.44 0.70

the Docker setup incurs an overhead of 1% to 4% depending
upon the load level. There is a roughly 0% to 5% increase
in CPU usage associated with macvtap depending on traffic
throughput.

3) Packets Received: At all four load levels we use, packet
capture is about the same, but the VM setup tends to receive
fewer packets. After the TCPreplay ends, we send a SIGTERM
signal to Suricata and wait for it to exit gracefully. In the VM
setup, there are likely packets yet to capture when exiting,
resulting in the discrepancy observed.

Fig. 7: Cumulative packets decoded and dropped by Suricata
in four setups at all loads.

4) Packets Dropped: Dropping packets is a sign that Suri-
cata cannot process the workload with the resource constraints
imposed. As seen from Fig. 7, only the VM setup exhibits
packet drop starting at 2X load, and almost all increased load
above 2X is dropped. This result is consistent with the CPU
usage in Table IV. CPU is nearly saturated by Suricata at 2X
load level and therefore almost all additional traffic generated
at 4X load is dropped.

5) Packets Decoded: From Fig. 7, we find that the Docker
and DockerV setups are on par with bare metal in terms
of rate of packet analysis (decoding). However, only at 1X
load (where CPU has not become a bottleneck), is the rate of
packet decoding in the VM setup comparable to bare metal,
and the rate decreases as load increases, which reveals severe
performance degradation.

C. Results with the Higher Rate Trace

The trace file snort.log.1425823194 requires the
receiver host to use more CPU to handle the high-throughput
traffic. Similar results were observed, but we saw bare metal
saturated at 4X load. At 4X load, Suricata drops 67,126 packets
with bare metal, 67,064 packets with Docker, 81,282 packets
with Docker with macvtap, and 282,453 packets with VM. In
fact, Suricata on VM runs so slowly that even the kernel drops
205,095 packets to reclaim buffer space before Suricata is able
to read them. This confirms that (1) Docker has comparable
performance with bare metal, (2) the overhead of macvtap can
be nontrivial, and (3) the VM setup is the slowest.

D. Root Cause Analysis for VM Results

To determine the reason for the observed performance
degradation, we profiled Suricata running on bare metal and
on VM. The culprit we found is the frequently called function
‘UtilCpuGetTicks()’ which flushes the instruction pipeline and
reads the x86 Timestamp Counter (TSC). The x86 instruction
‘rdtsc’ may cause VM exit [14], and by checking the msr
register we verified that it indeed causes VM exit in our VM
setup. This makes the instruction expensive in the VM, and
results in a massive performance penalty. To further isolate
the cause, we ran this sole function 100 million times on bare
metal and on VM, and it takes 6.6 seconds (on average) to
finish on bare metal, but 126.1 seconds on VM.

VI. SNORT EXPERIMENTS

For the Snort experiments, we use the same setup as
Suricata except that Suricata is replaced by Snort. Again, we
ran each test configuration at least 30 times, and used the
median of each metric. We discuss the outcome at 4X load
with bigFlows.pcap.

Snort exports statistics only on exit. Although a stop signal
was sent to the Snort process 20 seconds after TCPreplay
finished, Snort did not stop immediately after receiving the
signal.

Fig. 8: Cumulative packets decoded and dropped by Snort in
four setups at all loads.

Fig. 8 confirms that Snort works best on bare metal,
followed by Docker. Surprisingly, DockerV and VM give
similar results. There are two factors to take into account: (1)
Snort ran slightly longer after receiving the exit signal, and
(2) the total number of packets to receive is supposed to be
3,166,460, i.e., as with Suricata on VM at 4X load, Snort on
VM failed to capture all packets. Although Snort is single-
threaded, the VM overhead caused the VM setup to use more
than 100% CPU combined (Table V).

TABLE V: CPU usage of Snort at 4X workload.

Metric Bare Metal Docker DockerV VM
Average 73.62 75.17 79.42 137.23

σ 13.28 13.80 14.02 18.48

In terms of memory usage, the VM setup uses more than
twice the memory of the Docker setup. The Docker and
DockerV setups use slightly more RAM (∼1%, or ∼40 MB)
than that of bare metal (Table VI).

TABLE VI: Memory usage of Snort at 4X workload.

Metric Bare Metal Docker DockerV VM
Average 12.84 13.25 13.26 27.45

σ 0.40 0.32 0.33 0.36

VII. SURICATA AND SNORT WITH MULTIPLE INSTANCES

We now investigate multiple instances of Suricata or Snort
that are deployed on the same host. Based on our findings
from previous experiments, we know that Snort does not
effectively utilize all available CPU cores due to its single-
threaded design. While this design limits its scalability on bare
metal, we can deploy multiple instances of containers and VMs
to utilize available CPU cores more effectively.

Since both Snort and Suricata bare metal setups handle the
4X workload without significant packet drops, we use 4X and
8X workloads to evaluate scalability with multiple instances.
The values presented in this section represent the median value
of at least five runs of each experiment.

In Fig. 9 and 10, CN indicates a Docker setup with a
Linux bridge, and VM indicates a VM setup with a Linux
bridge. In case of multiple instances of containers or VMs, the
value presented is the sum of the number of packets processed
by each instance independently: 2-CN and 4-CN indicate
the number of packets processed by two and four container
instances, respectively, and 2-VM indicates the number of
packets processed by the two VM instances collectively.

Fig. 9: Performance of Snort with multiple VM and container
instances.

Fig. 9 shows that the performance of Snort significantly
increases when the incoming traffic is split among multiple
instances. The performance difference is more pronounced at
8X workload as a single Snort instance is unable to handle the
incoming traffic. We find that the number of packets dropped
significantly decreases when two container instances are de-
ployed and continues to decrease with four instances. This
behavior is consistent with our earlier finding when multiple
instances of MME were deployed on the same host. Further, we
note that while two VM instances provide significantly higher
performance compared to a single instance of VM and bare
metal, the performance benefit is not on par with a multiple
container deployment.

As noted above, Suricata is multi-threaded and is capable of
utilizing all available CPU cores even with a single instance

deployment. Table IV had shown that Suricata saturates the
available CPU cores at 2X traffic when deployed as a single
instance. From Fig. 10, we find that there is no observable
performance difference between the single and multiple in-
stance deployments. While we observe some performance gain
(∼1%) in the VM setup when two VM instances are deployed,
we find that the factor limiting system performance is the
available CPU which cannot be circumvented by deploying
multiple instances.

Fig. 10: Performance of Suricata with multiple VM and
container instances.

The observations from the EPC and Snort experiments
validate the efficacy of a container-based micro-service archi-
tecture for legacy software that is constrained from achieving
scalability on modern hardware platforms.

VIII. PERFORMANCE IMPACT OF VT-D AND VFIO

Virtualization techniques like Intel’s Virtualization Tech-
nology for Directed I/O (VT-d) and VFIO passthrough aim to
bridge the performance gap between bare metal and VMs via
a hardware assist to virtualized software [15]. In this section,
we study the impact of these technologies on the performance
of the MME and IDSes.

Fig. 11 shows the time taken by the MME to handle
registration requests with VT-d and VFIO enabled. VT-d
indicates the setup when VT-d is enabled, and PS indicates the
setup when both VT-d and VFIO passthrough are enabled. In
case of PS, one NIC is dedicated to the MME VM instance.
We see that VT-d results in up to 4-7% performance gain.
Furthermore, enabling both VT-d and VFIO passthrough yields
a performance gain of 5-12%, compared to a basic VM setup.

IX. RELATED WORK

Network Function Virtualization [1] has gained significant
momentum over the past few years. Gember et al [16] in-
vestigated application deployment in the cloud from various
perspectives, including elasticity, network flow distribution,
and virtual machine placement. The use of NFV in the domains
we study (EPC and IDS) has also been investigated. Banerjee
et al [17] discussed how NFV can help scale EPC systems.
Elasticity in intrusion detection systems has been investigated
in [18], [19]. None of the above studies specifically compares
containers to virtual machines.

More recently, the use of containers has been studied by
Anderson et al [9] and Kamarainen et al [20]. Anderson et

Fig. 11: Time taken by MME to handle registration requests
with bare metal and VM with VT-d and VFIO passthrough.

al [9] examined the impact of network technologies like ovs,
bridging and macvlan on the throughput of Docker containers.
While we use some of these techniques in our experiments,
our work focuses on EPC and IDS functions. Kamarainen
et al [20] explored the impact of virtualization techniques
on cloud gaming systems. Their study examines the impact
of virtualization on video encoding and hardware resource
sharing and does not consider transaction-based systems and
network-layer entities as we do.

X. CASE AND CONSIDERATIONS FOR CONTAINER VNFS

Our results validate that NFV deployments can benefit
significantly from the use of containers, similar to the widely
adopted use of containers for cloud workloads. Nevertheless,
VNF developers and CSP administrators must be careful with
performance isolation and available support for containers in
NFV software ecosystems.

[Resource usage efficiency] Containerized instantiations
of both control-plane (MME) as well as data-plane (Snort and
Suricata) VNFs consumed less CPU and memory resources
compared to traditional VM-based deployments. MME con-
tainer instances had 3% CPU overhead over bare metal com-
pared to the 22% overhead incurred by VM instances. Similar
CPU usage efficiency was observed in case of IDS VNFs. This
is because, with VMs, a full-fledged guest operating system
introduces significant memory overhead.

[Resource flexing granularity] The smaller resource usage
footprint of containers allows finer granularity resource flexing.
There is still, however, a non-zero instantiation overhead
for each instance. Fine-grained resource flexing may lead to
sudden VNF overload in the event of flash workload bursts.
Though VMs incur high instantiation overhead, they provide
additional slack to tackle sudden workload bursts.

[Decomposition and micro-services] The smaller foot-
print of containers makes them an ideal choice for decom-
posing monolithic VNF implementations. As we showed in
our experiments, different threads of a VNF implementation
may get loaded differently depending on the offered workload.
VNF developers can leverage containers for creating micro-
services that can be scaled-out individually to meet varying
demands. High VM instantiation overheads make them an
unlikely choice for micro-services.

[Poor implementations and lack of thread support]
Our experiments highlighted the need for well-architected and
well-implemented VNFs. For instance, significant performance

degradation was observed in the VM instantiation of Suricata
3.0.1. VNF developers should carefully profile and compare
performance of their routines (e.g., ‘UtilCpuGetTicks()’ in
Suricata) on bare metal, containers, or VMs. We have demon-
strated a container-based design for creating multiple instances
of poorly threaded (single-threaded or monolithic) VNF imple-
mentations. Such multi-instance deployments can significantly
improve the overall system capacity and performance. This
was particularly evident in case of IDS VNFs that need high
data-plane throughput.

REFERENCES

[1] “ETSI Network Functions Virtualisation (NFV) Architectural Frame-
work,” http://www.etsi.org/deliver/etsi gs/NFV/001 099/002/01.02.01
60/gs NFV002v010201p.pdf.

[2] L. Cao, P. Sharma, S. Fahmy, and V. Saxena, “NFV-VITAL: A frame-
work for characterizing the performance of virtual network functions,”
in Proceedings of IEEE NFV-SDN, 2015, p. 7.

[3] “Linux containers: Lxc,” https://linuxcontainers.org/.
[4] “Docker: An open platform for distributed applications for developers

and sysadmins,” https://www.docker.com/.
[5] “3rd generation partnership project, general packet radio service (gprs)

enhancements for evolved universal terrestrial radio access network (e-
utran) access,” http://www.3gpp.org/ftp/Specs/html-info/23401.htm.

[6] M. Olsson, S. Sultana, S. Rommer, L. Frid, and C. Mulligan, SAE and
the Evolved Packet Core: Driving the Mobile Broadband Revolution.
Academic Press, 2009.

[7] “Kernel virtual machine,” http://www.linux-kvm.org/page/Main Page/.
[8] J. Hwang, S. Zeng, F. y. Wu, and T. Wood, “A component-based

performance comparison of four hypervisors,” in IFIP/IEEE IM 2013.
[9] J. Anderson, H. Hu, U. Agarwal, C. Lowery, H. Li, and A. Apon,

“Performance considerations of network functions virtualization using
containers,” in Proc. of ICNC, 2016.

[10] “openair-cn: An implementation of the evolved packet core network,”
https://gitlab.eurecom.fr/oai/openair-cn/.

[11] “Openairinterface,” https://gitlab.eurecom.fr/oai/openairinterface5g/.
[12] “Sample captures - tcpreplay,” http://tcpreplay.appneta.com/wiki/

captures.html.
[13] “Pcap files from the the information security talent search (ists),” http:

//www.netresec.com/?page=ISTS.
[14] Intel, “Intel 64 and ia-32 architectures software developer’s manual,

volume 3b: System programming guide, part 2,” pp. 21–13, 2011.
[15] “Enabling intel virtualization technologyfea-

tures and benefits,” http://www.intel.com/content/
dam/www/public/us/en/documents/white-papers/
virtualization-enabling-intel-virtualization-technology-features-and-benefits-paper.
pdf.

[16] A. Gember, R. Grandl, A. Anand, T. Benson, and A. Akella, “Stratos:
Virtual middleboxes as first-class entities,” University of Wisconsin-
Madison, Tech. Rep., 2012, technical report TR1771.

[17] A. Banerjee, R. Mahindra, K. Sundaresan, S. Kasera, J. Van der Merwe,
and S. Rangarajan, “Scaling the LTE control-plane for future mobile
access,” in Proceedings of CoNEXT, December 2015.

[18] P. K. Shanmugam, N. D. Subramanyam, J. Breen, C. Roach, and J. V.
der Merwe, “DEIDtect: Towards distributed elastic intrusion detection,”
in Proceedings of DCC, 2014.

[19] V. Heorhiadi, M. K. Reiter, and V. Sekar, “New opportunities for load
balancing in network-wide intrusion detection systems,” in Proceedings
of CoNEXT, 2012.

[20] T. Kamarainen, Y. Shan, M. Siekkinen, and A. Yla-Jaaski, “Virtual ma-
chines vs. containers in cloud gaming systems,” in Proc. of NetGames,
Dec 2015, pp. 1–6.

