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Abstract—The central paradigm of today’s successful Internet is to keep
the network core simple and move complexity towards the network end
points. Unfortunately, this very paradigm limits network management and
control capabilities, and creates opportunities for attacks such as worms,
viruses, and spam that often seriously disrupt and degrade Internet and
user performance. The thrust of this paper is that such problems cannot be
effectively solved unless a paradigm shift is adopted. Towards a more se-
cure and manageable Internet, we propose “virtualization” of the Internet,
by carefully balancing its scalability and programmability properties. Our
objective is to provide a programmable virtual Internet to users and to let
them manage, control, and optimize it based on their individual needs.

I. INTRODUCTION

The 20th century Internet was based on keeping the network
core simple, and pushing complexity to the hosts at the network
edge. This was in clear contrast with the telecommunications
paradigm in which the network core was complex (e.g., con-
sider AT&T telephone switch software with millions of lines of
code). Given the heterogeneity, volume, pervasiveness, and au-
tonomy of 21st century Internet communications, a paradigm
shift must balance these two extreme approaches: the core must
support more sophisticated functionality than simply forwarding
packets while remaining scalable. The current architecture in
which network nodes perform the functions defined by the first
three layers of the OSI architecture is insufficient for addressing
the new applications enabled by advances in micro-electronics
(pervasive, heterogeneous devices with wireless links, powerful
servers) and optics (Terabit bandwidths).

An important paradigm shift to address these requirements is
the virtualization of the Internet, providing a programmable vir-
tual Internet per user and letting the user manage it (in a simi-
lar spirit to IBM VM). Current (limited) virtualization examples
include overlay networks, virtual private networks, the mbone,
and peer-to-peer networks. One common theme in these exam-
ples is the need to enhance the networking and computing ca-
pabilities of the current TCP/IP-based Internet. Therefore, we
propose to extend virtualization to Internet users to enable them
to create, use, and manage their own 21st century Internet.

Consider the following two security-related examples. In a
standard firewall system, firewall filtering is performed at the
application layer at a network end point. Clearly, a dropped
packet has already wasted network resources and competed with
other traffic to reach the firewall, only to be dropped. Similarly,
spam filtering is performed at the client application layer, after
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the spam packets have already wasted network resources (spam
accounts for 60% of Internet traffic by some accounts). Our
proposed paradigm would allow a user to create, use, and man-
age virtual firewalls that are close to the origin of the packets.
Virtual firewalls would require programmability at remote net-
work entities that are owned and controlled by other enterprises.
For example, a virtual firewall capability can be supported by
a router enhanced by a Vfirewall() daemon, which is sim-
ply a process that monitors a predefined port. It may receive
requests from users all over the network to maintain a virtual
firewall. User requests may come in the form of executable pro-
grams that carry proofs of correctness. Similarly, virtualization
can enable a user to define his/her own spam filter, and transfer
an executable program with its proof to an edge router that is
near the origin of the spam traffic. The proof must not only en-
sure that the program is executed on behalf of a legitimate and
authorized user, but also that it does only what it is specified to
do (i.e., spam filtering for that particular host in this example).

In both examples, virtualization distributes some of the func-
tions at the client side to the source or server side by delegat-
ing these functions to edge routers. A natural outcome of this
paradigm shift is the service agreement made between the client
and the edge router at the server side. As a result, a remote
edge router may charge a fee for maintaining a virtual firewall
or spam filtering for a client, and thus can be held accountable.

Executing end-user programs at network entities must be both
secure and scalable. Central to this approach towards pro-
grammability, therefore, is the development of verification tech-
nology. Within this technology, a programmable router states
a safety policy that each individual program must conform to.
Intuitively, the safety policy is a contract between the end user
(also referred as the client) and the programmable router (also
referred as the server) that specifies certain security and scala-
bility constraints. Each client program must conform to these
security and scalability constraints. We address the scalability
problem that arises when multiple clients may program a server
by limiting programmability. Programmability is also inherently
constrained in our model as we allow only the edge routers to be
programmed.

The primary challenge discussed in this paper is the devel-
opment of technology that will verify that each client program
conforms to the safety policy. We propose to utilize proof carry-
ing code (PCC) [15], [32], [31] which has important advantages
over related verification techniques (e.g., static analysis, model
checking, interpretation). With PCC, the client program to be
executed comes with a proof generated by the client, and the
server need only check this proof. Thus, the majority of work
on verification lies with the code-producing client rather than
with the server, which is important to ensure scalability at the



router. We need to advance the current state in PCC—especially
with respect to scalability—by building and exploiting a library
of proofs of general lemmas, thereby permitting relatively com-
pact proofs to be constructed and transmitted along with new
code being delivered to network nodes. The following key re-
search problems are discussed in this paper:
• Programmability. The first major research problem is to
specify how the client can program the server. We explore the
development of a library of packet manipulation routines to be
used as building blocks of the client programs. We also discuss
a simple yet expressive language that will allow the composition
of these routines into client programs.
• Verification Technology. With PCC, the first goal is to define
a safety policy that will specify appropriate security and scal-
ability constraints on client programs. The second goal is to
generate compact proofs that can be efficiently transmitted, and
to provide efficient checking.
• Client-server Protocols and Scheduling. Another major is-
sue is how to control multiple clients that attempt to execute
code on a single server. We examine secure protocols that will
allow the client to transmit the program, the proof, and a pay-
ment for execution. We also discuss the scheduling algorithm at
the server side.
• Execution Environment. It is important to build an efficient
kernel at the server that will efficiently execute programs built
on top of the library routines. We also discuss how to constrain
programmability: clearly, it is infeasible to allow the entire set
of possible clients to program the router simultaneously.
• Emulation Technology. Emulation is an attractive prototyp-
ing and evaluation platform for our ideas. Router performance
must be studied under different loads, in addition to robust-
ness under threats, placement and partial deployment of pro-
grammable routers, and potential gains for applications.

The remainder of this paper is organized as follows. Sec-
tion II gives an overview of our architecture and the research
challenges associated with it. Section III discusses how to pro-
totype and evaluate the architecture. Section IV summarizes re-
lated work. Finally, Section V gives brief concluding remarks.

II. TOWARDS A VIRTUAL INTERNET

An overview of the architecture of the virtual internet is given
in Figure 1. To ensure scalability, we consider programmabil-
ity at the edge routers only; in the future, we plan to investi-
gate how to extend the technology to provide programmability
at the network core routers as well. Consider the Virtual Inter-
net (VInet) Client Module at the end user (referred to as client).
The Middleware VInet System is an application-layer system
that provides the interface to the programmable network and the
view to the library routines that perform packet manipulation
(these routines are described in detail in Section II-A). Gen-
erally, the user will be able to specify certain parameters in a
user-friendly environment and the system will generate the ap-
propriate program. For example, for a virtual firewall, the user
will specify the IP-address(es) to be filtered out and some in-
formation to help identify the edge router that will perform the
filtering. Similarly, for a virtual spam filter, she/he will specify
the words that determine a high spam score and the edge router
close to the source of the spam that must perform the filtering.

The Middleware VInet System will be responsible for (1) ob-
taining the Safety Policy of the edge router, (2) generating the
executable P , in bytecode form, (3) generating the proof Pr(P )
that the bytecode conforms to the Safety Policy of the server
(this is done by the Proof Compiler in Figure 1), and (4) upload-
ing the program P and the proof Pr(P ) at the server through a
secure connection which also includes a payment. Note that the
Middleware should be able to generate programs based on user-
specified parameters, but it should also allow experienced users
to write entire programs as well as to edit generated programs.

Consider the Virtual Internet (VInet) Server Module in Fig-
ure 1. At the edge router there is a Scheduler unit which controls
the incoming programs. If a program P is successfully sched-
uled for execution, the Proof Checker checks the proof Pr(P )
against its Safety Policy. If successful, i.e., the program con-
forms to the constraints specified in the Safety Policy, the server
optimizes the code and executes it using the efficient implemen-
tation of the packet manipulation procedures.

This architecture assumes that PCC is used to perform verifi-
cation. If we employ static analysis, the entire burden of verifi-
cation lays with the server. The Proof Compiler will be dropped
from the VInet Client Module, and the Proof will be dropped
from the transferable bytecode. At the VInet Server Module,
the Proof Checker will be substituted with a Static Analyzer that
will verify the conformance of the bytecode with the Safety Pol-
icy.

A. Programmability

Programmability is based on a library of packet manipula-
tion routines accessible to the user at the client side. The user
will build programs using these packet manipulation routines;
the programs will be network-centric rather than computation-
centric—that is, they will perform mainly packet manipulation
and minimal computation. The language will consist of three
kinds of statements: calls to the routines, text processing state-
ments, and control-flow statements (e.g., IF-THEN-ELSE and
WHILE). We describe the routines and give concrete examples
of programs that perform firewalling, spam filtering, and multi-
casting.

Packet Manipulation Routines. A sample set of routines
that will provide useful functionality from the point of view of
the client is shown in Table I. The routines provide the inter-
face to the programmable router that is provided to the end-
user. The semantics of most procedures is straight-forward.
For example, DISCARD(Packets) drops the packets in set Pack-
ets. GENERATE(SrcIP,DestIP,Content) forms one or more
new packets with Content and SrcIP as a source IP and Des-
tIP as a destination IP; these packets are subsequently sent to
DestIP. GROUP BY DESTINATION(Packets) partitions Pack-
ets by DestIP—that is, set Packets(i)⊆ Packets is the set of
packets sent to the ith destination IP, DestIP(i). Procedure
GROUP BY CONTENT(Packets) (needed in the multicasting
example below) assumes that Packets contains multiple packets
with the same content and different destinations. It extracts the
destination IPs into DestIPs and the content into Content. For
example, if Packets is viewed as an M×N matrix

[S,D1,C1],[S,D2,C1]...,[S,DN,C1]

[S,D1,C2],[S,D2,C2]...,[S,DN,C2]
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...

[S,D1,CM],[S,D2,CM]...,[S,DN,CM]

(i.e., source S sends each content CI to destinations D1...DN).
GROUP BY CONTENT(Packets) extracts the content: Con-
tent = {C1,C2,...CM}, and the destinations: DestIPs =
{D1,D2,...,DN}.

Applications. To make our ideas more concrete, we proceed
with three examples that demonstrate the kinds of programma-
bility an end user would want. Consider a virtual firewall that
will be installed at an edge router that is closer to the IPs whose
traffic the client wants to filter out; it uses the routines in Table I.

LIFETIME = 2 days

MyPackets = GROUP BY DESTINATION(AllPackets,THIS IP);

BadPackets = GROUP BY SOURCE(MyPackets,SrcIP);

DISCARD(BadPackets);

This code is self-explanatory. First, the client declares the
desired lifetime of the program—how long should it run at the
server (later the lifetime will be used to determine the cost of
the program). Subsequently, the client identified by THIS IP re-
quests that all packets from SrcIP are dropped. The program and
the proof that will be generated at the client VI Module would
verify that the program manipulates only packets addressed to
THIS IP. When the client uploads the code at the router, the
router must verify the authenticity of THIS IP and check the
proof against THIS IP. Another example is a simplified virtual
spam filter which filters out strings Word1 and Word2:
LIFETIME = 5 days
MyPackets = GROUP BY DESTINATION(AllPackets,THIS IP);
SourceIP(i),Packets(i) = GROUP BY SOURCE(MyPackets);
foreach i do

if CONTAINS STRING(Packets(i),Word1)
and CONTAINS STRING(Packets(i),Word2) then

DISCARD(Packets(i));

Our final example using the procedures in Table I is a mul-
ticasting program to be executed on behalf of an edge router
which is to receive a bandwidth consuming broadcast from
BroadcastIP:

LIFETIME = 5 hrs

MyPackets = GROUP BY DESTINATION(AllPackets,THIS SUBNET IP);

Broadcast = GROUP BY SOURCE(MyPackets,BroadcastIP);

Destinations,Content = GROUP BY CONTENT(Broadcast);

GENERATE(BroadcastIP,THIS IP,Destinations);

GENERATE(BroadcastIP,THIS IP,Content);

DISCARD(Broadcast);

This simplified example first extracts the packets coming
from the broadcast IP, then extracts the destinations of the multi-
cast in Destinations, and the content into Content. Subsequently,
the set of destinations is sent to the edge router by generating the
new packets that contain these destinations. The content is sent
only once in the newly generated set of packets while the old
Broadcast packets are discarded.

Another application is to defend against the spread of infec-
tious software such as Internet worms. The impact of such ma-
licious software depends on the spreading rate which must be
above the epidemic threshold. Virtualization can be used to
build distributed firewalls upon detecting a worm spread within
a domain. This can be done by deploying both client and server
modules at BGP routers and running the firewall programs at the
server side as explained above.

B. Verification Technology

The role of the verification technology is to ensure that a pro-
gram executed at the server is secure and scalable. Therefore,
we have to formally specify security and scalability constraints;
informally, this is a contract between the client and the server:



(1)Procedure (2)Functionality
DISCARD(Packets) Discards the set of packets Packets

GENERATE(SrcIP,DestIP,Content) Generates and sends packet(s) with content Content

from SrcIP to DestIP

GROUP BY DESTINATION(Packets,DestIP):Packets Extracts the packets with DestIP

GROUP BY DESTINATION(Packets):Packets(i),DestIP(i) Groups the packets into groups by DestIP

GROUP BY SOURCE(Packets,SrcIP):Packets Extracts the packets with SrcIP

GROUP BY SOURCE(Packets):Packets(i),SrcIP(i) Groups the packets by SrcIP

GROUP BY CONTENT(Packets):DestIPs,Content Groups the DestIPs for packets with content Content

CONTAINS STRING(Packets,String):boolean Checks content for occurrence of String

TABLE I

PACKET MANIPULATION PROCEDURES.

each client program must conform to these constraints in order
to be executed at the server.

Safety Policy. The safety policy specifies the security and
scalability constraints. An intuitive security constraint is to re-
strict a client, identified by its IP address, into programming
only its own traffic. Let us denote the client IP by THIS IP.
The proof compiled and attached to the program will verify
that the program attempts to manipulate only packets with des-
tination THIS IP. When the program and the proof are up-
loaded, the server verifies the authenticity of THIS IP, and the
Proof Checker checks the proof against THIS IP. We infor-
mally state part of this safety policy: A client identified by
THIS IP can discard only packets with destination IP equal
to THIS IP. A formal specification of this safety policy using
the denotational proof language of the Athena proof system
(www.cag.csail.mit.edu/∼kostas/dpls/athena/)
is given in Figure 2 (the specification is syntactically sugared for
readability).

We can extend the safety constraints specified in the above
policy to allow one edge router to act as the client and program
another edge router to act as the server. The safety policy would
state that the client may discard, group and scan only packets
with destinations within its own subnet. Additionally, an end
user or an edge router may generate packets only to its own
IP. We have actually specified this extension in Athena but for
brevity have omitted it from Figure 2.

So far, we have only considered security constraints. A ma-
jor research challenge is to identify the relevant scalability con-
straints, and to specify them within the safety policy. We can
address the issue of scalability by assigning complexities to each
packet manipulation routine. The complexities reflect the cost of
an individual routine in terms of server resources (e.g., processor
and memory). For example, DISCARD will be relatively inexpen-
sive, while CONTAINS STRING and GROUP BY CONTENT will be
relatively expensive as they require the server to store a window
of packets and perform operations on them. Based on these, the
complexity of the entire program P , denoted by Complexity(P)
will be computed by adding the complexities of the individual
routines while appropriately accounting for control-flow con-
structs (e.g., IF-THEN-ELSE and WHILE). The total cost of
P , denoted by Cost(P) will be computed as a function of
Complexity(P) and the lifetime specified in the program. For
example, we can take the product of these two components and

have f(Complexity(P ), lifetime)=Complexity(P)× lifetime .
The safety policy will specify upper bounds, Complexity up and
Costup on the complexity and cost of an individual program.
The client must guarantee as part of the proof that his/her pro-
gram has complexity Complexity(P) ≤ Complexity up and
cost f(Complexity(P ), lifetime) ≤ Costup . Assuring these
bounds on individual programs would allow us to establish
bounds on multiple programs running simultaneously which is
essential for the development of a scalable multi-user environ-
ment.

Proof Generation and Proof Checking. Recall that the
main role of the VInet Client Module is to compile the pro-
gram into bytecode and to generate the proof. We continue
with the firewall example from Section II-A. Using the Athena
proof system, we have created a model of a simple filtering pro-
gram (essentially the firewall example), and a proof that the pro-
gram conforms to the Safety Policy specified in Figure 2. The
model and the theorem EndUser-IP1-observes-policy
are shown on the left-hand side in Figure 3; the proof of theorem
EndUser-IP1-observes-policy is shown on the right-
hand side in Figure 3. Subsequently, the proof is checked by the
proof checker at the VInet Server Module, and, if checking is
successful, the program is scheduled for execution.

An important research problem to address is how to create
proofs that are compact and can be transmitted and checked ef-
ficiently. The technique we propose to solve this problem is to
build a library of theorems of such general utility that they are
usable as lemmas in many other proofs. Thus the proofs of these
general theorems can be transmitted only once and stored in a lo-
cal copy of the library in a network node for later use (whenever
needed in completing proofs of the theorems that invoke them).
This approach follows exactly the same principles of modularity
in programming; in fact, in the Athena system proofs are a form
of program and can be modularized in the same way as ordinary
programs via a form of parameterized subroutines (called proof
methods). We are following this approach in our current work
on PCC in which we are developing proofs of functional cor-
rectness and safety properties of STL-like generic algorithms.
We currently have a small collection of a few hundred theorems
and proofs (several thousand lines of proof “code”), of which
more than 90% form a reusable pyramid-like base library. Thus,
in a typical scenario, only a few top-level, specialized theorems
and proofs would have to be transmitted along with a new pro-



(domain IP)
(domain Content)
(datatype Packets (Packet IP IP Content))
(declare EndUser ((IP) → Boolean))
(declare Owns ((IP IP) → Boolean))
(declare CanDiscard ((IP Packets) → Boolean))
(declare Discard (((List-Of Packets)) → (List-Of Packets)))
(domain NetworkState)

(declare AnyFilterWith
((IP (List-Of Packets) (List-Of Packets))
→ NetworkState))

(define EndUser-owns-only-own-IP
(forall ?ThisIP
(if (EndUser ?ThisIP)
(forall ?IP ((Owns ?ThisIP ?IP) iff (?IP = ?ThisIP))))))

(define CanDiscard-only-owned-IPs
(forall ?ThisIP ?From ?To ?Content
((CanDiscard ?ThisIP (Packet ?From ?To ?Content))
iff (Owns ?ThisIP ?To))))

(define Discard-axiom
(forall ?ThisIP ?From ?To ?Content ?Traffic
((Discard (Cons (Packet ?From ?To ?Content) ?Traffic))
= ?Traffic)))

(assert EndUser-owns-only-own-IP
CanDiscard-only-owned-IPs
Discard-axiom)

###########################################
A safety policy required for particular end-users
###########################################

(define If-discard-not-allowed-then-does-not-happen
(forall ?ThisIP ?From ?To ?Content
(if (not (CanDiscard ?ThisIP

(Packet ?From ?To ?Content)))
(forall ?Incoming ?Outgoing
((AnyFilterWith ?ThisIP

(Cons (Packet ?From ?To ?Content)
?Incoming)

?Outgoing)
= (AnyFilterWith ?ThisIP
?Incoming
(Cons (Packet ?From ?To ?Content)

?Outgoing)))))))

Fig. 2. Formal Requirements and Safety Policy for Packet Filtering Programs.

gram, while the rest could then be extracted and executed from
the recipient’s local library.

Static Analysis. An alternative verification technology is
static analysis, where the client uploads the code at the server
and the server verifies the security and scalability constraints
using its Static Analyzer. The Static Analyzer will translate the
code into Control Flow Graph (CFG) representation which is
useful for data-flow analysis. Using the CFG, one can define a
data-flow analysis that would check conformance to the safety
policy. As a concrete example, recall the firewall program in
Section II-A. The CFG of this program would be fairly simple:
node 1 corresponds to the first statement (MyPackets=...), node
2 corresponds to the second statement (BadPackets=...), and
node 3 corresponds to the third statement (DISCARD(...)); there
are edges from node 1 to node 2 and from node 2 to node 3. We
need to define an analysis on the CFG that would verify the fol-
lowing two facts: (1) that actual argument MyPackets in the call
at node 2 contains only packets addressed to the IP of the client,
and (2) that actual argument BadPackets at node 3 contains only
packets addressed to the IP of the client (that is, the client ma-
nipulates only its own traffic). Assume that argument THIS IP
at node 1 is equal to the IP of the client that uploads the pro-
gram (i.e., the program is safe). The verification of facts 1 and 2
can be done by classical Reaching Definitions analysis [2]. The
only definition that reaches node 2 is (MyPackets,1) (i.e., the
MyPackets that flow to node 2 are the ones produced at node 1).
The analysis examines the call at node 1 and since THIS IP=IP,
it concludes that fact 1 holds; this conclusion takes into account
the semantics of GROUP BY DESTINATION. Similarly, the defini-
tion that reaches node 3 is (BadPackets,2). The analysis exam-
ines the call at node 2 and since MyPackets contains only appro-
priate packets, it concludes fact 2 as well; again, the conclusion
takes into account the semantics of GROUP BY SOURCE. One of
the main research problems would be to construct analyses that
would determine the cost of the program and verify the scalabil-

ity constraint in the safety policy. Note that with static analysis,
one can use the verification passes over the CFG to perform pro-
gram optimizations as well—this cannot be done with PCC.

C. Client-Server Protocols and Scheduling

A server node will simultaneously execute multiple programs
by multiple clients. Therefore, a protocol is required for com-
munication between the client and the server, as well as a
scheduling algorithm that will choose a client program for exe-
cution.

Client-Server Protocols. Communication is done over a re-
liable and secure connection between specific port numbers of
network interface cards (NICs) between the client and server.
We assume for now that there is a single client/server module
in order to avoid race conditions and deadlocks. The client end-
user and the server edge router will establish a session key (e.g.,
by using the Diffie-Hellman (DH) algorithm over a reliable con-
nection). Once the shared key is constructed, all the commu-
nication between the client and the server will be in encrypted
form. The shared keys can be stored at the servers once they are
generated. We emphasize that one of our future research goals is
to investigate the tradeoffs between scalability and performance.
One can reduce the amount of state information at edge routers
while increasing the computational cost. For example, it is pos-
sible to store the shared key between a pair of client-server nodes
at the client side to reduce the complexity at the servers as fol-
lows: Upon establishing a shared key Ki,j with a client i, server
node j encrypts Ki,j and a sequence number (initially set to
zero at both parties) using his public key KPj

, and transmits en-
crypted message m to the client node. The client encrypts the
consecutive messages and increments the sequence number by
the shared key Ki,j , and appends m to the message M sent to
the server node. Upon receiving message M , server j removes
m and decrypts it using its private key KRj

to obtain the shared
key Ki,j . The server checks the sequence numbers to prevent re-



(declare IP1 IP)
(assert (EndUser IP1))
(declare Filter1
(((List-Of Packets) (List-Of Packets)) → NetworkState))

(define Filter1-relation-to-AnyFilterWith
(forall ?Incoming ?Outgoing
((Filter1 ?Incoming ?Outgoing)
= (AnyFilterWith IP1 ?Incoming ?Outgoing))))

(assert Filter1-relation-to-AnyFilterWith)
(define EndUserRule
(forall ?From ?To ?Content ?Incoming ?Outgoing
(if (not (?To = IP1))

((Filter1 (Cons (Packet ?From ?To ?Content)
?Incoming)

?Outgoing)
= (Filter1 ?Incoming

(Cons (Packet ?From ?To ?Content)
?Outgoing))))))

(assert EndUserRule)
#########################################
(define EndUser-IP1-observes-policy
(forall ?From ?To ?Content
(if (not (CanDiscard IP1 (Packet ?From ?To ?Content)))

(forall ?Incoming ?Outgoing
((AnyFilterWith IP1

(Cons (Packet ?From ?To ?Content)
?Incoming)

?Outgoing)
= (AnyFilterWith IP1

?Incoming
(Cons (Packet ?From ?To ?Content)

?Outgoing)))))))

(!(conclude EndUser-IP1-observes-policy)
(pick-any From To Content
(assume (not (CanDiscard IP1 (Packet From To Content)))
(pick-any In Out
(!cases

(assume (To = IP1)
(!by-contradiction
(assume (not ((AnyFilterWith IP1

(Cons (Packet From To Content) In) Out)
= (AnyFilterWith IP1 In

(Cons (Packet From To Content) Out))))
(dseq
(!(conclude (Owns IP1 To))
(!right-instance

(!mp (!uspec* EndUser-owns-only-own-IP [IP1])
(EndUser IP1)) [To]))

(!absurd
(!right-instance CanDiscard-only-owned-IPs

[IP1 From To Content])
(not (CanDiscard IP1 (Packet From To Content))))))))

(assume (not (To = IP1))
(dseq
(!setup left (AnyFilterWith IP1

(Cons (Packet From To Content) In) Out))
(!expand left (Filter1 (Cons (Packet From To Content)

In) Out)
Filter1-relation-to-AnyFilterWith)

(!reduce left (Filter1 In (Cons (Packet From To Content)
Out)) EndUserRule)

(!reduce left (AnyFilterWith IP1
In (Cons (Packet From To Content) Out))

Filter1-relation-to-AnyFilterWith)))))))))))

Fig. 3. A model of a filtering program and the proof of the Safety Policy in Figure 2.

play attacks. Clearly, with this scheme the server does not need
to store keys, but it needs to perform additional decryption on
each message.

Scheduler. We assume that the Virtual Internet Server mod-
ule maintains a data structure for the classes of programs that
can be executed at the edge router. The class of a program is de-
termined by its cost. Recall that the cost of the program should
be verified and specified as part of the proof, and it should not
exceed the predefined complexity and cost bounds (i.e., the scal-
ability constraint in the safety policy). Furthermore, each virtu-
alization program carries an indicator to announce to the sched-
uler which class it belongs to—that is, it announces its total
cost and its complexity. Note that the client would not have
an incentive to lie to the scheduler because the verifier (i.e., the
Proof Checker or the Static Analyzer depending on the verifica-
tion technique) will check the cost and will discard the program
without execution in case of discrepancy.

Virtualization requests from different network interfaces can
be processed at the NICs as follows: Each request will be
masked to determine its class and inserted into a dedicated queue
of that class with FIFO discipline. This will be done by time-
stamping the incoming request. The queues of the same class at
different interfaces are merged at the server module to maintain
the FIFO property (since the requests are time-stamped, this can
be done easily).

There is a priority assignment over the queues of different
classes. The simplest prioritization scheme would be to assign
a payment to a request for program execution where the pay-
ment would be proportional to the program cost; the highest
payment/cost programs will have the highest priority. Thus, the
scheduler at the server module would implement a single server

class-based priority queuing service. In order to achieve scala-
bility, we require that the server edge router has a predefined ca-
pacity (reflecting router resources such as processor and mem-
ory). The scheduler may schedule a program only if program
complexity (i.e., the contribution to the load of the currently
running programs) is no greater than the difference between the
router capacity and the current load. We are extending our previ-
ous work in [21] to design online algorithms that take advantage
of lookahead operations in the queues.

D. The Execution Environment

The library of packet manipulation routines must be imple-
mented in a low-level efficient manner and extensively verified.
Intuitively, each program uploaded at the server edge router ma-
nipulates the connection from a SourceIP (controlled by that
edge router) to the DestinationIP of the client. Note that since
we aim to achieve virtualization per user, maintaining state in-
formation per client IP is an inherent “lower bound” on the size
of the execution environment. An important research question
therefore is how to combine the ideas of individual program con-
straints and total router capacity which restrict programmabil-
ity, with adaptive optimizations that combine similar programs,
which would help optimize resource usage and broaden pro-
grammability.

Constraining Programmability. The architecture of the en-
vironment can use a dynamic table indexed by SourceIP and
then by DestinationIP as shown in Figure 4. SourceIP is drawn
from the set of all IPs controlled by the edge router; note that the
number of such IPs is substantially smaller than the total number
of Internet IPs However, DestinationIP is drawn from the entire
set of Internet IPs. We propose to use hash tables due to the



fact that checks for keys are typically fast (i.e., it will typically
take constant time to see if a pair 〈SrcIP,DestIP〉 is in the table);
however, we emphasize that the choice of the right data struc-
ture is an important research problem that must be investigated
thoroughly both theoretically and empirically.

Suppose that the program currently being scheduled manip-
ulates the connection from a given SrcIP to a given DestIP.
Cell sources.get(SrcIP).get(DestIP), which will
be created if needed, will be set to refer to that program.
Subsequently, the total cost of the programs that are running
at the moment will be increased by Complexity(P). Recall
from Section II-C that P is chosen by the scheduler only if
Complexity(P) does not exceed the difference between the
router capacity and the total cost of the simultaneously run-
ning programs. Further, when a program at cell 〈SrcIP,DestIP〉
finishes execution, the cell will be freed and the total cost
of the simultaneously running programs will be decreased by
Complexity(P).

Adaptive Optimizations. Constraints on individual pro-
grams and on all simultaneously running programs (driven by
router capacity) restrict programmability. To mitigate this prob-
lem, we propose to use adaptive optimization that will allow in-
dividual programs to share resources. When a program is sched-
uled, it is analyzed and if there is a program that has the same
functionality already running on behalf of another user, the new
cell is simply set to refer to that program. With this scheme,
the cost of the currently running programs will not be incre-
mented. For example, suppose that a virtual firewall that filters
out SrcIP1 runs on behalf of DestIP1. When the router sched-
ules a virtual firewall that filters out SrcIP1 on behalf of DestIP2,
cell 〈SrcIP1,DestIP2〉 will be set to refer to the program at cell
〈SrcIP1,DestIP1〉 and no additional processes will be taken.

To further increase flexibility and scalability, the programs
may be grouped by functionality classes for each SourceIP, and
the router may assign quotas for each functionality class—that
is, at most N DestinationIPs may upload programs of class C

that manipulate traffic from a given SourceIP. For example, we
will define a class Virtual Filtering which will include all pro-
grams that DISCARD packets—that is, the class will include
virtual spam filters and virtual firewalls. Clearly, if a large num-
ber of DestinationIPs are willing to pay to turn a SourceIP off,
this is an indication that SourceIP is sending malicious packets.
It is likely that the computer was actually “highjacked” and was
part of a bot network. The router will shut SourceIP off for ev-
eryone and alert its user who will have to check the computer
in order to get back on the net. Note that this adaptive scheme
designed to help scalability will help combat distributed attacks
as well.

III. EXPERIMENTAL VALIDATION

A prototype virtual Internet system including both the client
middleware and the programmable router is being designed. We
are considering the MIT Click router [27], [8] as a possible basis
for building our programmable routers. We will systematically
test our proposed system for performance, as well as security
and scalability under certain threat (malicious user behavior)
models, against specified safety policies. We will also evaluate
the gains for the example applications we discussed above.

In order to validate our results in a flexible and yet high fi-
delity setting, we can utilize the DETER (www.isi.deterlab.net)
and Emulab (www.emulab.net) testbeds. Emulab is a
universally-available time- and space-shared network emulator
located at the University of Utah. The system is comprised of
hundreds of linked computers (PCs) that can be connected in al-
most any specified topology, and a suite of software tools that
manage them. The Cyber Defense Technology Experimental
Research Network (DETER) is an experimental testbed – based
on Emulab – that allows researchers to test and evaluate Internet
cyber security technologies in a realistic, but safe environment.
This environment can be accessed remotely, but is quarantined
from the Internet. The Evaluation Methods for Internet Secu-
rity Technology (EMIST) project, in which we are participat-
ing, is a companion project that designs testing methodologies
and benchmarks for the DETER testbed [7].

We believe that emulation on DETER will be ideal for ex-
periments with the virtual Internet, as it is more flexible than a
hardware testbed, yet more realistic than a simulator. On the
one hand, using an emulator is significantly more flexible than
building a hardware testbed in our labs, since almost arbitrary
topologies can be specified without rewiring machines, and the
testbed is maintained by professional and experienced staff. On
the other hand, an emulation environment affords much higher
fidelity than a simulator, and this can expose unforeseen vulner-
abilities, interactions, and performance problems. This is be-
cause an emulation testbed uses a real dedicated computer with
limited resources, and a real operating system running on it,
to represent each host in an experiment. Hence, any protocol
implementation error or resource vulnerability can be exposed,
since these are not abstracted by a model. Our preliminary ex-
periments on the Emulab or DETER testbeds have exposed in-
teresting bottlenecks and software problems that highlight dif-
ferences between simulation, emulation, and testbeds including
hardware routers [11]. For example, we found that synchroniza-
tion effects in ns-2 simulations amplified the impact of certain
attacks against TCP congestion control. Further, since ns-2 [38]
does not accurately model the switching/queuing fabric, the pro-
cessor, buses, or interrupt handling, no packet losses can occur
as a result of bottlenecks such as head of the line blocking in a
switch fabric, or interrupt livelock [17], [28] in an operating sys-
tem, in contrast to real systems which exhibit such bottlenecks.

A. Router Emulation

As mentioned above, the MIT Click router [27], [8] is a pos-
sible basis for constructing our programmable routers. Devel-
oping modular but efficient software routers has been the sub-
ject of significant research since the 1990s, e.g., [17], [28]. In
these studies, polling is used as an alternative to packet re-
ceive interrupts to eliminate interrupt livelock at high packet
rates. This is because interrupts can consume much of the CPU
and bus capacity of mid-range machines (i.e., Pentium III and
below) at 100 Mbps+ speeds. In the Click router [27], pro-
grammed I/O (PIO) interaction with the Ethernet controllers is
eliminated using Direct Memory Access (DMA). In our own
experiments on the Wisconsin Advanced Internet Laboratory
(WAIL) at http://www.schooner.wail.wisc.edu/, we have found
that livelock can occur on Cisco 3600 series routers, limiting
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the forwarding performance.
In Click, the entire packet path is easily described, and one

can easily configure a simple IP router that bypasses the OS IP
stack. Simplification of the packet path yields a performance
boost, making the PC router less vulnerable to overload under
high packet flows. When the router is configured, each affected
network device has to be included into the configuration. It
should be straightforward to change the queuing discipline and
the queue depth for the queue at each output port, according to
our virtualization programs. Our packet manipulation library
can also be incorporated into this environment.

Using Click entails a number of challenges. For example, in
our prior work, we have found that it is insufficient to change
the Click Queue element depth [11]. This is because Click (or
any software system for that matter) has to go through a device
driver when it accepts or outputs a packet. Like any Linux net-
work device driver, the driver for the Intel Pro card has internal
transmit (TX) and receive (RX) buffers, whose sizes must be ad-
justed. The Click Queue elements only serve as intermediaries
between these. We will have to take such subtle implementa-
tion issues into consideration when building and validating our
virtual Internet prototype.

B. Experimental Methodology

In order to conduct realistic experiments on DETER that
mimic the Internet, we will leverage topology and traffic gen-
eration tools and datasets that we developed/used for our prior
work in the EMIST project [11]. We will also leverage topol-
ogy, delay, and bandwidth information through the application
of inference (Internet tomography) techniques, e.g., [41], [22].
One challenge we are facing is the need to develop tools to scale
down output from topology generators to fit within testbed con-
straints. Since the number of testbed machines is limited, and
the machines have a physical limit on how many network inter-
face cards they have and their total bandwidth, arbitrary network
topologies cannot be used. We need to be able to map a topology
to an equivalent DETER-compliant topology.

Our experiments will investigate the following five key ques-
tions:
1. Programmable router performance under different loads.
Example questions to investigate include: what are the funda-
mental limits on proof checking and installing different virtual-

ization programs with and without the optimizations previously
discussed? What packet rates can the router handle with differ-
ent virtualization programs? How efficiently we can schedule
and execute typical workloads of virtualization programs?
2. Robustness under threats. As we learned in the past from
proposals such as active networks, potential misuse can hin-
der the adoption of programmable networking paradigms in the
global Internet. Therefore, a key component of our study will be
investigating the robustness of the execution environment at the
router under malicious attacks on its security and scalability.
3. Placement of programmable routers. The effect of partial de-
ployment of our programmable routers must be quantified. The
tools we plan to build will enable us and other researchers to
conveniently explore the “deployment space.”
4. Potential gains from different applications. Our proposed
paradigm will allow new applications, such as the virtual fire-
wall, spam filter, and multicasting, that can have a profound
positive impact on the performance perceived by the users writ-
ing the virtualization programs, as well as Internet performance
at large. We plan to conduct experiments to quantify this im-
pact. For example, we can easily emulate an environment with
many spammers, and measure the improved performance with
our spam filter application.
5. Impact of network properties such as traffic, topology, and
configuration. Network properties impact network load, and
hence will impact our programmable routers and our exam-
ple applications. Background traffic characteristics, e.g., mix
of http, ftp, and peer-to-peer traffic, and duration of the flows
in our experiments should be representative of Internet traffic
characteristics. Experimental topology characteristics, e.g., the
“small-world” phenomenon, can also be critical since they im-
pact how traffic is aggregated. Infrastructure parameters in the
network, e.g., BGP routing policies and OSPF link weights,
should also be realistic in our experiments.

Observe that it is critical to isolate effects we might observe
in DETER experiments into key observations that will also hold
on the Internet, versus emulation model artifacts, e.g., caused by
delay emulation on DETER [11]. In order to identify and isolate
such artifacts, a careful sensitivity analysis is crucial.



C. Testbed Experiment Control

A natural approach for describing tasks that must be per-
formed on the testbed nodes involves event scripts, much like
events in an event-driven simulator [38]. Emulab software im-
plements a few event types such as link failures; however, most
of the interaction with the nodes has to be done via a secure
shell (SSH) session. We plan to design a flexible middleware to
control all test machines from a central location, since manu-
ally using each computer is impossible, especially when timed
events are involved. We have developed a preliminary tool, that
we call a Scriptable Event System, to parse a script of timed
events and execute it on the test machines. Our system is capa-
ble of receiving callbacks such that event synchronization can be
achieved [11]. Our system needs to be extended to significantly
enrich the script language, and provide an integrated instrumen-
tation, visualization, and analysis tool.

IV. RELATED WORK

Active Networks. Clearly, our ideas are related to research on
Active Networks [37], [10] (http://nms.lcs.mit.edu/activeware/).
The Liquid Software project (http://www.cs.arizona.edu/liquid/)
is closely related to our ideas. In that work, it suggested that
network nodes should be enhanced with complex execution en-
vironments and support the execution of large and complex soft-
ware systems. The main goals of the Liquid Software were to
enhance the performance of the Internet and distributed Inter-
net applications. The security and scalability issues that arise
with network programmability were not addressed. In contrast,
our ideas are more focused (e.g., programmability is limited to
well-defined packet operations and code can be uploaded only at
edge routers). We aim to provide useful programmability while
carefully balancing security and scalability. Our goal is to at-
tack security problems abundant in today’s Internet that we be-
lieve cannot be effectively addressed without a paradigm shift
towards network programmability.

Other projects related to Active Networks include ANTS [40]
and PLAN [23]. ANTS is a toolkit for deploying network
protocols—that is, it is not concerned with programs. On the
other hand, PLAN is a restricted functional language that un-
like ours allows building arbitrarily complex programs (through
a mechanism similar to “system” calls in UNIX shell scripts).
Thus, constraining (and even understanding) the safety issues
for such programs is hard and remains an open problem [3]. In
addition, PLAN is dynamically checked, which may consider-
ably slow down the execution of a PLAN program at a network
node and thus slow down the network node. In contrast, we will
restrict programs to compositions of well-defined packet manip-
ulation routines and as a result one can define a relatively sim-
ple safety policy as outlined in Section II-B. Also, in our model
programs will be verified statically (either by static analysis or
PCC).

Verification. Model checking is a verification technique that
has been applied to protocol checking [24], and more recently
to software checking [18], [16], [9], [14]. Unlike PCC, it places
the responsibility for checking with the server and is relatively
expensive. In contrast, we propose to make use of PCC and ad-
vance its state by using a library of reusable lemmas which will

help produce compact proofs. In our approach to PCC, we also
work in a higher level programming language than one finds
being used in most PCC work. Previous research such as Nec-
ula and Lee’s [31], [33] and Appel’s [1], [42] has been carried
out mainly with very low level languages (machine code or Java
byte code). The proof checking system we are using, Athena
[5], [6], provides both a Scheme-like programming language
in which programs are typically expressed as collections of re-
cursive function definitions, and a structurally similar language
for expressing deductive methods whose executions carry out
proofs using both primitive inference methods of first order logic
(of which there are about a dozen, such as modus ponens, exis-
tential generalization, universal specialization, etc.) and “calls”
of other deductive methods previously defined by the user or
imported from a deductive-method library. Both of these lan-
guages are high level by most programming language standards,
offering, for example, higher-order functions (and methods)—
the ability to pass functions/methods to a function/method or
return them as results.

Moreover, we are experimenting with the use of these pro-
gramming and deductive language facilities at a substantially
higher level of abstraction than in most programming activity.
We have already found elegant ways to use higher-order func-
tions and methods in Athena to express generic requirements
specifications much like the theory specifications of research
languages such as Isabelle [39], Imps [20], or Maude [13], or
the concept descriptions of Tecton [26], [29], [30]. There are
two major benefits that stem from expressing proofs at this high
abstraction level. First, once a proof of a theorem is written at
this level, the functions and methods defining it can be called in
many different ways, which means that the proof does not have
to be redeveloped when its conclusion is needed in a different
setting. Second, one can use such high-level theory or con-
cept specifications to specify generic software components—
ones that have a single source code expression but which can
be instantiated in many different ways to produce different use-
ful specific versions by plugging in other suitable components.
Thus, the substantial effort required in constructing such proofs
can be amortized over the many repeated uses of both proofs
and the generic software components that can be extracted from
them.

Overlay networks. A multitude of overlay network designs
for resilient routing, multicasting, quality of service, content dis-
tribution, storage, and object location have been recently pro-
posed. Overlay networks offer several attractive features, in-
cluding ease of deployment, flexibility, adaptivity, and an infras-
tructure for collaboration among hosts. For example, overlay
networks that detect performance degradation of current rout-
ing paths and re-route through other hosts include Detour [35]
and RON [4]. Multicast and peer-to-peer systems have also
been successful services on overlay networks. A number of
overlay multicast algorithms have been proposed over the last
four years. End System Multicast (or Narada) [12] was one of
the earliest and most tested approaches. Overcast [25] provides
scalable and reliable single-source overlay multicast. Gnutella,
KaZaA, and BitTorrent are commercial peer-to-peer file sys-
tems for music and video sharing. For better scalability, sev-
eral recent peer-to-peer systems, including Chord [36] and Pas-



try [34], use efficient distributed hash table (DHT) lookup algo-
rithms over overlay networks. Despite their attractive features,
a user must explicitly download software to join an overlay net-
work, and different networks have their own varying member-
ship policies and procedures. In fact, many overlay networks
have limited deployment since they suffer from scalability prob-
lems. Furthermore, since they are purely application-layer,
they incur a performance penalty over network-level solutions.
For example, we have studied one aspect of the performance
penalty of application-level multicast in [19]. Finally, again by
virtue of being application-layer mechanisms, they cannot con-
trol network-level functions, which our proposed approach can
control.

V. CONCLUSIONS

This paper has outlined an ambitious research agenda for vir-
tualizing the Internet. The new virtual Internet offers signif-
icant flexibility, making it more secure and manageable. We
have adapted techniques from the extensive literature on pro-
gram analysis and verification, operating systems, network pro-
tocol design, and network emulation to enable the new virtual
Internet. Many challenges remain in order to realize the full po-
tential of this new paradigm, and to allow flexible security and
scalability constraints to be specified and verified.
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