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Abstract

We investigate the problem of sleep/wake scheduling for low duty cycle sensor
networks. Our work differs from prior work in that we explicitly consider the ef-
fect of synchronization error in the design of the sleep/wake scheduling algorithm.
In our previous work, we studied sleep/wake scheduling for single hop communi-
cation, e.g., intra-cluster communication between a cluster head and cluster mem-
bers. We showed that there is an inherent trade-off between energy consumption
and message delivery performance (defined as the message capture probability).
We proposed an optimal sleep/wake scheduling algorithm, which satisfies a given
message capture probability threshold with minimum energy consumption.

In this work, we consider multi-hop communication. We remove the previ-
ous assumption that the capture probability threshold is already given, and study
how to decide the per-hop capture probability thresholds to meet the Quality of
Services (QoS) requirements of the application. In many sensor network applica-
tions, the QoS is decided by the amount of data delivered to the base station(s),
i.e., the multi-hop delivery performance. We formulate an optimization problem
to set the capture probability threshold at each hop such that the network life-
time is maximized, while the multi-hop delivery performance is guaranteed. The
problem turns out to be non-convex and hence cannot be efficiently solved using
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standard methods. By investigating the unique structure of the problem and us-
ing approximation techniques, we obtain a solution that provably achieves at least
0.73 of the optimal performance. Our solution is extremely simple to implement.

Key words: Sensor networks, Time synchronization, Sleep/wake scheduling,
Energy-Efficiency

1. Introduction

An important class of wireless sensor network applications is the class of con-
tinuous monitoring applications. These applications employ a large number of
sensor nodes for continuous sensing and data gathering. Each sensor periodically
produces a small amount of data and reports to one (or several) base station(s).
This application class includes many typical sensor network applications such as
habitat monitoring [1] and civil structure monitoring [2].

Measurements show that idle listening consumes a significant amount of en-
ergy for sensor devices. An effective approach to conserve energy is to put the ra-
dio to sleep during idle times and wake it right before message transmission/reception.
This requires precise synchronization between the sender and the receiver, so
that they can wake up simultaneously to communicate. The state-of-the-art in
sleep/wake scheduling assumes that the underlying synchronization protocol can
provide nearly perfect (e.g., µs level) synchronization, so that clock disagree-
ment can be ignored. However, in our previous work [3], we determined that
the impact of synchronization error is non-negligible. We found that although
existing synchronization schemes achieve precise synchronization immediately
after the exchange of synchronization messages, there is still random synchro-
nization error because of non-deterministic factors in the system. Thus, clock
disagreement grows with time and can be comparable to the actual message trans-
mission time. This means that the design of an effective sleep/wake scheduling
algorithm must consider the impact of synchronization error. We demonstrated
the inherent trade-off between energy consumption and message delivery perfor-
mance (defined as the message capture probability). We then proposed an optimal
sleep/wake scheduling algorithm, which achieves a message capture probability
threshold (assumed to be given) with minimum energy consumption.

Our previous work focused on single-hop communications. In this paper, we
consider multi-hop communication. For illustration, we consider a network that
has been hierarchically clustered. We remove the assumption that the capture
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probability threshold is given, and study how to decide the per-hop capture prob-
ability thresholds to meet the Quality of Service (QoS) requirement of the ap-
plication. In many applications, sensor nodes gather data and report to a base
station(s) (BS). Therefore, the QoS is decided by the amount of data delivered
from the nodes to the BS. We formulate an optimization problem which aims to
set the capture probability threshold at each hop such that the network lifetime
is maximized, while a minimum fraction of data is guaranteed to be delivered to
the BS. The problem turns out to be non-convex and hard to solve exactly, but we
design an 0.73-approximation algorithm that can be easily implemented in sensor
networks.

The remainder of this paper is organized as follows. Section 2 reviews related
work. Section 3 gives the system model and briefly describes our sleep/wake
scheduling algorithm for single hop communications. Section 4 studies how to
assign the thresholds along multi-hop paths in the cluster hierarchy. Section 5
concludes the paper.

2. Background and Related Work

Sleep/wake scheduling has been extensively studied, e.g., [4, 5, 6]. The basic
idea is to let the radio sleep during idle times, and wake it up right before mes-
sage transmission/reception. Measurements show that this can effectively prevent
energy waste caused by overhearing, collisions, and idle listening.

Clustering is generally considered to be a scalable method to manage large
sensor networks. Sensors within a geographical region are grouped into a cluster.
The sensors are then locally managed by a cluster head (CH) – a node elected to
coordinate the nodes within the cluster and to be responsible for communication
between the cluster and the BS or other cluster heads. This grouping process can
be recursively applied to build a cluster hierarchy. Sensor nodes first elect level-1
CHs, then level-1 CHs elect a subset of themselves as level-2 CHs. Cluster heads
at levels 3, 4, . . . are elected in a similar fashion to generate a hierarchy of CHs, in
which any level-i CH is also a CH of level (i − 1), (i − 2), . . . , 1. Fig. 1 depicts
nodes organized in a three-level cluster hierarchy with each number representing
the level of the corresponding node.

Hierarchical clustering provides a convenient framework for resource manage-
ment and local decision making. It can also be extremely effective for data fusion,
i.e., sensing data can be aggregated before being passed onto the next higher level
in the hierarchy. Hence, hierarchical clustering is used in many practical sys-
tems [2, 7, 8]. Due to this widespread use, in this work we choose the cluster
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hierarchy model as an illustrative example. We assume that the network has been
hierarchically clustered using one of the popular clustering techniques [9, 10].

BS
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Figure 1: A three-level cluster hierarchy
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Figure 2: Equispaced upstream transmis-
sions

3. System Model

We consider a cluster hierarchy, where each cluster consists of a single clus-
ter head (CH) and multiple cluster members. Note that a node can be both the
CH in one cluster, and a member in another cluster at a higher level, e.g., in
Fig. 1, C is the CH of E, but is also a member of A. Time is divided into recur-
ring epochs with constant duration Te. As in many MAC protocols for sensor
networks [5, 6], each epoch begins with a synchronization interval Ts followed by
a transmission interval (Fig. 2). During the synchronization interval, the cluster
members synchronize with their CH and no transmissions are allowed. During the
transmission interval, each member node transmits in a TDMA manner and sends
one message to the CH every T seconds. The message consists of the aggregate
of its own sensing data, and the data collected from its members if the node itself
is a CH. Each transmission interval contains one or more rounds of transmissions,
i.e., Te = Ts + NT, N ≥ 1. The transmissions from the different members are
equispaced, i.e., if M is the number of cluster members, then transmissions are
separated by T

M
.1

3.1. Assumptions
We make the following assumptions about our system:
(1) Orthogonal Frequency Channels: We assume that neighboring clusters

use orthogonal frequency bands and do not interfere with each other. This is a rea-
sonable assumption since the data rate of sensor networks is usually low, typically

1We summarize all the symbols used in Tables 2 and 3 in the appendix.
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around 10−40 kbps. If we run the network in ISM-900 bands (902−928 MHz),
then there are more than a thousand frequency channels to choose from.

A node that is both a CH and cluster member needs to communicate with its
members and with its CH, e.g., in Fig. 1 node C needs to communicate with both
A and E. However, A and E are in neighboring clusters; hence they use differ-
ent frequency channels. Since every node has only one radio interface, C has to
schedule carefully to participate in each cluster. This can be achieved in the fol-
lowing manner. The BS first decides the schedule of the synchronization interval
and the transmission schedule for its cluster members (A and B in Fig. 1), then
broadcasts this information to the members. A and B, upon hearing the broadcast,
will reserve the relevant times for synchronizing/communicating with the root.
Then, A and B schedule the synchronization and transmissions for their members
at different times. Similarly, C will reserve the times to synchronize/communicate
with A, and choose different times for its members (E and F) to synchronize and
transmit.

(2) Data aggregation: We adopt a data aggregation model similar to [11].
Consider a cluster with node 0 being the CH, and with M members, i = 1, . . . , M .
The length of messages from node i is Li, i = 0, . . . , M . Thus, the length of the
aggregated message is a function of Li, i = 0, . . . , M . We use the following
model for χ(L0, . . . LM ), the length of the aggregated message,

χ(L0, . . . LM) = r

M∑

i=0

Li + c. (1)

In this model, c corresponds to the overhead of aggregation, while r ≤ 1 is the
compression ratio. Note that r can be 0, in which case Eq. (1) corresponds to the
case when all messages can be combined into a single message of fixed length.
This models those applications where we want updates of type min, max, and sum
(e.g., event count).

The model in Eq. (1) assumes the same compression ratio for messages from
different nodes. However, it can be extended to account for different compression
ratios, e.g.,

χ(L0, . . . LM) =
M∑

i=0

riLi + c, (2)

where ri corresponds to the compression ratio for messages from node i. For
simplicity in writing, we will use the model in Eq. (1) for the remainder of this
paper. However, all the results can be directly extended for the model in Eq. (2).
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(3) Radio hardware: We assume that the sender can precisely control when
the message is sent out onto the channel using its own clock. This is reason-
able since in [12], system measurements have shown that non-determinism at the
sender is negligible compared to non-determinism at the receiver.

For the receiver, we assume that if there is an incoming message, it can imme-
diately detect the radio signal. This is a close approximation of the real situation,
since modern transceivers can detect incoming signals within microseconds [13].
Further, we assume that once the receiver detects an incoming message, it will
stay active until the reception is completed.

(4) Sleep/wake transition time: Research shows that with recent advances
in hardware technology, the transition time between sleep and wake states can be
reduced within a few clock cycles [14, 15]. Thus, we consider the transition time
to be negligible.

(5) Collisions: We assume that the separation between transmissions from
different members, T

M
, for a cluster with M members is large enough so that the

collision probability for transmissions from different members is negligible. This
is a reasonable assumption for low duty cycle sensor networks. Consider a large
cluster of M = 50 members and each member transmits to the CH every T =
60 seconds. The separation is T

M
= 1200 ms. For low duty cycle networks, the

message size is usually not large; hence the transmission time is much smaller than
this separation. Moreover, at the beginning of each epoch, the cluster members
re-synchronize with the CH, so that the clock disagreement will not become large
enough to cause significant collision probability.

(6) Propagation delay: Finally, because the communication range for sen-
sor nodes is typically < 100 meters, the propagation delay is below 1µs. Thus,
we consider the propagation delay to be negligible and assume it to be zero for
simplicity.

(7) Clock skew: Vig [16] discussed the behavior of general off-the-shelf crys-
tal oscillators. Because of imprecision in the manufacturing process and aging
effects, the frequency of a crystal oscillator may be different from its desirable
value. The maximum clock skew is usually specified by the manufacturer and is
no larger than 100 ppm. Besides manufacturing imprecision and aging, the fre-
quency is also affected by environmental factors including variations in tempera-
ture, pressure, voltage, radiation, and magnetic fields. Among these environmen-
tal factors, temperature has the most significant effect. For general off-the-shelf
crystal oscillators, when temperature significantly changes, the variation in the
clock skew can be up to several tens of ppm, while the variation caused by other
factors is far below 1 ppm. Observe, however, that temperature does not change

6



dramatically within a few minutes in typical sensor environments. If the epoch
duration Te is chosen according to the temperature change properties of the envi-
ronment, we can assume that the clock skew for each node is constant over each
epoch. This is consistent with the observations in [17].

3.2. Synchronization Algorithm
Time synchronization for wireless sensor networks has been extensively in-

vestigated [18, 19, 12, 20, 17]. Clock disagreement between sensor nodes can be
characterized using two factors: phase offset and clock skew. Phase offset cor-
responds to clock disagreement between nodes at a given instant. Clock skew
means clocks run at different speeds, i.e., the actual frequency deviates from the
expected frequency. This is due to manufacturing imprecision and aging effects.
The maximum clock skew is less than than 100 ppm and is usually specified by
the manufacturer. Besides manufacturing imprecision and aging, the frequency is
also affected by environmental factors including temperature, pressure, and volt-
age [16]. Among these factors, temperature has the most significant effect. When
temperature significantly changes, the variation in the clock frequency can be up
to several tens of ppm, while the variation caused by other factors is far below
1 ppm. Observe, however, that temperature does not change dramatically within a
few seconds in typical sensor environments. If the epoch duration Te is chosen ac-
cording to the temperature change properties of the environment, we can assume
that the clock skew for each node is constant over each epoch. This is consistent
with the empirical observations in [17].

In this work, we adopt the well-known RBS synchronization scheme, and
study the sleep/wake scheduling problem2. The scheme includes two steps: (1)
Exchange synchronization messages to obtain multiple pairs of corresponding
time instants; and (2) Use linear regression to estimate the clock skew and phase
offset.

At the beginning of each epoch j, the cluster members need to synchronize
with the CH. Towards this end, each cluster member i exchanges several syn-
chronization messages with the CH and obtains Ns pairs of corresponding time
instants (C(j, k), ti(j, k)), k = 1, . . . , Ns, where C(j, k), ti(j, k) denote the kth

time instant of the CH and of node i in epoch j respectively.
Under the assumption that the clock skew of each node does not change over

the epoch, during a given epoch j the clock time of member node i, ti, is a linear

2This scheme is chosen for illustration purposes only. Our sleep/wake scheduling solution
works with most synchronization schemes.
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function of the CH clock time C, i.e., ti(C) = ai(j)C + bi(j), where ai(j), bi(j)
denote the relative clock skew and phase offset (respectively) between member
node i and CH in epoch j.

Because of the non-determinism in the message exchange, the obtained time
correspondence is not exactly accurate and contains an error, i.e.,

ti(j, k) = ai(j)C(j, k) + bi(j) + ei(j, k), (3)

where ei(j, k) is the random error caused by non-determinism in the system. Real
system measurements [19] show with a high confidence level that ei(j, k) follows
a well-behaved normal distribution with zero mean N(0, σ2

0), and σ0 is on the
order of several tens of microseconds.

At each epoch j, pairs (C(j, k), ti(j, k)), k = 1, . . . , Ns are obtained via ex-
change of synchronization messages. Then, linear regression is performed on
these Ns pairs to obtain estimates of ai(j), bi(j), denoted by âi(j), b̂i(j). In this
work, we control the exchange of synchronization messages such that C(j, k) ≈
jTe + k Ts

Ns
, k = 1, . . . , Ns. This is achieved by letting the CH initiate the message

exchange, i.e., the CH selects a member as the beacon node and tells it to broadcast
the beacons at jTe + k Ts

Ns
, k = 1, . . . , Ns according to the CH clock. Due to sys-

tem uncertainty and clock skew, the beacon node may not broadcast exactly at the
desired time instants. But considering the fact that usually the synchronization in-
terval is short compared to the whole epoch duration, the deviation is small. In this
manner, the beacons are broadcasted approximately at jTe + k Ts

Ns
, k = 1, . . . , Ns

according to the CH clock.

3.3. The Optimal Sleep/Wake Scheduling Problem

This work leverages our previous work on sleep/wake scheduling for single
hop intra-cluster communications [3]. For brevity, here we only give the equations
that will be used in the remainder of the paper. Interested readers can refer to [3]
for details. In [3], the original problem formulation is given as:
(A) Min E = (sp−wp)αIProb{τ ′

p /∈ (wp, sp)}+
∫ sp

wp
{(x − wp)αI + Lp

R
αr}fτ ′

p
(x)dx

such that Prob{τ ′
p ∈ (wp, sp)} ≥ th,

After a number of transformations, formulation (A) is turned into:
(A3) Min G(w) = (1 − th)s(w) − w + g(w) − g(s(w)), such that s(w) =
Q−1(Q(w) − th) and w < Q−1(th).

We can see that the minimum expected energy to receive the message is

σpαIγ(th) +
Lp

R
αrth, (4)
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where

γ(th) = min{G(w) : w < Q−1(th)} (5)

is the minimum value of the objective function in (A3). Eq. (4) and (5) will be
used in Section 4.

When solving (A3), we proved the following proposition:

Proposition 1. (1) G
′′

(w) > 0;
(2) Let w0 be the global minimum, wl = Q−1(1+th

2
), wu = min(0, Q−1(th)),

then w0 ∈ (wl, wu), and is the unique minimum on this interval.

Finally, we will also use the following Equation (3) from [3] later in this paper:

E(τ ′
p) = τp, (6)

V AR(τ ′
p) ≡ σ2

p =
σ2

0

a2
i (j)

1

Ns

[1 +
(τp − C(j, k))2

C2(j, k) − (C(j, k))2
],

where C(j, k) =
PNs

k=1 C(j,k)

Ns
, C2(j, k) =

PNs
k=1 C2(j,k)

Ns
.

4. The Capture Probability Threshold Assignment Problem

We now study how to decide the capture probability threshold to meet the QoS
requirement of the application and maximize the network lifetime.

4.1. Problem Definition

Consider a sensor network deployed for environmental monitoring. The net-
work consists of a set of sensor nodes and one or more base stations (BSs), usually
personal computers. The network has already been hierarchically clustered using
one of these clustering techniques [9, 10]. We assume there is a single BS, de-
noted by BS. The formulation can be easily extended to the case with multiple
BSs. H(n) denotes the cluster head of node n. M(n) denotes the set of nodes
that are members of n. D(n) denotes the set of nodes that are the descendants of
n. M(n) and D(n) can be empty if node n is at level 0. d(n) is the hop distance
from node n to BS, i.e., H (d(n))(n) ≡ H(H(. . .H(n) . . .))

︸ ︷︷ ︸

d(n)

= BS.

Each sensor node periodically reports to its CH. The CH aggregates its own
sensing data and the data collected from the members over the last transmission
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period, then forwards the aggregated data to its CH. The process continues until
the message finally arrives at BS. Each message contains some sensing data and
represents certain amount of “information” about the environment. BS uses the
collected information to compute certain properties, e.g., the chemical contami-
nant in the area. The service quality is defined as the accuracy of the computed
properties, which is decided by the amount of information collected by BS, i.e.,
the more information collected, the better accuracy. Hence, the service quality is
not decided by the delivery performance at any particular hop, but by the multi-
hop delivery performance from the nodes to BS.

However, collecting more information requires higher energy consumption
and may lead to widely varying power dissipation levels across nodes, e.g., nodes
at high levels in the cluster hierarchy have an excessive relaying burden. This
will result in a shorter lifetime for some nodes, which can lead to loss of cover-
age when these nodes deplete their energy. This is the inherent trade-off between
application performance and network lifetime. To maximize the network lifetime
and still guarantee the application performance, we formulate the following opti-
mization problem.

We define the network lifetime TL as the time until the death of the first sensor
node. This definition is widely used in the literature [4, 21, 22, 9, 23]. It mainly
applies to application scenarios with strict coverage requirements, where each
sensor “covers” a certain area in the environment and provides equally important
information to BS. To maintain complete coverage and save redeployment cost,
we must ensure that all the nodes remain up for as long as possible3.

Let z(n) be the capture probability threshold of H(n) for messages coming
from n, i.e., node H(n) will capture messages from node n with probability no
less than z(n). The goal is to choose z(n) to maximize the network lifetime, and
still guarantee that all information be delivered to BS with a predefined probabil-
ity Λ:

(B) Max TL

such that
∏d(n)−1

i=0 z(H (i)(n)) ≥ Λ, ∀n ∈ S,

where Λ is decided by the QoS requirement of the application.
For the data from node n to be received by BS, it needs to pass through

3Here, we assume that we will lose the corresponding coverage if a node dies, i.e., there is no
redundant node. If the network has redundancy, we can consider the nodes covering the same area
(e.g., nodes near the same bird nest) as a single node whose initial energy equals the sum of energy
of all the relevant nodes, and then this definition and the following results still apply.
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H(n), H (2)(n), . . . , H (d(n)−1)(n). Hence in (B), the constraint
∏d(n)−1

i=0 z(H (i)(n)) ≥
Λ means the data from n will be received by BS with probability no less than Λ.
Note that the data will be aggregated with data from other nodes at each hop along
the path.

4.2. Solution

We solve Problem (B) in this section. We first obtain an explicit form of
Problem (B), then show that it is a non-convex optimization problem. The non-
convexity makes it hard to solve Problem (B) exactly. Hence, we investigate the
structure of the problem and obtain an approximate solution.

In the cluster hierarchy, if the multi-hop delivery performance of a leaf node (a
level-0 node) is guaranteed, then the delivery performance for its ancestors is guar-
anteed as well, i.e., if the information from a leaf node n is delivered to BS with
probability no less than Λ, then the information from H(n), H (2)(n) . . .H (d(n)−1)(n)
will also be delivered with probability no less than Λ. Hence, in (B), the con-
straints on the delivery performance of non-leaf nodes are redundant and can be
removed. Let LF denote the set of leaf nodes. We obtain the following formula-
tion:

(B) Max TL

such that
∏d(n)−1

i=0 z(H (i)(n)) ≥ Λ, ∀n ∈ LF,

To obtain an explicit form of Problem (B), we characterize the average power
dissipation for each sensor node when z(m), m ∈ S are given. During an epoch, a
node n consumes energy for sensing, synchronization, and transmitting/receiving
data messages. Let the sensing energy and synchronization energy be εs(n), and
εsyn(n) respectively. These do not depend on the capture probability thresholds.

Both the transmission energy and the receiving energy depend on the capture
probability thresholds. Let l be the amount of sensing data generated by each
sensor during each transmission period T , and Lavg(n) be the average message
size from n. Then, from the aggregation model in Eq. (1),

Lavg(n) = r(l +
∑

i∈M(n)

z(i)Lavg(i)) + c.

Recursively applying the above formula, we have

Lavg(n) = rl + c +
∑

i∈D(n)

(rl + c)

d(i)−d(n)−1
∏

k=0

[rz(H (k)(i))]. (7)
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Since N messages are transmitted in each epoch, the average transmission energy
in an epoch is

εt(n) = Nαt(n)
Lavg(n)

R
, (8)

where αt(n) is the transmission power of node n4.
We now compute the average receiving energy εr(n). For a node n with

|M(n)| members, during a given epoch j, these nodes transmit to n in turn. To
decide the transmission sequence, node n orders the |M(n)| members, i.e., each
member node i ∈ M(n) is assigned a sequence number θ(i) from {1, 2, . . . , |M(n)|},
and different member nodes have different sequence numbers. Node i is sched-
uled to transmit at jTe + Ts + θ(i) T

|M(n)|
+ hT, h = 1, . . . , N . For given capture

probability thresholds, node n will use the sleep/wake schedule described in Sec-
tion 3.3, as it is the optimal sleep/wake schedule. Therefore, the average energy
used to receive a message scheduled to arrive at τp is exactly the minimum value
of the objective function in Problem (A), which is (by Eq. (4))

σpαIγ(th) +
Lp

R
αrth.

Here, Lp is the message size, σp is computed from Eq. (6), th is the required
threshold, and γ(th) is as given in Eq. (5). The average receiving energy εr(n)
can be computed by summing up the energy used to receive all messages from its
members. As in Section 3.2, the synchronization is controlled such that C(j, k) ≈
jTe + k Ts

Ns
, so

C(j, k) ≈ jTe +
1 + Ns

2

Ts

Ns

, (9)

C2(j, k) − (C(j, k))2 ≈
∑Ns

k=1 (k Ts

Ns
− 1+Ns

2Ns
Ts)

2

Ns

.

Further, recall that the maximum clock skew is no larger than 100 ppm; hence in

4We assume that each node has a fixed number of transmission power levels (as in Mica2
motes), and can choose the appropriate one based upon factors such as distance and channel fading.
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Eq. (6), the relative clock skew ai(j) ≈ 1. Combining these together, we have

εr(n) ≈
∑

i∈M(n)

N∑

h=1

αrz(i)
Lavg(i)

R
+ (10)

αIγ(z(i))

√
√
√
√
√σ2

0

1

Ns

[1 +
(Ts + θ(i)T

|M(n)|
+ hT − 1+Ns

2
Ts

Ns
)2

PNs
k=1 (k Ts

Ns
− 1+Ns

2Ns
Ts)2

Ns

].

For node n, the average energy consumption in an epoch is the sum of the
sensing energy, the synchronization energy, and the transmission/reception en-
ergy. Combining Eq. (7), (8) and (10), the average power dissipated in node n is
given by

η(n,−→z ) =
εs(n) + εsyn(n) + εt(n) + εr(n)

Te

(11)

= A(n) +
∑

i∈M(n)

P (n, i)γ(z(i)) +

∑

i∈D(n)

Q(n, i)

d(i)−d(n)−1
∏

k=0

z(H (k)(i)),

where

A(n) =
1

Te

[εs(n) + εsyn(n) + Nαt(n)
rl + c

R
],

P (n, i) =

1

Te

N∑

h=1

αI

√
√
√
√
√σ2

0

1

Ns

[1 +
(Ts + θ(i)T

|M(n)|
+ hT − 1+Ns

2
Ts

Ns
)2

PNs
k=1 (k Ts

Ns
− 1+Ns

2Ns
Ts)2

Ns

],

Q(n, i) =
1

Te

rNαt(n) + Nαr

R
(rl + c)rd(i)−d(n)−1.

Let ξ(n) be the initial energy of node n, then Problem (B) can be written as

Max TL

such that
∏d(n)−1

i=0 z(H (i)(n)) ≥ Λ, ∀n ∈ LF ,
η(n,−→z ) ≤ ξ(n)/TL, ∀n ∈ S.
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Next, we introduce a lifetime-penalty function Ψ(1/TL) to be a strictly convex
and increasing function (e.g., Ψ(x) = x2). Then, maximizing the network lifetime
is equivalent to minimizing the lifetime-penalty function. We now use a change
of variable u = 1/TL to give the network lifetime maximization problem as the
following equivalent problem:

(B) Min Ψ(u)

such that
∏d(n)−1

i=0 z(H (i)(n)) ≥ Λ, ∀n ∈ LF ,
η(n,−→z ) ≤ ξ(n)u, ∀n ∈ S.

The difficulty in solving (B) is that it is not a convex optimization problem. To
see this, we observe that in the second set of constraints, the left side η(n,−→z ) in-
cludes γ(z(i)) and

∏
z(i).

∏
z(i) may not be convex, e.g., z(1)z(2); for γ(z(i)),

we numerically show the curve in Fig. 3 which is clearly not convex. Hence, the
constraint region is not a convex set, and Problem (B) is not convex. Further, we
do not have an explicit analytical form for γ(z). This makes Problem (B) hard
to solve exactly. Next, we investigate the structure of the problem and obtain an
approximate solution.

 0
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Figure 3: γ(z)
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Figure 4: Approximating γ(z)

The following proposition characterizes γ(z).

Proposition 2. (1) For z ≥ 0.86, γ(z) is strictly convex;
(2) For z ∈ [0, 0.99], 1.86z < γ(z) < 2.52z.

We give the proof in the appendix. The idea is that although we do not have
an explicit analytical form of γ(z), we have the bounds obtained from Proposi-
tion 1(2). Therefore, we compute γ ′(z), γ′′(z) using implicit differentiation and
bound them. This proposition shows that γ(z) is convex in the region [0.86, 1);
for the remaining region where γ(z) may not be convex, we can bound it fairly
tightly.
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Next, we approximate γ(z) with a convex function. The curve 2z + 0.001z2

intersects γ(z) at Z0 ≈ 0.95. Let

γ1(z) =

{
2z + 0.001z2 0 ≤ z ≤ Z0

γ(z) Z0 ≤ z < 1

The following proposition shows that γ1(z) is a convex approximation of γ(z).

Proposition 3. (1) 0.929 ≤ γ(z)/γ1(z) ≤ 1.26;
(2) γ1(z) is strictly convex.

This proposition can be proven using Proposition 2 (see appendix). Fig. 4
illustrates that γ1(z) is a good approximation of γ(z). Now, we can obtain an
approximate solution of (B). Consider the following problem (B1):

(B1) Min Ψ(u)

such that
∏d(n)−1

i=0 z(H (i)(n)) ≥ Λ, ∀n ∈ LF ,

η1(n,−→z ) = A(n) +
∑

i∈M(n)

P (n, i)γ1(z(i)) +

∑

i∈D(n)

Q(n, i)

d(i)−d(n)−1
∏

k=0

z(H (k)(i)) ≤ ξ(n)u, ∀n ∈ S.

The only difference between (B) and (B1) is that in (B1), γ(·) is replaced by
γ1(·). The following proposition shows that the solution of (B1) is an approximate
solution of (B).

Proposition 4. Let (
−→
z∗ , u∗) be the optimal solution to (B), (

−→
z∗1 , u∗

1) be the opti-

mal solution to (B1), TL(
−→
z∗) be the network lifetime when using

−→
z∗ as the capture

probability thresholds, TL(
−→
z∗1 ) be the network lifetime when using

−→
z∗1 as the cap-

ture probability thresholds, then TL(
−→
z∗1 ) ≥ 0.73TL(

−→
z∗).

Proof: From Proposition 3, 0.929 ≤ γ(z)
γ1(z)

≤ 1.26. Therefore,

0.929 ≤ η(n,−→z )/η1(n,−→z )) ≤ 1.26. (12)

Because (
−→
z∗1 , u∗

1) is the optimal solution of (B1), we have

η1(n,
−→
z∗1 ) ≤ ξ(n)u∗

1, ∀n ∈ S.
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Therefore, η(n,
−→
z∗1 ) ≤ 1.26η1(n,

−→
z∗1 ) ≤ 1.26ξ(n)u∗

1, ∀n ∈ S. Hence,

TL(
−→
z∗1 ) ≥ 1/(1.26u∗

1). (13)

Also, as (
−→
z∗1 , u∗

1) is the optimal solution of (B1), there must exist some node i

such that η1(i,
−→
z∗) ≥ ξ(i)u∗

1. Otherwise if η1(n,
−→
z∗) < ξ(n)u∗

1, ∀n ∈ S, then let

u
′

1 = max
n∈S

{η1(n,
−→
z∗)/ξ(n)}. It can be easily verified that (

−→
z∗ , u

′

1) is a solution to

(B1) and u
′

1 < u∗
1, which is contradictory to the fact that (

−→
z∗1 , u∗

1) is the optimal
solution of (B1).

For this node i, we have

η(i,
−→
z∗) ≥ 0.929η1(i,

−→
z∗) ≥ 0.929ξ(i)u∗

1,

thus TL(
−→
z∗) ≤ 1/(0.929u∗

1). Combined with Eq. (13), we have TL(
−→
z∗1 ) ≥ 0.73TL(

−→
z∗).

The intuition behind the proof is that γ1(·) approximating γ(·) implies η1(n,−→z ) ≈
η(n,−→z ), ∀n ∈ S. Hence,

TL(
−→
z∗) = min

n∈S
{ξ(n)/η(n,

−→
z∗)} ≈ min

n∈S
{ξ(n)/η1(n,

−→
z∗)}, and TL(

−→
z∗1 ) = min

n∈S
{ξ(n)/η(n,

−→
z∗1 )} ≈

min
n∈S

{ξ(n)/η1(n,
−→
z∗1 )}. But

−→
z∗1 is the optimal solution of (B1), so min

n∈S
{ξ(n)/η1(n,

−→
z∗1 )} ≥

min
n∈S

{ξ(n)/η1(n,
−→
z∗)}. Therefore, TL(

−→
z∗1 ) ≈ min

n∈S
{ξ(n)/η1(n,

−→
z∗1 )} cannot be much

smaller than TL(
−→
z∗) ≈ min

n∈S
{ξ(n)/η1(n,

−→
z∗)}.

Proposition 4 is important as it shows that
−→
z∗1 is an approximate solution of

(B) with approximation ratio 0.73.
As described earlier, (B) is a non-convex optimization problem; hence it is

difficult to obtain the optimal solution
−→
z∗ . However, Proposition 4 shows that if

we can solve (B1) and use its solution
−→
z∗1 as the capture probability thresholds,

then the achieved network lifetime is no less than 73% of the maximum. Next we
solve (B1).

Using the variable transformation: v(i) = ln(z(i)), problem (B1) becomes the
following equivalent problem (B1’):

(B1’) Min Ψ(u)

such that
∑d(n)−1

i=0 v(H (i)(n)) ≥ ln Λ, ∀n ∈ LF ,

η′
1(n,−→v ) = A(n) +

∑

i∈M(n)

P (n, i)γ1(e
v(i)) +

∑

i∈D(n)

Q(n, i)e
Pd(i)−d(n)−1

k=0 v(H(k)(i)) ≤ ξ(n)u, ∀n ∈ S.
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In (B1’), obviously the optimization goal function is convex and the first set of
constraints corresponds to a convex set. For the second set of constraints, because
both exp(·) and γ1(·) are strictly convex and increasing, from the composition
rule [24], γ1(exp(·)) is also strictly convex. Therefore, the second set of con-
straints also corresponds to a convex set, and (B1’) is a convex equivalent of (B1).

We solve (B1’) via dual formulation. The dual problem is

max
−→
λ ≥0,−→µ ≥0

Φ(
−→
λ ,−→µ ),

where
−→
λ ,−→µ are Lagrange multipliers corresponding to the two sets of constraints

in (B1’), and Φ(
−→
λ ,−→µ ) is the dual function given by

Φ(
−→
λ ,−→µ ) = min

u≥0,−→v <0
Ψ(u) +

∑

n∈LF

λn(lnΛ − (14)

d(n)−1
∑

i=0

v(H (i)(n))) +
∑

n∈S

µn(η′
1(n,−→v ) − ξ(n)u).

We use the subgradient method [24] to solve the dual problem. Let u∗,
−→
v∗

be the minimizer in Eq. (14). One subgradient of the negative dual function
−Φ(

−→
λ ,−→µ ) is [24]

ϑn =

d(n)−1
∑

i=0

v∗(H(i)(n)) − ln Λ, ∀n ∈ LF,

ϕn = ξ(n)u∗ − η′
1(n,

−→
v∗), ∀n ∈ S,

where
−→
ϑ and −→ϕ correspond to the dual variables

−→
λ and −→µ respectively.

To obtain the optimal dual variables, the subgradient method uses the follow-
ing updates at the kth iteration

λn(k + 1) = [λn(k) − $kϑn(k)]+, ∀n ∈ LF, (15)

µn(k + 1) = [µn(k) − $kϕn(k)]+, ∀n ∈ S,

where [.]+ denotes projection on the nonnegative orthant 5, and $k is the step size.

5Note that in Problem (B), because η(n,−→z ) increases with −→z , it can be seen that to guar-
antee a larger delivery probability, higher power is needed and the lifetime will be reduced.
Hence, the optimal solution(s) occurs only when the delivery probabilities equal Λ, i.e., when
∏

d(n)−1
i=0 z(H(i)(n)) = Λ, ∀n ∈ LF . Therefore, when updating λn, the projection [.]+ is unnec-

essary.

17



Convergence to the optimal dual variables is guaranteed if $k satisfies $k →
0,

∑∞
k=1 $k = ∞.

Here is a physical interpretation of the dual variables
−→
λ and −→µ . Consider

−→
λ

to be the price of violating the requirement on the delivery performance, and −→µ
to be the price of exceeding the battery capacity. Then,

−→
ϑ represents the safety

margin before breaking the performance requirement, and −→ϕ represents the excess
battery capacity. The updates in Eq. (15) will increase the corresponding prices if
the performance requirement is violated or the average power dissipation exceeds
the capacity, and reduce the prices otherwise.

4.3. Implementation
In many sensor systems [25, 26], the BS is a Pentium-level PC, which has

a high computational capability and sufficient memory compared to the sensor
nodes. Further, the BS is often connected to an unlimited power supply. Hence,
we should take advantage of the capabilities of the BS and let it perform the com-
putations. This scheme is effective because the BS is more powerful than the
sensor nodes, and is assumed to have an unlimited power supply. If the BS has
similar capabilities to the sensor nodes, a distributed implementation is clearly
desirable.

After the cluster hierarchy has been established, the BS informs the nodes of
the systems parameters, including the epoch duration Te, synchronization interval
Ts, and message frequency T . Each node then computes A(n), P (n, i), Q(n, i)
and reports to the BS. The transmission is hierarchical: the cluster members com-
pute their A(n), P (n, i), Q(n, i) values, and pass them onto the CH, then the CH
combines its own parameter values with those of the members and passes onto
its own CH. To guarantee that these values are received by the BS, reliable data
delivery mechanisms like hop-by-hop acknowledgments can be used.

The BS solves problem (B1) using the subgradient method and computes the
capture probability thresholds, then informs the sensor nodes. The nodes decide
the wake up schedule as described in Section 3.3.

We note that the computation of the optimal capture probability thresholds is
infrequently performed, i.e., the capture probability thresholds are computed only
once after the cluster hierarchy is constructed. Hence, the message overhead is
insignificant in the long run.

4.4. Reclustering
In our discussions thus far, the network topology is fixed at one particular

cluster hierarchy. In many systems [9, 23], periodic reclustering is used to balance
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the load, and the network topology alternates between multiple cluster hierarchies.
Thus, we extend the formulation to account for reclustering. Suppose the network
alternates between I topologies (cluster hierarchies) and the fraction of time it
stays with topology j is pj, 1 ≤ j ≤ I . The average power dissipation for a node
n can be computed as:

(1) The average power dissipation for node n in cluster hierarchy j, ηj(n,−→zj ),
is computed as in Eq. (11);

(2) The average power dissipation for node n, η(n), equals the weighted sum
of ηj(n,−→zj ) over all j, 1 ≤ j ≤ I:

η(n) =

I∑

j=1

pjηj(n,−→zj ). (16)

The network lifetime maximization problem becomes:
(C) Min Ψ(u)

s. t.
dj(n)−1
∏

i=0

zj(H
(i)
j (n)) ≥ Λ, ∀n ∈ LFj, j = 1, . . . , I ,

η(n) ≤ ξ(n)u, ∀n ∈ S,

where η(n) is computed as in Eq. (16). The solution of Problem (C) exactly
follows that of Problem (B).

4.5. Simulation Results

For illustration, we consider the cluster hierarchy in Fig. 5. The initial energy
for all nodes is 1 Joule. Each node will generate l = 4bytes of sensing data
during each transmission period. The data aggregation overhead c is 4 bytes;
the compression ratio r ∈ [0, 1]. We set Λ = 0.7, i.e., all information should
be delivered to the BS with probability ≥ 0.7. Other simulation parameters are
specified in Table 1.

For the given topology, we first note that since the BS has unlimited power
supply, it can always stay awake. Thus, for messages coming from node 1, the
BS will always “capture” them, and we can directly set z(1) = 1. Further, due
to symmetry, the algorithm should set z(2) ≈ z(3) and z(4) ≈ z(5) ≈ . . . z(11).
Next we consider two special cases:

• r = 1 corresponds to the case without any compression. In this case, node
1 is the bottleneck since it has the highest relaying burden. Hence, z(2) and
z(3) should be set small such that node 1 spends less energy for receiving.
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Table 1: Simulation parameters
Idle power αI (mW) 13
Receiving power αr (mW) 13
Data rate R (kbps) 19.2
Epoch duration Te (minute) 20
Synchronization interval Ts (second) 60
Number of synchronization messages Ns 2
σ0 (µs) 36.5
Transmission period T (second) 60

Our algorithm sets z(2) ≈ z(3) ≈ 0.71 and z(4) ≈ . . . z(11) ≈ 0.99,
correctly identifying the bottleneck.

• r = 0 corresponds to the case where we want updates of the type min, max,
and sum. Here, transmission energy is the same for all the nodes, and the
receiving energy decides the lifetime for each node. Thus, nodes 2 and 3
become the bottleneck since they need to receive from more member nodes.
Therefore, z(4) . . . z(11) should be set small to save energy for nodes 2
and 3. Our algorithm achieves this by setting z(2) ≈ z(3) ≈ 0.999 and
z(4) ≈ . . . z(11) ≈ 0.703.

BS

1

2

4

3

7. . . 8 11. . .

Figure 5: Simulation topology
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Figure 6: Performance gain

To illustrate the performance gain of our threshold assignment algorithm, we
compare with a scheme which sets equal capture probability threshold at each
hop along the cluster hierarchy, z(2) = . . . = z(11) =

√
Λ. In Fig. 6, we vary

the value of r and show the performance gain, which is defined as the ratio be-
tween the network lifetime with the two schemes. We observe that our scheme
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always outperforms the scheme with equal thresholds. As r increases from 0 to
1, the gain first decreases and then increases. This is because, from the above
discussion, when r = 0, nodes 2 and 3 are the bottlenecks; hence our scheme
sets z(4), . . . , z(11) to be small and z(2), z(3) to be large. As r increases from
0, node 1 has a higher burden of relaying. To balance the energy consumption,
our scheme increases z(4), . . . , z(11) and decreases z(2), z(3). Consequently, our
solution becomes closer to the scheme with equal thresholds. When r = 0.5, our
solution almost overlaps with the other scheme and the performance gain is rel-
atively small. But as r increases further, our solution diverges from the other
scheme and achieves a higher gain, which is as large as 19% when r = 1. This
confirms that it is necessary to adopt an intelligent scheme to assign the thresholds,
and validates the effectiveness of our scheme.

5. Conclusions and Future Work

We have studied sleep/wake scheduling for low duty cycle sensor networks.
We explicitly consider the effect of synchronization error in the design of the
sleep/wake scheduling algorithm. In our previous work [3], we showed that the
impact of synchronization error is non-negligible, even for single hop communi-
cations. Our proposed optimal sleep/wake scheduling algorithm achieved a given
message capture probability threshold with minimum energy consumption.

In this work, we considered multi-hop communications. We relaxed the as-
sumption that the capture probability threshold is given, and studied how to deter-
mine per-hop capture probability thresholds to meet the QoS requirement of the
application. QoS in many sensor networks for continuous monitoring applications
is decided by the amount of data delivered from the nodes to the base station(s).
We formulate an optimization problem that sets the capture probability thresh-
old at each hop such that the network lifetime is maximized, and yet the QoS is
guaranteed. The main difficulty we encounter is that the problem turns out to be
non-convex. However, by investigating its unique structure, we have obtained a
0.73-approximation algorithm that is simple to implement in practice. We first
approximated the minimum value of our objective function, γ(z), with γ1(z), and
then defined a convex optimization problem (B1) using γ1(z). Next, we proved
that the solution of problem (B1) is an approximate solution to problem (B). Fi-
nally, we solved problem (B1) using the subgradient method. Simulations show
that our solution correctly identifies the bottleneck and significantly extends the
network lifetime.
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We have fixed the synchronization scheme in this paper, and only focused on
energy conservation with sleep/wake scheduling. Synchronization and schedul-
ing are, however, closely tied to each other and will both affect the overall system
performance. Therefore, it is necessary to jointly consider synchronization and
scheduling to improve the overall system performance. Further, the definition of
network lifetime in this work mainly applies to application scenarios with strict
coverage requirements. We plan to extend our framework to consider other defi-
nitions of network lifetime, e.g., time until network partitioning.
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Appendix: Proofs

To prove Proposition 2, we first prove the following lemma about the proper-
ties of several auxiliary functions.

Lemma 1. (1) Let φ1(z) = −z + 2Q−1(1−z
2

)g(Q−1(1−z
2

)), then φ1(z) < 0, ∀z ∈
(0, 1);

(2) Let φ2(z) = (1 − z) g(0)

g(Q−1( 1
2
−z))

− 1 + Q−1(1
2
− z))g(0), then φ2(z) >

0, ∀z ∈ (0, 1
2
);
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(3) Let φ3(z) = −Q−1(z)
g(Q−1(z))

− 1. For z > 1
2
, φ3(z) increases with z;

(4) Let φ4(z) =
(1−z)Q−1( 1−z

2
)

g(Q−1( 1−z
2

))
− 1. φ4(z) increases with z.

(5) Let φ5(z) =
g(Q−1( 1−z

2
))

g(Q−1(1−z))
. For z ∈ (0, 1), φ5(z) ≥ 1

2
.

We include the detailed proof in our technical report [27]. Now we prove Propo-
sition 2.

Proposition 2: (1) For z ≥ 0.86, γ(z) is strictly convex;
(2) for z ∈ [0, 0.99], 1.86z < γ(z) < 2.52z.

Proof: (1) We first compute γ ′′(z). Let w0(z) be the solution to min{G(w) =
(1−z)s(w)−w+g(w)−g(s(w)) : s(w) = Q−1(Q(w)−z),−∞ < w < Q−1(z)},
and s0(z) = Q−1(Q(w0(z)) − z), then

γ(z) = (1 − z)s0(z) − w0(z) + g(w0(z)) − g(s0(z)). (17)

From Proposition 1, w0 is the unique critical point of G(w), therefore, w0(z)
satisfies

G′(w0(z)) = (1 − z)
g(w0(z))

g(s0(z))
− 1

+(s0(z) − w0(z))g(w0(z)) = 0. (18)

Using equations (17) (18) and implicit differentiation, we get

w′
0(z) = −(1−z)s0g(w0)

g(w0)g(s0)[g(w0)−g(s0)]−w0g2(s0)+(1−z)s0g2(w0)
,

s′0(z) = g(w0)[g(w0)−g(s0)]−w0g(s0)
g(w0)g(s0)[g(w0)−g(s0)]−w0g2(s0)+(1−z)s0g2(w0)

,

γ′(z) = 1−z
g(s0)

,

γ′′(z) = [ (1−z)s0[g2(w0)−g(w0)g(s0)−w0g(s0)]
g2(w0)g(s0)−g2(s0)g(w0)−w0g2(s0)+(1−z)s0g2(w0)

− 1] 1
g(s0)

.

Therefore, it suffices to prove for z ≥ 0.86,
(1−z)s0[g2(w0)−g(w0)g(s0)−w0g(s0)]

g(w0)g(s0)[g(w0)−g(s0)]−w0g2(s0)+(1−z)s0g2(w0)
> 1.

From Proposition 1, Q−1(1+z
2

) < w0 < min(0, Q−1(z)), hence s0 > Q−1(1−z
2

) >
0. Therefore,

g(w0) − g(s0) > 0. (19)

Thus, the denominator of the left side in the above inequality is positive for any
z ∈ (0, 1). We multiply it on both sides, and after some algebraic operations, it
suffices to prove for z ≥ 0.86,

[g(s0) − (1 − z)s0][g(w0) + w0] > g2(w0). (20)
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Since ∀z ≥ 0.86, Q−1(1+z
2

) < w0 < Q−1(z) and Q−1(z) < 0, when z ≥ 0.86 we
have

w0 < Q−1(z) =⇒ g(w0) < g(Q−1(z)) =⇒ −w0 − g(w0)

> −Q−1(z) − g(Q−1(z)) = g(Q−1(z))φ3(z), (21)

and

Q−1(z) ≤ Q−1(0.86) ≈ −1.0803

=⇒ −Q−1(z) − g(Q−1(z)) > 0.

Similarly,

w0 > Q−1(
1 + z

2
) =⇒ s0 > Q−1(

1 − z

2
) ≥ 0 =⇒

g(s0) < g(Q−1(
1 − z

2
)) =⇒ −g(s0) + (1 − z)s0 >

−g(Q−1(
1 − z

2
)) + (1 − z)Q−1(

1 − z

2
)

= g(Q−1(
1 − z

2
))φ4(z), (22)

and as shown in Lemma 1, φ4(z) increases with z, hence for z ≥ 0.86,

φ4(z) ≥ φ4(0.86) ≈ 0.5388 =⇒ g(Q−1(
1 − z

2
))φ4(z) > 0.

Combining equations (21) and (22), we have

[g(s0) − (1 − z)s0][g(w0) + w0]

> φ3(z)φ4(z)φ5(z)g2(Q−1(z)). (23)

Also,

w0 < Q−1(z) ≤ Q−1(0.86) < 0

=⇒ g2(w0) < g2(Q−1(z)). (24)

Therefore, it suffices to prove for z ≥ 0.86,

φ3(z)φ4(z)φ5(z)g2(Q−1(z)) > g2(Q−1(z)),
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which is equivalent to showing φ3(z)φ4(z)φ5(z) > 1. Further, because φ5(z) ≥
1
2
, ∀z ∈ (0, 1), it suffices to prove for z ≥ 0.86,

1

2
φ3(z)φ4(z) > 1. (25)

¿From Lemma 1, φ3(z) and φ4(z) both increase with z, hence,

φ3(z) ≥ φ3(0.86), φ4(z) ≥ φ4(0.86) =⇒ 1

2
φ3(z)φ4(z)

≥ 1

2
φ3(0.86)φ4(0.86) ≈ 1.0382 > 1.

(2) As computed in the proof of (1),

s′0(z) = g(w0)[g(w0)−g(s0)]−w0g(s0)
g(w0)g(s0)[g(w0)−g(s0)]−w0g2(s0)+(1−z)s0g2(w0)

.

Combined with equation (19), both the numerator and the denominator in the
above equality are positive, thus s′0(z) > 0.

Next we bound γ(z) in two steps.
(i) Bounding γ′(z)
As computed in the proof of (1), γ ′(z) = 1−z

g(s0)
. Since s0(z) increases with

z, so 1
g(s0)

increases with z; while 1 − z is a decreasing function. Hence, for an

arbitrary interval [z1, z2), we have 1−z2

g(s0(z1))
< 1−z

g(s0(z))
< 1−z1

g(s0(z2))
, ∀z ∈ [z1, z2).

We divide the interval [0, 1) into n equal length intervals [ i
n
, i+1

n
), i = 0 . . . n−

1, then for z ∈ [ i
n
, i+1

n
), we have

Li =
1 − i+1

n

g(s0(
i
n
))

< γ′(z) =
1 − z

g(s0(z))
<

1 − i
n

g(s0(
i+1
n

))
= Ui, (26)

where Li, Ui can be numerically computed.
(ii) Bounding γ(z)

Let z ∈ [ i
n
, i+1

n
), we have γ(z) =

∫ z

0
γ′(z)dz =

∑i−1
j=0

∫ j+1
n

j

n

γ′(z)dz+
∫ z

i
n

γ′(z)dz,

substitute equation (26), we have

∑i−1
j=0 Lj

1
n

+ Li(z − i
n
)

z
<

γ(z)

z
<

∑i−1
j=0 Uj

1
n

+ Ui(z − i
n
)

z
.
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Hence, min
0≤j≤i

Lj <
γ(z)

z
< max

0≤j≤i
Uj. Further, because γ(z) is an increasing func-

tion,
γ( i

n
)

i+1
n

< γ(z)
z

<
γ( i+1

n
)

i
n

. In all, for z ∈ [ i
n
, i+1

n
), we have

max

(

min
0≤j≤i

Lj,
γ( i

n
)

i+1
n

)

<
γ(z)

z

< min

(

max
0≤j≤i

Uj,
γ( i+1

n
)

i
n

)

. (27)

We set n = 10000, then use equation (27) and compute that for z ∈ [0, 0.99],
1.86 < γ(z)

z
< 2.52.

Proposition 3:(1) 0.929 ≤ γ(z)
γ1(z)

≤ 1.26;
(2) γ1(z) is strictly convex.

Proof: (1) When z ≥ z0, γ(z)
γ1(z)

= 1. When 0 ≤ z ≥ z0, from Proposition 2(2),

1.86z < γ(z) < 2.52z, so 1.86z
γ1(z)

≤ γ(z)
γ1(z)

≤ 2.52z
γ1(z)

. Therefore, for 0 ≤ z < 1,

0.929 ≤ γ(z)
γ1(z)

≤ 1.26.
(2) We need to show that for z1 6= z2, γ1(θz1 + (1 − θ)z2) < θγ1(z1) + (1 −

θ)γ1(z2). Without loss of generality, assume z1 < z2, it suffices to show that

γ1(θz1 + (1 − θ)z2) − γ1(z1)

(1 − θ)(z2 − z1)
<

γ1(z2) − γ1(θz1 + (1 − θ)z2)

θ(z2 − z1)
. (28)

Let κ(z) = 2z + 0.001z2. There are three cases:

• z1 < z2 ≤ z0 In this case γ1(z) = κ(z). Because κ(z) is strictly convex,
hence (28) holds.

• z0 ≤ z1 < z2 In this case γ1(z) = γ(z). As shown in Proposition 2, γ(z) is
strictly convex for z ≥ 0.86. Hence (28) holds.

• z1 < z0 < z2 Without loss of generality, suppose θz1 + (1 − θ)z2 ≤ z0. By

28



Mean Value Theorem, in (28)

LHS =
γ1(θz1 + (1 − θ)z2) − γ1(z1)

(1 − θ)(z2 − z1)

=
κ(θz1 + (1 − θ)z2) − κ(z1)

(1 − θ)(z2 − z1)

=
κ′(ζ1)(1 − θ)(z2 − z1)

(1 − θ)(z2 − z1)

= κ′(ζ1),

where ζ1 ∈ [z1, θz1 + (1 − θ)z2].

RHS =
γ1(z2) − γ1(θz1 + (1 − θ)z2)

θ(z2 − z1)

=
γ(z2) − γ(z0) + κ(z0) − κ(θz1 + (1 − θ)z2)

z2 − z0 + z0 − [θz1 + (1 − θ)z2]

=
γ′(ζ2)(z2 − z0) + κ′(ζ3)[z0 − (θz1 + (1 − θ)z2)]

z2 − z0 + z0 − [θz1 + (1 − θ)z2]
,

where ζ2 ∈ [z0, z2], ζ3 ∈ [θz1 + (1 − θ)z2, z0].

We compute that κ′(z0) ≈ 2.0019 < γ ′(z0) ≈ 5.7241. Since κ(z) is strictly
convex, and γ(z) is strictly convex for z ≥ 0.86. Therefore, we have

γ′(ζ2) ≥ γ′(z0) > κ′(z0) ≥ κ′(ζ1)

κ′(ζ3) ≥ κ′(θz1 + (1 − θ)z2) ≥ κ′(ζ1)

Therefore,

RHS =
γ′(ζ2)(z2 − z0) + κ′(ζ3)[z0 − (θz1 + (1 − θ)z2)]

z2 − z0 + z0 − [θz1 + (1 − θ)z2]

>
κ′(ζ1)(z2 − z0) + κ′(ζ1)[z0 − (θz1 + (1 − θ)z2)]

z2 − z0 + z0 − [θz1 + (1 − θ)z2]

= κ′(ζ1) = LHS.

Similarly, we can prove (28) holds if θz1 + (1 − θ)z2 ≥ z0.

Hence (28) holds for all possible z, which shows γ1(z) is strictly convex.
Summary of Notation: We list all the symbols we use in Tables 2 and 3.
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Table 2: List of symbols

Te Epoch duration
Ts Synchronization interval
Ns Number of synchronization messages
T Transmission period
N Rounds of transmissions in an epoch
Li Message length from node i
r Compression ratio
(C(j, k), ti(j, k)), Corresponding time instants between
k = 1 . . .Ns CH and member i in epoch j
ai(j), bi(j) Clock skew and phase offset (respectively) between node i

and CH in epoch j

âi(j), b̂i(j) Estimates of ai(j), bi(j)
σ2

0 Variance of the random error
τp Scheduled arrival time of packet p
τ ′
p Actual arrival time of packet p

wp Wake up time to receive packet p
sp Sleep time if packet p is not received
th Capture probability threshold
αI Idle power
αr Receiving power
R Data rate
Lp Message length
C(j, k) and C2(j, k) Refer to Equation (6)
τ̂ and (w, s) Normalized arrival time and normalized wake up interval re-

spectively
g(·) Probability Density Function of standard normal distribution
Q(·) Complementary cumulative distribution function
γ(·) Refer to Equation (5)
H(n) The cluster head of node n
M(n) The set of nodes that are members of n
D(n) The set of nodes that are the descendants of n
d(n) The hop distance from node n to BS
z(n) Capture probability threshold for messages from node n
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Table 3: List of symbols (continued)
TL Network lifetime
Λ Predefined threshold on end to end delivery probability
εs(n) Sensing energy in an epoch
εsyn(n) Synchronization energy in an epoch
l The amount of sensing data generated by each sensor in a

transmission period T
Lavg(n) The average message size from n
εt(n) average transmission energy of n in an epoch
εr(n) average receiving energy of n in an epoch
η(n,−→z ) average power dissipated in node n (refer to Equation (11))
A(n) Refer to Equation (11)
P (n, i) Refer to Equation (11)
Q(n, i) Refer to Equation (11)
ξ(n) Initial energy of node n
Ψ(1/TL) Lifetime-penalty function
u = 1/TL

γ1(·) Approximation of γ(·) (refer to Proposition 2)
η1(n,−→z ) Refer to Problem (B1)
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