
LiTMaS: Live road Traffic Maps for Smartphones

S. M. Iftekharul Alam, Sonia Fahmy, Yung-Hsiang Lu
Purdue University

E-mail: {alams,fahmy,yunglu}@purdue.edu

Abstract—A smartphone application that displays a live view
of road traffic can provide drivers with real-time information on
traffic jams, flash floods or accidents along their planned routes.
This information aids them in avoiding delays and uncertainties
on the road, enhancing their navigation experience. Several US
departments of transportation provide information from street
cameras in the form of a snapshot of a particular location on
a Google map. However, it is difficult for drivers to manually
select cameras on the map to obtain consolidated information
about road conditions along a particular route. In this paper, we
design an energy-efficient mobile service that provides drivers
with a convenient interface to observe live camera coverage
along a route. Our proposed solution comprises an Android
application and a cloud-based proxy service between smartphones
and traffic cameras. The proxy provides an abstraction layer over
different communication protocols adopted by traffic cameras,
and transfers camera images for a specified route to the smart-
phone as a batch, thereby reducing communication overhead
and improving user response time. By employing an in-memory
cache, the proxy server maintains the most recently accessed
camera images and reduces camera polling. We integrate our
solution with traffic cameras from cities in Massachusetts, New
York, and Washington DC, and demonstrate its reduced energy
consumption and reduced response time.

I. INTRODUCTION

The introduction of the GPS (Global Positioning Sys-
tem) [1] and the proliferation of small form factor motion
sensors have made possible navigation systems that are com-
pact and inexpensive enough to be used in consumer products.
With the availability of high speed 3G/4G networks and the
incorporation of GPS sensors into smartphones, navigation
applications are gaining traction among automobile owners
and smartphone users. A navigation application typically finds
out the user’s position via GPS, then loads the map of
surrounding areas. The application gives the users information
about their position and a route to the desired destination.
However, these applications lack information about real-time
traffic bottlenecks and accidents along the route. This limits
the ability of navigation systems to be responsive to dynamic
changes on the roadways. Dynamic information can increase
safety and provide alternate routes, especially with increasing
congestion and accidents on freeways [2].

Google [3] initially provided users with a static street view
along a route and now adopts Waze [4] which displays alerts
on a map about possible traffic jams and accidents based
on crowd-sourced information. There are also several crowd-
source based smartphone applications [5], [6] available which
provide similar services. However, none of these provides a
live traffic view along a route. Further, crowd-sourced infor-
mation cannot be used to make reliable decisions on the road
since it is notoriously unreliable.

Live feeds from road-side cameras installed by the depart-
ments of transportation (DoT) are a reliable source of real-
time traffic information. Traffic cameras placed at common
congestion points on highways, freeways, interstates and major
arteries help commuters observe traffic flow at various points
and select a route at their discretion. Normally, traffic flows do
not vary much from day to day, but in the event of an accident
or road closure, a traffic alert can be extremely valuable
for a time-crunched commuter. Footage from traffic cameras
also allows drivers to be aware of imminent hazardous road
conditions stemming from sudden weather changes (e.g., heavy
snow, freezing rain, flash floods). Augmenting camera images
with map information on smartphones can provide users with a
live traffic view along their entire route, and help them avoid
unexpected situations on the road. While some applications
have been developed in collaboration with different DoTs [7],
[8], they only allow drivers to manually select webcams on the
map one by one. Hence, these applications are inconvenient to
use and do not provide a comprehensive view of a specific
route.

In this paper, we propose LiTMaS, a system that provides
a live traffic mapping service, sending users snapshots from
cameras along their route. A user can analyze the traffic from
the images through a convenient interface. The system also
familiarizes users with landmarks along their route. LiTMaS
includes a cloud-based proxy service between smartphones and
street cameras to reduce energy consumption of the mobile
application, compared to existing technologies. The proxy
server handles different communication protocols with street
cameras, and sends images collected from street cameras to
the phones through a standard protocol. Thus, the mobile
application does not need to undergo any changes when
there are changes to communication protocols or standards of
street cameras. Further, we pre-process images according to
the display requirements of different smartphones, and send
images as a batch, thereby reducing computational overhead
on smartphones. Transferring images in a batch additionally
reduces the overall 3G radio tail [12].

We implement the LiTMaS mobile application on Android
and deploy our Java-based proxy server on Amazon EC2. We
integrate LiTMaS with street cameras from Massachusetts,
New York, and Washington DC, and demonstrate its effec-
tiveness by comparing it with the state-of-the-art, Beat the
traffic [8], which pulls camera images directly. We collect
network packet traces from experiments with both systems.
By fitting network packet traces to a standard energy model
for a 3G network, we compute the energy consumption of
communication. In addition, we collect CPU usage of the
mobile application and average response time (time spent from
the point of query to the reception of all camera images) per
query. Our experimental results show that LiTMaS reduces en-978-1-4799-8461-9/15/$31.00 c�2015 IEEE

TABLE I. COMPARISON AMONG LITMAS AND EXISTING WORK.

System Availability of live images
of the route in question

Reporting real-time
traffic incidents

Mobile
service

Energy-efficient
design

Source of real-time information

Google Map Street View [3] No (a few years old images) No Yes No Images taken by specially adapted cars
Google Map Traffic (Waze [4] based) No Yes Yes No Crowdsourcing
OpenStreetMap [5], WikiMapia [6] No Yes No No Crowdsourcing
Augmented Aerial Earth Map [9], [10] No (projected view) No No No Street cameras and their projections
Garmin Smartphone Link [11] Yes Yes Yes No Street cameras, sensors, radio feeds
Beat the traffic [8] Yes Yes Yes No Street cameras
LiTMaS Yes Yes Yes Yes Street cameras

ergy consumption and reduces response time without incurring
significant computation overhead.

Our contributions include the design of:

• A mobile application that provides drivers with a con-
venient interface to observe live camera feeds along a
route.

• A cloud-based proxy service which handles com-
munication with street cameras, i.e., caching, pre-
processing and batching camera images before send-
ing them to smartphones. These techniques reduce
computation and communication overhead.

• A complete system integrated with street cameras
from different cities. We demonstrate reduced energy
consumption by at least 70%, 4⇥ improvement in
response time, and reduction in camera polling by
at least 48% on the average, compared to the vanilla
approach.

II. RELATED WORK

Table I compares traffic map applications and services
developed over the past few years. Among these, Google
Map [3] is the de facto standard for map service, providing
users with street and traffic views along their planned routes.
The street views are constructed based on images collected a
few years ago and thus do not provide real-time information
about road conditions. The traffic view feature provides infor-
mation on the traffic on roads (e.g., light or heavy traffic) and
reports alerts about construction or accidents based on crowd-
sourced information. Crowdsourcing is, however, only as good
as the crowd that provides the information. The application is
susceptible to targeted, malicious attacks. OpenStreetMap [5]
and WikiMapia [6] are two online services which also rely on
crowd-sourced information to report real-time traffic situations
and thus suffer from the same vulnerabilities. They do not
currently run on mobile platforms.

The Garmin Smartphone Link [11] application works to-
gether with compatible GPS devices to fetch real-time traf-
fic information. While such information mainly comes from
road sensors and crowd-sourced data, this application has
an additional feature enabling users to view live feeds from
their selected set of traffic cameras. Beat The Traffic [8] is a
stand-alone mobile application which provides similar service
to get a webcam snapshot. However, it is inconvenient for
users to manually select webcams on the map one by one
to get consolidated information about road conditions along a
particular route. This causes delays in displaying images to the
user.

Other work [13], [14] exploits information from street
cameras and floating car data to provide fleet management and

traffic monitoring of a fixed location. These do not provide
map services to drivers on the road. Augmented Aerial Earth
Map [9], [10] provides a live view of a particular point on
a route but not the entire route. Most recently, Kaseb et
al. [15] developed a smartphone application with similar goals
to ours, but they do not use a proxy service or focus on energy
efficiency.

Our proposed solution, LiTMaS, employs a cloud-based
proxy service between smartphones and street cameras to
provide a real-time traffic view along a route with reduced
communication and computation overhead on the smartphones.

III. LITMAS: A LIVE TRAFFIC MAPPING SYSTEM

As discussed above, the high penetration of smartphones
and the deployment of a large number of street cameras by the
DoTs are two enabling factors to realize a live traffic viewing
application for smartphones. However, designing and imple-
menting such an application is non-trivial due to the energy-
constrained nature of smartphones and the interoperability
issues of street cameras. It is cumbersome to continue updating
the mobile application to adapt to the different communication
protocols used by the street cameras of different DoTs. Further,
the communication overhead between smartphone and street
cameras should be optimized to reduce smartphone energy
consumption. We therefore define the problem of realizing a
live traffic mapping system as: Providing mobile users with a
service that collects real-time snapshots from street cameras
and offers them a convenient interface to view live traffic along
their specified routes with reduced communication overhead.

We propose a live traffic mapping system, LiTMaS, con-
sisting of a cloud-based proxy service and an Android mobile
application. The proxy serves as the communication interface
to street cameras and fetches images from cameras to satisfy a
certain user query. By caching images during a period of time,
our system reduces polling of the cameras and improves user
response time. The mobile application allows users to query a
particular route and provides them with a video or slideshow
of images from the cameras available along that route. We
show an example in Figure 1(b) where a video is provided
along with the route information for a particular user query.
As shown in Figure 1(a), in existing systems, a user has to
manually select a camera icon and view one camera’s view
at a time. This incurs overhead when a large number of users
try to view snapshot from the same camera at the same time,
since no caching is performed.

Figure III illustrates the overall architecture of LiTMaS. In
the subsequent sections, we describe the functional modules
of LiTMaS in more detail.

(a) Beat the traffic (b) LiTMaS

Fig. 1. Existing systems require a user to manually select a
camera and show one snapshot at a time; In contrast, LiTMaS
provides the user with a video or slideshow of images found
from the cameras available along the desired route.

LiTMaS App

Google Map

Querier

Tra�c View

Communicator

Android Mobile

Proxy Server

Camera

Info

Communicator

Image

Fetcher and

Processor

Image

Cache

Camera

Feed Parser

Cloud

Google Map

Service

Camera Feed

Provider

Camera 1

Camera 2

Camera 3

Fig. 2. Overall architecture of LiTMaS

A. LiTMaS Mobile Application

The Android application consists of three modules: (i)
Google map querier, (ii) traffic viewer, and (iii) communicator.

The communicator module uses TCP for sending and
receiving data to and from the proxy server. The traffic viewer
module lets the user enter the start and end points for the
journey and shows live traffic along the route. After obtaining
user input, the Google map querier module interacts with the
Google map service using the Android Google Map APIv2 to
retrieve the route from the starting location to the destination.

The route consists of a large number of latitude/longitude
points, and is divided into small boxes called route boxes.
A route box is a rectangular box specified by four pairs of
latitude/longitude points that covers a number of points on
the path. The dimensions of the route box are configurable.
The latitude/longitude coordinates of the boxes are then sent
over to the proxy server. The server retrieves a list of all
cameras within a specified radius of these coordinates, and
takes snapshots of live feeds from the cameras. Once the
communicator module receives these snapshots, it informs
the traffic viewer which displays a slideshow of the received
images. The traffic viewer also allows viewing live feeds of a
particular point or location.

We note that there is a non-negligible overhead for sending
route box information from the smartphone to the proxy, espe-
cially when the route is long. By performing the Google map
query on the proxy, this overhead can be avoided; however,
Google Map has a limit on the number of API requests per
IP address: 100,000 requests are allowed per 24 hours and
a maximum of 23 waypoints per request [16]. Hence, it is
likely that the proxy will be blocked by Google since it has
to handle queries on behalf of a large number of users. To
reduce this route box-related overhead, we consider caching
the location (latitude, longitude) of cameras on the smartphone.
Since the route box information is only necessary to find
relevant cameras, cached camera information can help locate
appropriate cameras on the route without sending route boxes
to the proxy. Once cameras are identified, the smartphone can
simply send the identifiers of the cameras to the proxy to fetch
images, thereby reducing the size of the messages exchanged
between the smartphone and the proxy.

B. LiTMaS Proxy Server

The proxy server runs in the cloud and is the bridge
between the mobile application and street traffic cameras. It has
four main functions: (a) parsing data from the DoTs regarding
camera locations, (b) preprocessing images before transferring
them to the smartphone, (c) fetching images (if not in cache)
and transferring them as a batch to the smartphone, and (d)
reducing polling of street cameras by caching frequently used
images.

1) Traffic Camera Feed Parser: This module collects in-
formation about street cameras from the website of DoTs
or via manual input. The DoTs provide information such as
the name of the camera, location of the camera (latitude,
longitude), hyperlink where the corresponding camera image
can be downloaded, and direction of the camera. However, the
format of the information (e.g., XML schemas) varies from US
state to US state. We define a Parser interface that takes raw
information provided by DoTs and calls a parse() function
that outputs a common CameraObject for each camera. For
each state in the US, we need to implement a separate parser
that overrides the parse() function and still outputs camera
information in the form of CameraObjects. If we need to add
camera information for new states or modify existing formats,
we only need to change the corresponding parse() function,
keeping other parts of the system intact. After parsing, camera
information is stored into a database for future reference.

2) Image Fetcher and Processor: This module takes a set
of route boxes along a specific route as input, and finds a
list of cameras from the database that are located inside these
boxes. Then it searches the cache (described below) to check
for the availability of images for the listed cameras. If there
is no active image found for a camera, the module fetches the
image directly from that camera by retrieving a file from the
hyperlink provided with the camera information. The retrieved
image is also stored into the cache.

Before sending the images to the mobile application, we
adjust their resolution. Preprocessing images for the best
viewing experience is important, and we perform this on the
proxy server to save smartphone energy. When the LiTMaS
mobile application requests the list of cameras available on
a route, it also informs the proxy of the dimensions of its

screen. The proxy resizes the images according to the specified
dimensions. Once image resizing is complete, the resized
images are composed into a slideshow or video in order, and
sent to the mobile application.

3) Caching: We use an in-memory Least Recently Used
(LRU) cache in the cloud to store the images. The LRU cache
moves an item to the head of a queue when it is accessed.
When an item is added to a full cache, the item at the end
of that queue is evicted and becomes eligible for garbage
collection. We start with a single cache node of default size
and incrementally add more cache nodes if the total acquired
space of the available cache nodes nears their capacity. The
advantage of using cloud-based cache nodes is that they
can be replaced automatically if there is a failure, thereby
reducing the overhead associated with self-managed systems.
The ability to add new cache nodes on-demand alleviates the
risk of overloaded databases or caches, which ensures smooth
operation on the mobile application side.

In addition to the LRU strategy, we evict an image from
the cache if it resided in the cache more than a specified time
(called expiry time). As future work, we plan to investigate the
trade-off between accuracy and communication overhead over
cameras by varying the expiry time.

4) Communicator: The communicator module is responsi-
ble for all communication with the mobile application. Tra-
ditional blocking I/O spawns a thread for each user, and pro-
cesses all input/output corresponding to that user in the thread.
The thread lives until the user terminates the connection. This
approach lacks scalability as the number of users increases,
making the system unusable. LiTMaS overcomes this problem
by using a single threaded communicator and a pool of
worker threads. When there is new data, the communicator
reads it from the channel and submits it to a pool of worker
threads which perform further processing. If a worker thread is
somehow terminated while it is still in use, it is automatically
replaced by a new thread.

IV. EVALUATION

We test the LiTMaS Android application on an HTC
One mobile (32 GB internal storage, 2 GB RAM, Qual-
comm APQ8064T Snapdragon 600 processor and Androidv4.4
Kitkat). Additionally, since we do not have the administrative
access necessary to analyze energy consumption, we use an
emulator of the HVGA slider phone (3.2 inch, Android API
15, ARM 64 bit CPU, 512 MB RAM and 1024 MB SD card)
to conduct our experiments. We implement our proxy server
using Java, and deploy it on Amazon EC2 with ElastiCache
of size 555 MB. We use Amazon Simple DB to implement
the database for camera information. The emulator runs on a
computer connected to Purdue WiFi network.

We compare the performance of LiTMaS to that of Beat
the traffic [8], which pulls an image directly from a camera
upon a request from the user. For a route query, this application
displays the route on a Google map and shows camera icons
along the route. The user has to select camera icons one by
one to view the live traffic along the route. We implement
this approach and port it to the emulator to compare the two
approaches.

A. Performance Metrics

In order to analyze the performance of the proxy server,
we consider two performance metrics: (1) Cache hit rate, i.e.,
percentage of camera access requests that are served from the
cache of the proxy server, and (2) Average reduction in the
number of accesses per camera, compared to the strategy of
Beat the traffic where each request for an image requires an
access to a camera.

We also compute three performance metrics to compare
the performance of LiTMaS and Beat the traffic mobile ap-
plications: (1) Response time: Time between the user query
and the reception of an image, (2) CPU usage: Percentage
of CPU usage of the mobile application, and (3) Energy
consumption: Energy expended for network data transfer over
the 3G network on the smartphone.

B. Datasets

We use three datasets from the DoTs of Massachusetts
(MA), Washington DC, and New York (NY), which have 68,
299 and 668 cameras, respectively. We generate 500, 1100,
and 1000 routes in MA, DC, and NY, by randomly choosing
a pair of camera locations within each city. The cumulative
distributions of the number of cameras along a route are shown
in Figures 3(a), 3(c), and 3(b) for the three datasets. The MA
dataset has at most 33 cameras on a route. In contrast, cameras
in DC and NY are more densely deployed, with more than
50% of the routes with more than 25 cameras. The maximum
number of cameras on a route in DC and NY are 70 and 80,
respectively.

C. Performance of Proxy Server

We run our proxy server on an Amazon EC2 Linux
instance. In order to simulate a large number of clients, we
rewrite the mobile applications of both LiTMaS and Beat the
traffic in C using Android’s native development kit. These
native versions are lightweight since they exclude graphical
user interfaces and just handle network communication. We
run 2600 clients on a Purdue University server. Out of these
2600 clients, 42% are from NY, 39% are from DC, and the rest
are from MA as shown in Figure 3(d). The arrival of clients
is controlled according to a Poisson process with � = 0.3 s.
The duration of each experiment is 13 minutes. We reduce
the burden on the DoT servers by grabbing images from their
servers once, saving them on the proxy server and then serving
them from the proxy, adding the appropriate round trip time
(RTT) of each camera link.

TABLE III. REDUCTION IN NUMBER OF ACCESSES PER CAMERA
COMPARED TO Beat the traffic

Expiry time (s) Average reduction rate Maximum reduction
rate

30 46.80% 91.5%
60 59.49% 95.59%
120 69.70% 98.4%

We vary the expiry time for each cache entry (i.e., image)
from 30 s to 120 s and measure the cache hit rate at the
end of each experiment. Table II shows the output of these
experiments. With 30 s, 60 s and 120 s expiry time, out of a
total 44249 requests, 70.13%, 80.08%, and 88.11% are served

0 5 10 15 20 25 30

0
.2

0
.4

0
.6

0
.8

Number of cameras

P
er

ce
n

ta
g
e

o
f

ro
u
te

s

(a) CDF of Massachusetts dataset

0 10 20 30 40 50 60 70

0
.2

0
.4

0
.6

0
.8

Number of cameras

P
er

ce
n

ta
g
e

o
f

ro
u
te

s

(b) CDF of Washington DC dataset

0 20 40 60 80

0
.2

0
.4

0
.6

0
.8

Number of cameras

P
er

ce
n

ta
g
e

o
f

ro
u
te

s

(c) CDF of New York dataset

42%

39% 19%

NY DC MA

(d) Distribution of 2600 users

Fig. 3. Cumulative distribution functions (CDFs) of number of cameras along different routes for three datasets and distribution of users considered in the
experiment.

TABLE II. PERFORMANCE OF THE CACHE MODULE OF THE PROXY SERVER

Expiry time (s) Number of requests Number of hits Number of misses Number of items reclaimed Hit rate
30 44249 31036 13213 10837 70.13%
60 44249 35757 8492 6913 80.08%
120 44249 38989 5260 1379 88.11%

from the cache, respectively. The cache hit rate increases as
the expiry time increases since the longer an item lives in the
cache, the more client requests can be served from the cache.
We also find that the number of reclaimed items is 10837 for
30 s expiry time which is higher, since a larger number of write
or set commands use memory from the expired items as they
have a relatively shorter life spans.

We further measure how many times a camera link would
be accessed without a proxy (the strategy of Beat the traffic)
and how many times a camera link is accessed in the presence
of our proxy. Then we calculate the reduction in the number of
accesses per camera for different expiry time values as listed
in Table III. With caching, we reduce the average number of
accesses per camera by 46.80% to 69.70% where the maximum
reduction can be as large as 91.5-98.4%.

D. Performance of Mobile Application

We use tcpdump [17] to capture network packets and feed
the packet traces to the AT&T tool ARO [18] to analyze energy
usage. We use the standard Android top to get the percentage
of CPU usage for each mobile application every second.

TABLE IV. AVERAGE RESPONSE TIME FOR DIFFERENT ROUTES

Route # of cameras Time (milliseconds)
Beat the traffic LiTMaS

1 5 586.76 135.6
2 10 557.78 121.5
3 30 461.24 94.6

We assume that a user needs 4 s to view an image, i.e.,
images found from the cameras on the route are displayed
every 4 s. To compare our approach and Beat the traffic, we
consider three different routes in Massachusetts, consisting
of 5, 10, and 30 cameras, and display all images.. The
comprehensive list of all the cameras present on a route is
obtained by querying the camera information database on the
proxy server. For each route, we run every experiment 5 times
and the results are averaged over the 5 runs.

1) Response Time: Table IV lists the response times (de-
fined in Section IV-A) of LiTMaS versus Beat the traffic for

Route 1 (5 cameras) Route 2 (10 cameras) Route 3 (30 cameras)
Different routes

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

 (
J)

0
5
0

1
0

0
1

5
0

1.04

22.72

2.38

50.76

5.6

160.84
LiTMaS Beat the traffic

Fig. 4. Energy consumption of LiTMaS and Beat the traffic

5, 10, and 30 cameras. Before polling the first camera, both
approaches generate the route and obtain the list of cameras
along the route. Hence, polling the first camera image takes
much more time compared to polling other cameras. Since we
use an intermediate proxy server to fetch the images from the
cameras as opposed to polling them directly, LiTMaS is much
faster. On the average, LiTMaS is around 4 times faster.

 0

 10

 20

 30

 40

 50

 5 10 15 20 25 30

E
n
er

g
y

 c
o
n
su

m
p

ti
o

n
 (

J)

Burst size (number of images)

LiTMaS

Fig. 5. Energy consumption with varying burst size

2) Energy Consumption: Figure 4 depicts the energy con-
sumption of LiTMaS versus Beat the traffic for routes with 5,
10, and 30 cameras. As the number of cameras on the route
increases, there is an exponential rise in energy consumed with
Beat the Traffic, whereas there is a roughly linear rise for
LiTMaS. The difference in energy consumption is due to the

fact that the images are directly fetched by the smartphone with
Beat the Traffic. Every 4 seconds, the user queries each camera
on the route, and hence the radio remains in the high power
state (DCH) until the user asks for the last camera image on the
route. In contrast, the energy intensive job of preparing the list
of cameras along the route and fetching the images from them
is done in the cloud in LiTMaS. Images are batched, which
does not keep the radio in the DCH state unnecessarily, leading
to almost negligible energy consumption for the mobile client.
We also compute CPU usage of both LiTMaS and Beat the
traffic applications and find their performance comparable (3
to 4% CPU usage on average).

3) Varying Burst Size: The burst size is the number of
camera images transferred at a time from the proxy server to
the mobile application. Figure 5 shows the energy consumption
for the route with 30 cameras with varying burst size. Energy
consumption is reduced as the burst size increases. A burst
occurs when the user requests a new image (not from the
previous burst) and the radio remains on until the transfer of
the last burst is complete. This is why energy consumption
becomes higher for smaller burst sizes. In contrast, energy
consumption is lowest when the burst size is 30 since the radio
of the mobile can go to the idle state as soon as all the images
on the route (30 images in this case) are downloaded. We
note that even with a burst size of 5, LiTMaS reduces energy
consumption by 70% compared to Beat the traffic.

E. Discussion

Since LiTMaS serves images from a cache, the images may
be stale in cases of rapidly changing traffic. By tuning the
expiry time parameter of each cache entry to its corresponding
camera refresh rate, the stale image problem can be avoided.
While existing live traffic systems update traffic information
every two minutes [11], LiTMaS can provide more rapid
updates with an expiry time of 30 s, while still reducing the
average number of accesses per camera by at least 46.80%. We
certainly acknowledge that this benefit stems from leveraging
additional resources such as the proxy and cache, which may
be hosted on the same infrastructure as the camera database.
Beat the traffic also interacts with a database server to obtain
information about traffic cameras on a given route. As future
work, we plan to measure the redundancy across subsequent
images of the same camera in cases of frequent user queries
about a route. By exploiting this redundancy, LiTMaS can
reduce the amount of data exchanged between the smartphone
and proxy. We also plan to add personalized features to
LiTMaS, enabling users to get live feeds of their favorite routes
quickly. For example, the user may prefer to view quantitative
traffic information over raw camera images, and the proxy can
automatically analyze images and report status in this case.

V. CONCLUSIONS

We have presented the design and implementation of a live
traffic mapping system for smartphones, LiTMaS, that provides
drivers with a convenient interface to observe live camera
coverage along a route. Our proposed solution includes a
proxy service between smartphones and street cameras to make
it more energy efficient. The proxy server handles different
communication protocols with street cameras and sends images

collected from street cameras to smartphones through a well-
defined uniform protocol. The proxy also pre-processes camera
images according to the displays of different smartphones, and
sends images in a batch, thereby reducing overhead on the
smartphones. We implement our mobile application on An-
droid and evaluate it with street cameras from Massachusetts,
New York, and Washington DC. Experimental results show
that LiTMaS significantly reduces energy consumption and
improves user response time.

ACKNOWLEDGMENTS

The authors would like to thank the members of the
CAM2 (continuous analysis of many cameras) project:
cam2.ecn.purdue.edu, Wenyi Chen, Ganesh Gingade,
Pranjit Kalita, Ahmed Kaseb, and Youngsol Koh for helping
identify the traffic cameras used. This work has been sponsored
in part by NSF grant CNS-1319924.

REFERENCES

[1] R. Guha and W. Chen, “A distributed traffic navigation system using
vehicular communication,” in Proc. of the IEEE Vehicular Networking
Conference (VNC), Oct 2009, pp. 1–8.

[2] H. Abbott and D. Powell, “Land-vehicle navigation using GPS,” Proc.
of the IEEE, vol. 87, no. 1, pp. 145–162, Jan 1999.

[3] D. Anguelov, C. Dulong, D. Filip, C. Frueh, S. Lafon, R. Lyon,
A. Ogale, L. Vincent, and J. Weaver, “Google street view: Capturing
the world at street level,” Computer, vol. 43, no. 6, pp. 32–38, June
2010.

[4] “Waze map,” https://www.waze.com/editor/.
[5] M. Haklay and P. Weber, “Openstreetmap: User-generated street maps,”

Pervasive Computing, IEEE, vol. 7, no. 4, pp. 12–18, Oct 2008.
[6] “Wikimapia,” http://wikimapia.org/#lang=en&lat=40.424900&lon=-86.

916200&z=12&m=b.
[7] “California transportation department,” http://www.dot.ca.gov/dist10/

cctv/map.htm.
[8] “Beat the traffic,” http://www.beatthetraffic.com.
[9] K. Kim, S. Oh, J. Lee, and I. Essa, “Augmenting aerial earth maps

with dynamic information,” in Proceedings of the IEEE International
Symposium on Mixed and Augmented Reality, 2009.

[10] A. D. Abrams and R. B. Pless, “Webcams in context: Web interfaces to
create live 3d environments,” in Proc. of the International Conference
on Multimedia, 2010.

[11] “Garmin smartphone link,” http://sites.garmin.com/en-US/
smartphonelink/.

[12] F. Qian, Z. Wang, Y. Gao, J. Huang, A. Gerber, Z. Mao, S. Sen, and
O. Spatscheck, “Periodic transfers in mobile applications: Network-
wide origin, impact, and optimization,” in Proc. of the International
Conference on World Wide Web, 2012.

[13] A. Efentakis, S. Brakatsoulas, N. Grivas, G. Lamprianidis, K. Pa-
troumpas, and D. Pfoser, “Towards a flexible and scalable fleet manage-
ment service,” in Proceedings of the ACM SIGSPATIAL International
Workshop on Computational Transportation Science, 2013.

[14] O. Sidla, M. Rosner, M. Ulm, and G. Schwingshackl, “Traffic monitor-
ing with distributed smart cameras,” in Proc. SPIE, vol. 8301.

[15] A. S. Kaseb, W. Chen, G. Gingade, and Y.-H. Lu, “Worldview and
route planning using live public cameras,” in Imaging and Multimedia
Analytics in a Web and Mobile World, 2015.

[16] “The google geocoding API,” https://developers.google.com/maps/
documentation/geocoding/.

[17] “Tcpdump,” http://www.tcpdump.org.
[18] F. Qian, Z. Wang, A. Gerber, Z. Mao, S. Sen, and O. Spatscheck, “Profil-

ing resource usage for mobile applications: A cross-layer approach,” in
Proc. of the International Conference on Mobile Systems, Applications,
and Services, 2011.

