
Contain-ed: An NFV Micro-Service System for Containing e2e
Latency

Amit Sheoran∗
Purdue University

asheoran@purdue.edu

Puneet Sharma
Hewlett Packard Labs

puneet.sharma@hpe.com

Sonia Fahmy
Purdue University
fahmy@purdue.edu

Vinay Saxena
Hewlett Packard Enterprise
vinay.saxena@hpe.com

ABSTRACT
Network Functions Virtualization (NFV) has enabled operators
to dynamically place and allocate resources for network services
to match workload requirements. However, unbounded end-to-
end (e2e) latency of Service Function Chains (SFCs) resulting from
distributed Virtualized Network Function (VNF) deployments can
severely degrade performance. In particular, SFC instantiations with
inter-data center links can incur high e2e latencies and Service Level
Agreement (SLA) violations. These latencies can trigger timeouts
and protocol errors with latency-sensitive operations.

Traditional solutions to reduce e2e latency involve physical de-
ployment of service elements in close proximity. These solutions are,
however, no longer viable in the NFV era. In this paper, we present
our solution that bounds the e2e latency in SFCs and inter-VNF con-
trol message exchanges by creating micro-service aggregates based
on the affinity between VNFs. Our system, Contain-ed, dynamically
creates and manages affinity aggregates using light-weight virtu-
alization technologies like containers, allowing them to be placed
in close proximity and hence bounding the e2e latency. We have
applied Contain-ed to the Clearwater IP Multimedia System and
built a proof-of-concept. Our results demonstrate that, by utilizing
application and protocol specific knowledge, affinity aggregates
can effectively bound SFC delays and significantly reduce protocol
errors and service disruptions.

CCS CONCEPTS
•Networks→Data center networks;Mobile networks; Network
protocol design;

KEYWORDS
Network Functions Virtualization; Containers

∗Work funded by Hewlett Packard Labs and done during Amit Sheoran’s internship.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HotConNet ’17, August 25, 2017, Los Angeles, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5058-7/17/08. . . $15.00
https://doi.org/10.1145/3094405.3094408

ACM Reference format:
Amit Sheoran, Puneet Sharma, Sonia Fahmy, and Vinay Saxena. 2017.
Contain-ed: An NFV Micro-Service System for Containing e2e Latency.
In Proceedings of HotConNet ’17, Los Angeles, CA, USA, August 25, 2017,
6 pages.
https://doi.org/10.1145/3094405.3094408

1 INTRODUCTION
In traditional deployments of large carrier-grade systems, network
service elements (functions) execute on hardware with dedicated
CPU, memory and storage resources. The hardware boxes are con-
nected via high speed links in operator data centers (DCs). Since
the network is purpose-built to handle predefined network ele-
ments (NEs) and workload, the deployment is optimized to meet
service requirements [15]. This includes allocating adequate re-
sources and carefully placing NEs to meet latency requirements.
NEs that constitute a Service Function Chain (SFC) or, more gener-
ally, a forwarding graph, are deployed in the same data center, and
are carefully configured to meet Service Level Agreements (SLAs)
or Quality of Service (QoS) requirements.

Network Functions Virtualization (NFV) leverages Commercial
off-the-shelf (COTS) hardware to dynamically deploy network ser-
vices. New network service instances are created by adding NEs
to existing SFCs using virtualization and programmable network-
ing technologies like Software Defined Networking (SDN). NFV
orchestration frameworks can instantiate these Virtualized Net-
work Functions (VNFs) on-demand. The eventual placement of
these VNFs is a balancing act performed by the orchestrator to
meet both the QoS requirements of the deployed service and the
need for cloud providers to maximize the utilization of the un-
derlying infrastructure. Owing to the operational polices of the
orchestrator and the physical location of the data centers that are
managed by it, new NE instances may be located on different racks
or even different data centers. This, coupled with the unpredictable
latency variations due to the sharing of the underlying physical
infrastructure among services, can cause violations of end-to-end
(e2e) latency requirements of SFCs [11]. Distributed instantiations
of SFCs and latency variations can cause significant performance
degradation since current applications and network protocol stacks
are designed for traditional deployment and therefore react poorly
to such “unbounded" latencies.

In systems like Evolved Packet Core (EPC) and IP Multimedia
Systems (IMS) where multiple NEs participate in service delivery,
congestion on any interconnecting link triggers message drops

https://doi.org/10.1145/3094405.3094408
https://doi.org/10.1145/3094405.3094408

HotConNet ’17, August 25, 2017, Los Angeles, CA, USA A. Sheoran et al.

or retransmissions. Constituent NEs often aggressively retrans-
mit latency-sensitive messages to ensure timely execution of the
protocol call flows [7]. Such re-transmissions further aggravate
network conditions, leading to further QoS deterioration. Since
a single event/action can result in multiple message exchanges
among the constituent elements in an SFC, an orchestrator must
consider, when placing the SFC elements, the type and frequency
of message exchanges among the SFC elements – a factor which is
not considered by current orchestration frameworks.

A natural solution to control the latency with NFV is to instan-
tiate service elements within an SFC onto physical machines that
are in close proximity. This ensures that congestion in other parts
of the DC, as well as latency due to inter-DC communication, can
be avoided. However, such a placement policy will force cloud pro-
vides to preallocate VNF resources in designated sections of the DC,
ultimately undermining their ability to maximize infrastructure
resource utilization. Even if such a policy can be implemented, the
footprints of current VM-based VNFs are far too large to always
guarantee close proximity allocation. VNFs also support mobile
users: even if a user is assigned to an NE where all SFC elements
meet latency demands, user mobility makes it impossible to sustain
such assignments. The mobile user can move across geographic
regions, and this generally entails handover of the user session to
NEs physically closer to the user location, which will inevitability
result in user traffic traversing multiple data centers.

In this paper, we explore the design of a small-footprint, stateless
and portable VNF solution based on aggregating micro-services.
Our solution, Contain-ed, meets latency demands while simulta-
neously supporting user mobility and elastic resource allocation.
Contain-ed aims to: (1) Bound e2e service latency by creating collo-
cated aggregates of NEs, and (2) Develop a service-aware, latency-
sensitive orchestration and deployment framework at a low cost to
the provider.

2 CONTAIN-ED ARCHITECTURE
Contain-ed leverages three observations on current NFV deploy-
ments. First, protocol message exchanges and/or SFC dependencies
dictate that certain VNFs in an SFC or VNF components (VNFCs)
in a complex VNF be placed in close proximity to meet e2e latency
requirements. Second, the smaller resource footprint of virtualiza-
tion technologies like containers enables micro-service bundles of
VNFs with high affinity to be placed in close proximity. Third, most
protocols can be defined as a collection of transactional message
exchange sequences. Our solution, Contain-ed, creates network
micro-service bundles called Affinity Aggregates (AAs). AAs are
bundles of network services comprising VNFs that have message
exchange affinity towards each other. AAs are instantiated as a sin-
gle logical entity of micro-services using lightweight virtualization
container technologies. Contain-ed includes components for man-
aging and orchestrating AA instances, with the goal of distributing
load across active AA instances, and resource flexing according to
workload variations. Figure 1 illustrates the Contain-ed architecture,
whose components we now describe.

Affinity Analytics Engine (AAE): The AAE is an offline mod-
ule that analyzes SFC dependencies and message exchange se-
quences to determine the required AA types. Messages among

VNFs depend on the standards being used and the SFC structure.
For example, in a virtualized EPC system [16], 41% of the signaling
messages that are incident on the Mobility Management Entity
(MME) are propagated to the Serving Gateway (SGW), but only 18%
of the MME signaling load is propagated to the Packet Data Net-
work Gateway (PGW). This VNF affinity information is analyzed
by the AAE to decide which VNFs should be bundled together as
an AA. The AAE also determines transactional boundaries so that
the same AA instance is used to handle a transaction’s message
exchange sequence in an atomic manner. Additionally, the AAE
determines what to store in the shared state store across all AA
instances.

AA Flex Orchestrator

Affinity Analytics Engine

 Analytics

Decision Engine

AA instance
Create/Delete/Migrate

e2e Latency
Requirement

TransactionsAffinity Aggregate
Types

Aggregate Director

AA Type
Instance

AA Type
Instance

Shared State Store

AA Type
Instance

AA Type
Instance

Shared State Store

Contain-ed Deployment

Infrastructure
Resource

Utilization

 Protocol
 Bindings

Workload

AA Instance
Utilization

 Message Sequences

Figure 1: Contain-ed Architecture

Only state that persists across transactions is published in the
state store. Contain-ed transactions are specific to an SFC, and
the messages that constitute a transaction are driven by protocol
bindings within the SFC. Example message exchanges for IMS and
their transaction boundaries are shown in Figure 2. Table 1 lists
the AA types from our analysis of IMS and EPC protocol message
exchanges and latency requirements. When AAs have the same
VNFs, the same AA type can be used to handle different kinds of
transactions/network events. For services such as HSS, PCRF and
OCS that need database lookups, the Front End (FE) component [6]
can be instantiatedwith the AA. The REGISTERAA can also contain
the Application Server (AS) if specified in the Initial Filter Criteria
(iFC) [4, 5].

AA Flex Orchestrator (AFO): The AFO manages the life-cycle
of AA instances. It continuously monitors their resource usage and
workload. If the latency requirements of a specific request type are

Contain-ed : An NFV Micro-Service System for Containing e2e Latency HotConNet ’17, August 25, 2017, Los Angeles, CA, USA

not being met, the AFO deploys new AA instances with appropriate
resources and at appropriate locations to meet the latency require-
ments. Conversely, if the workload decreases, the AFO removes
unneeded AA instances after migrating active user sessions to other
active AAs. Contain-ed transactions are short-lived compared to
the user sessions, which enables the AFO to elastically manage
the resource allocation for the incoming workload. AA instance
information is communicated to the AA Director for forwarding
transactions. For example, all VNFs that participate in user registra-
tion can be bundled into a REGISTER AA type. Depending on the
allocated resources (hence capacity of the AA type) and expected
peak load, the AFO determines the number of instances of this AA
type to deploy and how/when to add/remove instances to match
workload dynamics.

Table 1: IMS and EPC Affinity Aggregates (AAs)

Network Event VNFs in AA AA Type
IP Multimedia Systems (IMS)

REGISTER P/I/S-CSCF
HSS

REGISTER

INVITE P/I/S-CSCF
AS, OCS

INVITE

NOTIFY
SUBSCRIBE

P/I/S-CSCF SUBSCRIBE

Evolved Packet Core (EPC)
ATTACH MME, HSS, SGW

PGW, PCRF
ATTACH-DETACH

DETACH MME, HSS, SGW
PGW, PCRF

ATTACH-DETACH

HANDOVER MME, SGW HANDOVER-SR
BEARER
SETUP

MME, SGW
PGW, PCRF

BEARER-CRT

SERVICE
REQUEST (SR)

MME, SGW HANDOVER-SR

AA Director (AD): The AD is an online module that directs
incoming traffic to different active AA instances based on transac-
tion types. The AD maintains a list of all active AA instances and
their capabilities, and directs traffic (along transaction boundaries)
accordingly. Multiple instances of a particular AA type can coexist
with different resource allocations. When a new AA instance is
spawned, the AFO updates the AD with its AA type and resource
allocation. This enables the AD to intelligently load-balance the
incoming workload on available AA instances. The AD analyzes
each incoming packet to classify it according to the AA types and
transactional boundaries. All messages associated with a particular
transaction (e.g., messages that are part of a single user registration
request) that were handled by a specific AA instance will continue
to be directed to the same instance until the transaction is com-
pleted. This implies that AAs can only be deleted when there are
no active transactions pending. When the AFO decides to scale-in
an AA instance, the AD removes it from the active list and stops
sending new transactions to this AA instance.

Shared State Store (SSS): The shared state store is used by AA
instances to store persistent state information across transaction
boundaries. This allows incident workload to be distributed across

multiple instances. The SSS is implemented as a key-value store
and is agnostic to the actual structure/definition of state elements
as specified by VNFs. Data is identified using a unique key and
is accessible to all AA instances. Several VNFs (including Clear-
water which we use in our evaluation) already support persistent
state information management for horizontal scaling of individual
components.

3 CONTAIN-ED IN ACTION
In this section, we illustrate how Contain-ed can be leveraged for
deploying an IMS instance and increasing the utilization of the
underlying NFV infrastructure.

3.1 Project Clearwater: IMS in the Cloud
We choose Clearwater, an open-source IMS implementation. Clear-
water not only supports virtualization, but also allows horizontal
scaling of individual components. Availability of a containerized
implementation of Clearwater also allowed us to better compare
performance of different IMS deployment options. While Clearwa-
ter provides a horizontally scalable clustered IMS implementation,
the VNF components in Clearwater do not strictly match standard
IMS functional elements. Clearwater utilizes web-optimized tech-
nologies like Cassandra and memcached to store long-lived state,
provide redundancy, and eliminate the need for state replication
during scale-in and scale-out.

 SIP INVITE

Bono Sprout Homestead
Application

Server

 REGISTER HTTP GET /impi

SIP
REGISTER

HTTP 200 OK
UNAUTHORIZED

REGISTER

HTTP PUT /impu

HTTP 200 OK

200 OK

INVITE
HTTP PUT /impu/caller

HTTP 200 OK

INVITE

INVITE

INVITE

200 OK

Call received
 by Callee

200 OK

200 OK

200 OK

401
UNAUTHORIZED

Figure 2: Clearwater IMS Call Flow

Before describing the Contain-ed version of Clearwater, we ex-
plain the Clearwater components that can be deployed individually
and horizontally scaled. Bono is the edge proxy component that
implements the P-CSCF (Proxy Call Session Control Function) in
the 3GPP IMS architecture [5]. SIP clients communicate with Bono
over UDP/TCP connections and are anchored at a Bono instance

HotConNet ’17, August 25, 2017, Los Angeles, CA, USA A. Sheoran et al.

for the lifetime of the registration. Sprout implements the Regis-
trar, I/S-CSCF (Interrogating/Serving CSCF) and Application Server
components. Sprout nodes store the client registration data and
other session and event state in a memcached cluster. There are
no long-lived associations between a user session and a Sprout
instance. Homestead provides a REST interface to Sprout for re-
trieving the authentication vectors and user profiles. Homestead
can host this data locally or retrieve it from the HSS using the
Diameter Cx interface. Homer acts an XML Document Manage-
ment Server that stores the service profiles. Ralf implements the
Off-line Charging Trigger Function (CTF). Bono and Sprout report
chargeable events to Ralf. Figure 2 illustrates this call flow without
a third-party REGISTER in the iFC.

3.2 Mapping with Contain-ed
We begin by identifying the AAs by applying the principles in Sec-
tion 2: (1) VNF Affinity: Analyzing the 3GPP IMS architecture [5],
we find that there is high affinity between the P-CSCF and S-CSCF
components. Therefore, we can aggregate the Bono and Sprout
nodes in Clearwater to create an AA. (2) Transactional Atomic-
ity: We demonstrate the application of this principle by analyzing
user registration in IMS, which generates two messages by the user
device. Since both messages must be handled by the same instance
of Bono and Sprout, we consider user registration as a transactional
boundary.

We thus create an AA of type “REGISTER” corresponding to
the SIP REGISTER call flow. A similar reasoning allows us to cre-
ate AAs of types “SUBSCRIBE” and “INVITE” for the IMS user
SUBSCRIBE/NOTIFY and INVITE call flows, respectively. The AAs
for “REGISTER” and “SUBSCRIBE” consist of an instance of Bono
and Sprout, while the AA for “INVITE” additionally contains an
instance of Ralf due to the CTF interaction described in Table 1. We
do not use an Application Server (AS) in our testing, so it is not
included in the AAs.

In Clearwater, Bono and Sprout operate in a transaction-stateful
manner. Transactions in the same SIP dialog can be handled by
a different Sprout instance since the Sprout instances share long-
lived user state using memcached. Clearwater therefore supports
the transactional atomicity property of Contain-ed. Contain-ed
leverages the Clearwater memcached as the shared state store.

We develop the AD component based on the OpenSIPS [1] dis-
patcher. In this implementation, the AD anchors all the incoming
and outgoing calls from Clearwater and acts a stateless inbound
proxy. It uses a hash on the message “Call-ID” to direct incoming
request messages. This mechanism ensures that the messages for
the same user session are directed to the same AA instance. For out-
going messages, the AD inserts appropriate SIP headers to ensure
that messages take appropriate paths.

4 EXPERIMENTAL EVALUATION
We developed a prototype implementation of the Contain-ed de-
ployment component (the dark shaded box in Figure 1). We use
the information in Table 1 to bundle the Clearwater components
into AA types. The AAs are instantiated at startup to match the
workload requirements (the AFO dynamic scaling/instantiation
functionality is not yet implemented).

4.1 Experimental Setup
We use Docker version 17.03.0-ce and Docker-compose (v1.11.2)
for micro-service container lifecycle management. The Clearwater
VNF components run within a container on the same physical host.
A private subnet created by Docker is used for communication
between these containers, thereby minimizing the communication
latency among the Clearwater VNF micro-services. The physical
resources of the server are shared by all containers and there are
no resource constraints on an individual container. The Contain-ed
AD component is deployed on the same physical machine as the
Clearwater VNF. The AD runs on the physical machine directly,
and therefore shares the resources with the Clearwater VNF com-
ponents.

Workload generation: We use SIPp [2] as a workload gener-
ator. SIPp runs on a dedicated physical machine, and generates
two types of requests: REGISTER and SUBSCRIBE. As shown in
Figure 2, REGISTER requests are used to register the user device in
the network and result in the generation of two messages (initial
request and challenge response) from the user device. SUBSCRIBE
requests are used to subscribe to the the state of a user already reg-
istered with Clearwater. A SUBSCRIBE request from the requesting
client is followed by a NOTIFY request from the server to update
the client with the user subscription status. We measure the num-
ber of failures by the observing the result code in the SIP response
message. Per the SIP specification, for register, “200 OK” indicates
success and “401 Unauthorized” is used to challenge. All other 3XX
and 4XX codes are considered failures. We observe the error codes
received by SIPp for each message type and use them to infer the
number of failures.

We generate a workload of 300 request/s to 1800 requests/s in
steps of 300 requests/s and measure the total number of failed calls
for each workload type. As described earlier, aggressive retrans-
mission of requests by the client or middleboxes can exacerbate
performance problems, so we disable this to increase the overall
throughput. In order to circumvent the impact of retransmissions
on our experiments, we configure SIPp to not retransmit requests
that have failed due to timeouts. Each experiment runs for 60 sec-
onds. The results presented below represent the mean of at least 10
samples for each call rate and delay value.

The performance of a complex VNF like Clearwater is impacted
by the control interplay among its functional components. Previous
studies [10] have revealed that disproportionate resource utilization
by Clearwater components can influence system performance, and
the overall throughput depends on resources allocated to individual
components. Clearwater employs token buckets and timeout-based
peer blacklisting mechanisms for fault-tolerant overload control.
This can also influence the overall throughput. Furthermore, indi-
vidual components may timeout and discard incoming requests. As
an example, Sprout uses a timer to wait for the response messages
from Homestead, and if no response is received before a timeout, a
failure response (response code timeout 408) is issued to the client.
To minimize the impact of disproportionate resource utilization,
we do not allocate dedicated resources to any container and all
Clearwater components share the available system resources. How-
ever, overall performance is limited by the token bucket rate and

Contain-ed : An NFV Micro-Service System for Containing e2e Latency HotConNet ’17, August 25, 2017, Los Angeles, CA, USA

timeout(s) at individual components, resource utilization notwith-
standing.

4.2 Experimental Results
Our experiments are designed to investigate the impact of network
latency on Clearwater, and to quantify the performance benefits
of Contain-ed. We begin by benchmarking Clearwater in “ideal”
conditions on our testbed. In this case, all communicating VNF com-
ponents are instantiated on the same physical machine. A single
instance of Clearwater is created and both REGISTER and SUB-
SCRIBE messages are handled by this instance. This setup is labeled
“ideal” in our plots. We measure the performance of this setup with
both REGISTER and SUBSCRIBE workloads.

We also measure the performance of Clearwater when the VNF
components are not located on the same physical machine and
therefore the communication latencies are higher than the ideal
case. We simulate a scenario where the Sprout node is located in
a different DC by adding delays on the Sprout-bound links. As
described earlier, the SIP REGISTER request generates two register
messages from Bono to Sprout and two database lookup requests
from Sprout to Homestead, and therefore Sprout placement is vital
to the performance of Clearwater. We use “tc” to introduce delays
on the links from Bono to Sprout and Sprout to Homestead. We
use delays of 5 ms, 10 ms, 15 ms, 20 ms and 25 ms and compare
the performance of this setup with the “ideal” case. Figures 4 and 6
present the results. In both figures, the error bars represent the
minimum and maximum values observed among all samples for a
data point. The label “Target” in the figures indicates the maximum
number of calls that can be successfully processed at a given call
rate.

Aggregate
Director

Homestead

Load
Generator

REGISTER Affinity Aggregate Instance

Bono Sprout
State Store

Memcached
Cassandra

Figure 3: Contain-ed setup with REGISTER AA

200 400 600 800 1000 1200 1400 1600 1800
Calls/Second

0

20000

40000

60000

80000

100000

120000

S
u
cc

e
ss

fu
l
ca

lls

Target

Ideal

Contain-ed

5ms

10ms

15ms

20ms

25ms

Figure 4: Successful REGISTER calls

As seen from Figures 4 and 6, increasing communication latency
to just one Clearwater component (Sprout) can result in significant
performance degradation. The impact of the introduced latency is
not significant at low call rates. However, as the call rate reaches
the system capacity, there is significant drop in system throughput.
This is a consequence of the timeouts experienced at individual
components. As load increases, the number of messages that are

waiting for a response at each individual component becomes larger,
and higher system capacity is utilized in sending timeout responses
at each individual component.

We now describe our experimental setup using Contain-ed. Fig-
ure 3 shows an instantiation of Contain-ed to handle REGISTER
messages. It consists of the REGISTER AA (Sprout and Bono), the
shared state store, Homestead, and the AD. Figure 5 depicts the
setup of Contain-ed for handling SUBSCRIBE. This setup consists
of two AAs (REGISTER, SUBSCRIBE), since the users must be reg-
istered before SUBSCRIBE messages. Both the REGISTER and SUB-
SCRIBE AAs contain an instance of Bono and Sprout. All other VNF
components like Homestead and the shared state store are shared
by the AAs. For the SUBSCRIBE setup, all REGISTER messages are
handled by the REGISTER AA, and SUBSCRIBE/NOTIFY messages
are handled by the SUBSCRIBE AA. A single instance of AD is
created in both the cases, which forwards the incoming traffic to
the appropriate AA.

Aggregate
Director

State Store

Memcached
Cassandra

HomesteadREGISTER Affinity Aggregate Instance

Bono Sprout

SUBSCRIBE Affinity Aggregate Instance

Bono Sprout

Load
Generator

Figure 5: Contain-ed setup with REGISTER/SUBSCRIBE
AAs

200 400 600 800 1000 1200 1400 1600 1800
Calls/Second

0

20000

40000

60000

80000

100000

120000

S
u
cc

e
ss

fu
l
ca

lls

Target

Ideal

Contain-ed

5ms

10ms

15ms

20ms

25ms

Figure 6: Successful SUBSCRIBE calls

Comparing the results of Contain-ed with “ideal” in Figures 4
and 6, we conclude that the AD does not result in significant call
drop compared to the ideal setup, and the overhead due to the
AD does not significantly impact overall performance. The DC
setup with induced latency increasingly drops higher numbers
of messages as the latency increases, but the Contain-ed setup
continues to process messages without suffering from significant
performance degradation. Even when multiple AA instances of
different types are created, the performance impact of the AD and
Contain-ed is minimal.

It is important to note that workloads react differently to increas-
ing latency. This is due to the nature of communication between
various components within the VNF. User actions that require
memory lookup/update (authorization/billing events) will respond
poorly to increased latency towards the memcached/cassandra com-
ponents and workloads that require frequent communication with
other components like SUBSCRIBE will respond poorly to increased
latency towards state management components within the VNF.
With traditional network placement, it is difficult to strike the right

HotConNet ’17, August 25, 2017, Los Angeles, CA, USA A. Sheoran et al.

balance between workloads and their dependencies. In contrast,
the Contain-ed setup can ensure co-location of VNF components
for each workload type, and, as seen from the results above, will
continue to process various workload types without suffering from
significant performance degradation.

5 RELATEDWORK
Placement problems and network latency have been widely studied
in the context of NFV. A generally accepted direction for scalable
cloud-based infrastructure is decoupling user state storage from
VNF processing logic. Kablan et al [13] investigate a stateless de-
sign that leverages technologies like RAMCloud over InfiniBand to
demonstrate how a NAT function can be decomposed into packet
processing and data. The focus of their work is, however, on demon-
strating how a stateless design improves the elasticity of NFV de-
ployments. They do not consider the impact of stateless design
principles on limiting e2e latency. Decoupled control and user plane
network functions are also described in [3]. This work aims at mini-
mizing communication latency between the control plane elements
while simultaneously bringing the user data processing elements
close to the network edge, improving the overall user experience.

Basta et al [9], Hawilo et al [12] and Katsalis et al [14] propose
redesign of existing networks to reduce latency. There is, how-
ever, little work that uses container-driven backward-compatible
solutions. Basta et al [9] explore several implementation models
in which v-EPC can be deployed. However, the implementation
models proposed can result in extensive refactoring of existing
implementations. The scope of their work is limited to the place-
ment of the user and control planes in EPC gateways, and does
not include common principles that can be applied to any SFCs.
Hawilo et al [12] discuss a scheme for bundling EPC components,
guided by the principles of a flat architecture and the decoupling
of the control and user planes. While this architecture proposes
bundling an NF and provides an analysis of the benefits of the pro-
posed architecture, it does not investigate how these changes can
be implemented in current architectures. The work closest to ours
was conducted by Katsalis et al [14]. This work analyzes a stateless
5G design pattern. They propose a micro service-driven stateless
RAN architecture which uses shared control plane contexts for data
storage. The work is limited to the analysis of RAN and does not
delve into application of this design to general SFCs.

6 DISCUSSION AND FUTUREWORK
[Aggregate Director implementation] The AD is a protocol-
aware online module that classifies each incoming packet, and can
consume significant resources. However, there are existing NEs
in current telecommunication networks that inspect and classify
incoming traffic, and the AD can leverage such gateway elements
to minimize resource utilization. In IMSes, the P-CSCF component
anchors all inbound signaling traffic. Similarly, the Diameter Rout-
ing Agent [8] processes incoming Diameter signaling messages
in the EPC. Whenever possible, such existing elements can be en-
hanced to support the functionality of the AD. We are currently
characterizing and optimizing the overhead of the AD.

[State synchronization overhead] Contain-ed uses persistent
state information shared across AA instances to avoid pinning of

requests to a particular AA instance. State synchronization over-
head can be kept minimal by appropriately determining transaction
boundaries and only pushing persistent state to the shared state
store.

[Flow control]VNF implementers employ throttling based flow
control between different VNFs to avoid unstable conditions. This
is particularly important when capacities of different VNFs are not
matched. Clearwater uses token buckets for gracefully managing
overload. In Contain-ed, VNFs/VNF components within the same
AA can be appropriately provisioned warranting overload detection
and gating control only at the AA ingress. This can further result in
improved resource utilization as overhead can be eliminated from
each participating VNF.

[Legacy VNF implementations] The Clearwater implementa-
tion we evaluated had several design features such as shared state
store for horizontal scaling. However, not all VNF implementations
are amenable to direct application of Contain-ed. Additional stubs
may be required for pushing state information to the share store.We
believe that adoption of container technologies and micro-service
design principles will reduce VNF implementations requiring sig-
nificant modifications.

REFERENCES
[1] opensips. http://www.opensips.org/.
[2] SIPp. http://sipp.sourceforge.net/.
[3] 3GPP. TR 23.714, Study on control and user plane separation of EPC nodes. 3GPP.

http://www.3gpp.org/DynaReport/23714.htm.
[4] 3GPP. TS 23.218, IP Multimedia (IM) session handling. 3GPP. http://www.3gpp.

org/DynaReport/23218.htm.
[5] 3GPP. TS 23.228, IP Multimedia Subsystem (IMS). 3GPP. http://www.3gpp.org/

DynaReport/23228.htm.
[6] 3GPP. TS 23.335, User Data Convergence (UDC). 3GPP. http://www.3gpp.org/

DynaReport/23335.htm.
[7] 3GPP. TS 23.401, GPRS Enhancements for Evolved Universal Terrestrial Radio Access

Network (E-UTRAN) Access. 3GPP. http://www.3gpp.org/ftp/Specs/html-info/
23401.htm.

[8] 3GPP. TS 29.213, Policy and Charging Control signalling flows and Quality of
Service (QoS) parameter mapping (Release 14). 3GPP. http://www.3gpp.org/
DynaReport/29213.htm.

[9] Arsany Basta, Wolfgang Kellerer, Marco Hoffmann, Hans Jochen Morper, and
Klaus Hoffmann. 2014. Applying NFV and SDN to LTE Mobile Core Gateways,
the Functions Placement Problem. In Proceedings of the 4th Workshop on All
Things Cellular: Operations, Applications, & Challenges. 33–38. DOI:http://dx.doi.
org/10.1145/2627585.2627592

[10] L. Cao, P. Sharma, S. Fahmy, and V. Saxena. 2015. NFV-VITAL: A framework for
characterizing the performance of virtual network functions. In IEEE Conference
on Network Function Virtualization and Software Defined Network (NFV-SDN).
93–99. DOI:http://dx.doi.org/10.1109/NFV-SDN.2015.7387412

[11] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee. 2015. Network function virtualization:
Challenges and opportunities for innovations. IEEE Communications Magazine
53, 2 (Feb 2015), 90–97. DOI:http://dx.doi.org/10.1109/MCOM.2015.7045396

[12] Hassan Hawilo, Abdallah Shami, Maysam Mirahmadi, and Rasool Asal. 2014.
NFV: State of the Art, Challenges and Implementation in Next Generation Mobile
Networks (vEPC). CoRR abs/1409.4149 (2014). http://arxiv.org/abs/1409.4149

[13] Murad Kablan, Blake Caldwell, Richard Han, Hani Jamjoom, and Eric Keller. 2015.
Stateless Network Functions. In Proceedings of the 2015 ACM SIGCOMMWorkshop
on Hot Topics in Middleboxes and Network Function Virtualization. 49–54. DOI:
http://dx.doi.org/10.1145/2785989.2785993

[14] K. Katsalis, N. Nikaein, E. Schiller, R. Favraud, and T. I. Braun. 2016. 5G Architec-
tural Design Patterns. In 2016 IEEE International Conference on Communications
Workshops (ICC). 32–37. DOI:http://dx.doi.org/10.1109/ICCW.2016.7503760

[15] K. Pentikousis, Y. Wang, and W. Hu. 2013. Mobileflow: Toward software-defined
mobile networks. IEEE Communications Magazine 51, 7 (July 2013), 44–53. DOI:
http://dx.doi.org/10.1109/MCOM.2013.6553677

[16] A. S. Rajan, S. Gobriel, C. Maciocco, K. B. Ramia, S. Kapury, A. Singhy, J.
Ermanz, V. Gopalakrishnanz, and R. Janaz. 2015. Understanding the bottle-
necks in virtualizing cellular core network functions. In The 21st IEEE In-
ternational Workshop on Local and Metropolitan Area Networks. 1–6. DOI:
http://dx.doi.org/10.1109/LANMAN.2015.7114735

http://www.projectclearwater.org/clearwater-performance-and-our-load-monitor/
http://www.opensips.org/
http://sipp.sourceforge.net/
http://www.3gpp.org/DynaReport/23714.htm
http://www.3gpp.org/DynaReport/23218.htm
http://www.3gpp.org/DynaReport/23218.htm
http://www.3gpp.org/DynaReport/23228.htm
http://www.3gpp.org/DynaReport/23228.htm
http://www.3gpp.org/DynaReport/23335.htm
http://www.3gpp.org/DynaReport/23335.htm
http://www.3gpp.org/ftp/Specs/html-info/23401.htm
http://www.3gpp.org/ftp/Specs/html-info/23401.htm
http://www.3gpp.org/DynaReport/29213.htm
http://www.3gpp.org/DynaReport/29213.htm
http://dx.doi.org/10.1145/2627585.2627592
http://dx.doi.org/10.1145/2627585.2627592
http://dx.doi.org/10.1109/NFV-SDN.2015.7387412
http://dx.doi.org/10.1109/MCOM.2015.7045396
http://arxiv.org/abs/1409.4149
http://dx.doi.org/10.1145/2785989.2785993
http://dx.doi.org/10.1109/ICCW.2016.7503760
http://dx.doi.org/10.1109/MCOM.2013.6553677
http://dx.doi.org/10.1109/LANMAN.2015.7114735

	Abstract
	1 Introduction
	2 Contain-ed Architecture
	3 Contain-ed in Action
	3.1 Project Clearwater: IMS in the Cloud
	3.2 Mapping with Contain-ed

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Related Work
	6 Discussion and Future Work
	References

