
Computer Networks 00 (2013) 1–20

Procedia
Computer
Science

Flow-based Partitioning of Network Testbed Experiments

Wei-Min Yao, Sonia Fahmy

Department of Computer Science, Purdue University, West Lafayette, IN 47907–2107, USA

Abstract

Understanding the behavior of large-scale systems is challenging, but essential when designing new Internet protocols and applica-
tions. It is often infeasible or undesirable to conduct experiments directly on the Internet. Thus, simulation, emulation, and testbed
experiments are important techniques for researchers to investigate large-scale systems.

In this paper, we propose a platform-independent mechanismto partition a large network experiment into a set of small exper-
iments that aresequentiallyexecuted. Each of the small experiments can be conducted on agiven number of experimental nodes,
e.g., the available machines on a testbed. Results from the small experiments approximate the results that would have been obtained
from the original large experiment. We model the original experiment using aflow dependency graph. We partition this graph, after
pruning uncongested links, to obtain a set of small experiments. We execute the small experiments iteratively. Starting with the
second iteration, we model dependent partitions using information gathered about both the trafficand the network conditions dur-
ing the previous iteration. Experimental results from several simulation and testbed experiments demonstrate that our techniques
approximate performance characteristics, even with closed-loop traffic and congested links. We expose the fundamental tradeoff
between the simplicity of the partitioning and experimentation process, and the loss of experimental fidelity.

c© 2012 Published by Elsevier Ltd.

Keywords: Network simulation, network emulation, network testbeds

1. Introduction

Understanding the behavior of large-scale systems is
critical when designing and validating a new Internet
protocol or application. Consider the example of study-
ing the impact of a large-scale Distributed Denial of
Service (DDoS) attack utilizing a massive botnet. The
attack against Estonia is a well-publicized example of
this [1]. It is important to explore defenses against this
attack under realistic scenarios, but it is undesirable to
perform security experiments on the operational Inter-
net.

Since it is often infeasible to perform experiments
directly on the Internet or build analytical models for
complex systems, researchers often resort to simulation,

emulation, and testbed experiments. Simulators scale
through abstraction. For example, the popular network
simulator ns-2 [2] uses simplified models for physical
links, host operating systems, and lower layers of the
network protocol stack. Researchers can easily simulate
a network topology with hundreds of nodes and links
on a single physical machine. Naturally, the simplifi-
cation of hardware and system properties can adversely
impact the fidelity of experimental results [3]. In con-
trast to simulators, network emulators mostly use the
real hardware and software. This allows experimenters
to run their unmodified applications. While emulation
can provide higher fidelity, scalability is a challenge.
Emulation testbeds such as Emulab [4] and the popular
cyber-range DETER [5] include a limited set of physical
machines that are shared among several users. For fi-
delity reasons, many testbeds allocate resources conser-
vatively; for example, using a one-to-one mapping be-

1

W. Yao and S. Fahmy / Computer Networks 00 (2013) 1–20 2

tween hosts in an experimental topology and machines
in the testbed. This implies that if the number of experi-
mental nodes exceeds the number of machines currently
available in the emulation testbed, the experiment can-
not be executed.

Scalability of network simulation and emulation has
been extensively studied in the literature. Ideas from
parallel computing [6] and resource multiplexing [7]
have been adopted to increase experimental scale. For
discrete-event simulators [6, 8], events are distributed
among multiple machines to reduce the simulation time
and required hardware resources per machine. Addi-
tional overhead for inter-machine synchronization and
communication depends on how events are partitioned.
Emulation testbeds can scale, to a certain extent, via
mapping multiple virtual resources onto available phys-
ical resources. For example, the Emulab testbed [7] can
support experiments which are 20 times larger than the
testbed. This network testbed mapping problem is NP-
hard [9]. The main challenge, especially with DDoS
experiments, is that the mapped experiment can over-
load physical resources (e.g., CPU or memory of a phys-
ical machine) and lead to inaccurate experimental re-
sults [3].

In this paper, we present a more versatile solution to
the experimental scalability problem. We divide a large
network experiment into multiple smaller experiments,
each of which is manageable on a testbed. We conduct
the smaller experimentssequentiallyon the testbed. The
key contributions of our work include (1) a novel ap-
proach and tool to automatically partition a large exper-
iment into sequential small experiments based onnet-
work flows and the dependencies among them, (2) an
iterative approach to model the interacting small exper-
iments, and (3) comparisons of different approaches via
both simulations and DETER testbed experiments.

Our proposed method,flow-based scenario partition-
ing (FSP), is platform-independentbecause it does not
require any modifications to the simulation, emulation,
or physical testbed to be used. Larger experiments can
be conducted on a resource-limited experimental plat-
form when partitioned by FSP. FSP can be integrated
with most existing scaling solutions. FSP can also be
used to analyze dependencies and tune an experiment,
even when the experiment is small enough to fit onto
a testbed. The partitioning of a large experiment via
FSP increases the experimental scalability, at the ex-
pense of fidelity. FSP is most appropriate for network
experiments that use static routing and focus on coarse-
grained performance, such as the average throughput of
a data flow.

The remainder of this paper is structured as follows.

Section 2 defines our notation and assumptions. Sec-
tions 3 to 6 explain our proposed method, FSP. Sec-
tions 7 to 9 describe the experiments used to validate
FSP and compare it to downscaling approaches. Sec-
tion 10 discusses the limitations, scalability, and appli-
cations of FSP. Section 11 summarizes related work. We
conclude in Section 12.

2. Background

In this paper, we focus on performance of data flows.
Hence, the termnetwork experimentswill be used to re-
fer to data plane experiments. A network experiment is
represented by anetwork scenario; the smaller experi-
ments generated by our method are referred to assub-
scenariosor partitions. A network scenario includes the
network topologyand theflow information.

We model the network topology as a graphG=(V,E)
with vertex setV, representing the routers and end hosts
in the network, and edge setE, representing the links in
the network.|V| and|E| denote the number of vertices
and number of edges in the graph, respectively. The
flow information describes all traffic in the experiment.
Each flow inF includes information about the network
application that generated the traffic flow (e.g., FTP,
HTTP), the parameters of the traffic of that applica-
tion (e.g., request inter-arrival times, file sizes), and the
source, destination, route, and directionality of the flow.
Traffic flowing between the same source and destina-
tion nodes is grouped into the same macro-flow. Unless
otherwise specified, the termflow in this paper refers to
a macro-flow. Depending on the type of network ap-
plication that generates a flow, the flow can beopen-
loop(e.g., unresponsive CBR UDP flow) orclosed-loop
(e.g., TCP flow). The route of a flow is a sequence of
hops from its source to its destination node. Thedirec-
tionality of the traffic indicates whether it is unidirec-
tional or bidirectional.

We make the following assumptions to simplify the
exposition. First, routes in the network are assumed not
to change during the course of the experiment. Second,
we assume symmetric routes for bidirectional flows,
i.e., the packets in both directions traverse the same
route. Third, flows traversing the same router butnot
sharing any linkare independent. For example, a flow
from port 1 to port 2 of a router does not interfere with
a flow from port 4 to port 3. Although this is not al-
ways true for low-end routers [3], the assumption holds
for typical mid to high-end routers, and in most network
simulators, e.g., ns-2 [2]. We can easily relax these as-
sumptions at the expense of higher complexity of the
flow partitioning process.

2

W. Yao and S. Fahmy / Computer Networks 00 (2013) 1–20 3

Our approach is based on several simple but impor-
tant observations. First, a large-scale network exper-
iment involves many nodes and flows but not all flows
directly interact with each other, e.g., by sharing a phys-
ical link. If we can identify the parts of the network that
are not strongly tied, we can initially examine each part
independently.

The second observation is that even though a network
scenario may contain many flows, researchers are often
only interested in fine-grained performance of a few of
the flows. The rest of the flows may be used to generate
network workload, and are considered as background
traffic. For example, when studying performance of
a web server, we can set up an experiment with sev-
eral background FTP flows. Since we are interested
in the web server, we need detailed measurements for
HTTP connections such as request/response time. We
may not need to measure file transfer times for the FTP
flows, and the precise arrival processes of these flows
are not important as long as they possess certain statis-
tical properties (e.g., average throughput is 1 Mbps or
FTP file request frequency is 1 file per second).

3. Overview of FSP

Our proposed method, which we refer to asflow-
based scenario partitioning(FSP), does not partition the
network nodes, like partitioning approaches for parallel
and distributed simulation [6] do. This is because our
goal is to conduct experiments for each sub-scenarioin-
dependentlyon a testbed. If we partition the network
topology directly as illustrated in Fig. 1(a), some flows
may traverse two or more partitions, and we would need
to concurrently execute and synchronize more than one
sub-scenario experiment. Instead of partitioning the
nodes in the topology, we partition theflowsin the net-
work scenario as illustrated in Fig. 1(b).

Flow 1

Flow 2

Flow 1

Flow 2

Sub-scenario 1 Sub-scenario 2 Sub-scenario 2

Sub-scenario 1

(a) Partitioning the network directly (b) Flow-oriented partitioning

Figure 1. Direct network partitioning versus flow-based network par-
titioning.

FSP consists of two phases. In the first phase, we
automatically split the input scenario into several sub-
scenarios. We build a flow dependency graph (FDG)

to model the relationship between flows. Each con-
nected component in the FDG constitutes a partition of
the graph, which represents a sub-scenario. If any of
the connected components is too large for the resources
available for an experiment, i.e., it contains too many
hosts and routers, we apply a modified recursive bisec-
tion algorithm [10] to cut these connected components
into partitions that meet the resource constraints. The
quantitymaxNodedenotes the upper bound on the num-
ber of nodes that can be supported in each sub-scenario.
Observe that in emulation testbeds such as Emulab and
DETER, we need to take into account additional re-
quired testbed nodes, e.g., to emulate link delays, when
computingmaxNode. Section 4 gives the details of this
phase.

In the second phase, we conduct experiments for each
sub-scenario and collect measurements for the flows of
interest. If sub-scenarios do notinteractwith each other,
i.e., they are disjoint components in the FDG, we sim-
ply conduct experiments for each sub-scenario indepen-
dently. In most cases, however, there will be interac-
tions among sub-scenarios, i.e., there are edges in the
FDG that cross partition boundaries. To account for
these interactions, we must conduct experiments itera-
tively. In the first iteration, we study each sub-scenario
independently and collect packet traces that capture in-
formation related to dependent flows in interacting sub-
scenarios. In each subsequent iteration, we incorporate
information computed fromthe traces in the previous
iteration (via tools like [11, 12, 13]) into interacting
sub-scenarios. In the final iteration, we collect the de-
sired measurements, such as the FTP transfer comple-
tion time or HTTP response time. Section 5 gives the
details of this phase. The overall FSP approach is sum-
marized in Algorithm 1.

4. Phase I: Scenario Partitioning

In the first phase of our approach, the input network
scenario is partitioned into sub-scenarios. By carefully
selecting which flows to include in each sub-scenario,
flows can have as little interaction as possible with flows
in other sub-scenarios. Given a network scenario (S)
which includes the network topology (G = (V,E)) and
flow information (F), we divide S into sub-scenarios
(S1,S2, · · · ,Sj) such that the number of hosts and routers
in each of the sub-scenario (Si) is ≤maxNode. An ex-
ample of this FDG construction and partitioning (tiling)
process is illustrated in Fig. 2.

3

W. Yao and S. Fahmy / Computer Networks 00 (2013) 1–20 4

Algorithm 1 Flow-based Scenario Partitioning (FSP)

FLOWBASED PARTITION(network, f lows,maxNode)
Input: A network scenario with topology (network),

flow information (f lows), andmaxNode
Output: Estimate of results for original scenario

// Phase 1: Partition the input network scenario
1: Construct a flow-dependency graph (f dg) as de-

scribed in Sec. 4.1
2: Partition the f dg into multiple partitions (Parts)

where each partition contains no more than
maxNodenetwork nodes (Sec. 4.2)
// Phase 2, Iteration 1:
// Collect traces in case of interaction among parti-
tions.

3: for P∈ Partsdo
4: Conduct experiment for sub-scenarioP
5: for eachf ∈ P do
6: for eachf ′ ∈ f dg.neighbors(f) do
7: if f ′ < P then
8: Collect f ’s packet traces onf .path∩

f ′.path
// Phase 2, Iterate for interacting partitions:
// Incorporate traces collected from first iteration
and acquire experimental results.

9: repeat
10: for (P∈ Parts) do

// For interacting partitions only
11: for eachf ′ < P do
12: sharedPath← (f ′’s path)∩ (links in P)
13: if sharedPath, /0 then
14: Import model (e.g., Tmix) of f ′ on

sharedPath(in P).
15: Conduct experiment for sub-scenarioP
16: until Interacting flows propagate their influence

(Sec. 6.2)

4.1. Flow Dependency Graph (FDG) Construction

Our first step is to identify the relationship among
flows in the network scenario. We consider two flows to
bedirectly dependentif they both compete for the same
resources such as network buffers or link bandwidth. In
our current implementation, two flows directly depend
on each other if they share at least one common link in
the network in the same direction during a time win-
dow. We model this relationship using a flow depen-
dency graph (FDG).

A flow dependency graph, FDG = (FV ,FE, f ne), is a
weighted graph with vertex setFV , edge setFE, and edge
weight functionf ne. A vertex inFV represents a flow in
the given scenarioSand an edge(f1, f2) in FE denotes

(a) A network experiment scenario (with topology and flows).
 The end hosts (senders and receivers for all flows) are not
 shown in this figure.

(b) The flow dependency graph of (a).

R1

R8

R6

R4

R3

R2

R0

R9

Flow 0

Flow 3

Flow 4

Flow 5

Flow 6

Flow 7

R5

R7

Sub-scenario 1

F1

F5

F2 F0

Sub-scenario 2

F3

F6

F4 F7

Flow 1,2

Figure 2. Example of transforming a network scenario into a flow
dependency graph. According to the partitioning in (b), thenet-
work scenario in (a) can be divided into two sub-scenarios with five
routers each. Sub-scenario 1 contains routers{R0,R1,R3,R6,R9}
and flows {F0,F1,F2,F5}. Sub-scenario 2 contains routers
{R0,R4,R7,R8,R9} and flows{F3,F4,F6,F7}.

that flowsf1 and f2 aredirectlydependent on each other.
All FDG edges are bidirectional. Note that two flows
u andv may impact each other if there is a path from
u to v in the FDG. This follows from the transitivity
property of dependence. Unless two flows belong to
different connected components in the FDG, they may
affect each other in the experiment. The weight of an
edge f ne is set to the number of nodes shared by the
two directly dependent flows. We evaluate this choice
experimentally in Section 7.

When constructing an FDG, we insert all flows in sce-
narioS as vertices inFV . We then insert edges into the
FDG based on the routes and the directions of the flows.
Recall that an edge between two vertices in the FDG
indicates that the two flows will compete for resources.
We need to predict the existence of such competition
without actually conducting the original large experi-
ment. Unfortunately, such a priori prediction is chal-
lenging, especially for closed-loop flows. Therefore, we
resort to using flow path and direction. For example, if
the set of flows that will traverse linkl at any time dur-
ing the experimentis {a,b,c}, we insert the three edges,
(a,b), (b,c), and (a,c), into the FDG. Of course, even
though flowsa, b, andc all traverse linkl , it is possible
that only a single flow traverses linkl at any given time.

Edge pruning. Extra FDG edges unnecessarily limit
our ability to partition the experiment. Therefore, we
prune edges in cases of underload. Previous work [14]

4

W. Yao and S. Fahmy / Computer Networks 00 (2013) 1–20 5

shows that when flows are competing for the same link
bandwidth, if the capacity of the link is large enough,
i.e., there are no packet drops and only a few packets in
the buffers, each flow will utilize this link as if there are
no other flows on the same link. Therefore, we identify
“uncongested links” in the network and remove these
links from the FDG. (An edge in the FDG represents a
set of links in the network that are shared by two directly
dependent flows, and an edge is removed from the FDG
when it contains only uncongested links.)

Using flow path information and physical link capac-
ity, we can estimate an approximate upper bound on the
workload that can appear on any single link. If the upper
bound is less than the physical link capacity, we mark
this link as “uncongested” and remove it from the FDG.
For example, in Fig. 3, assuming that there are three
flows (from hostsa,b, andc to hostx) in the network,
the aggregate throughput of the three flows on linkx
cannot exceed 30 Mbps. Since the physical capacity of
link x exceeds 30 Mbps, we predict that linkx will not
be significantly congested during the experiment. We
have implemented an automated tool to identify such
links and delete them from the FDG.

20 Mbps

10 Mbps 10 Mbps

20 Mbps
100 Mbps

Link x

Host a

Host b Host c

Host x

Figure 3. The solid lines are (unidirectional) physical links and the
link capacity is shown next to the link. Regardless of the type of
flows, the aggregate throughput on linkx cannot exceed 30 Mbps.

4.2. Partitioning the FDG
The FDG created in the previous step may have sev-

eral connected components, and one or more of these
components may be too large to fit onto an experimen-
tation platform. The size of a component is defined as
the number of routers and hosts used by the flows in
that component. Our next step is to divide large com-
ponents such that the size of each component is smaller
than the givenmaxNodevalue. After this partitioning
process, each flow in the original network scenario is
included in only a single FDG partition (sub-scenario).
For example, the connected component in Fig. 2(b) is
partitioned into two sub-scenarios. Ideally, we would
like to partition the FDG such that there is as little inter-
action as possible among the sub-scenarios. Since the
optimal solution to this graph partitioning problem is
computationally intractable, we employ an approxima-
tion that repeatedly computes two-way partitions (i.e.,
bisections) of the graph [15].

We leverage the greedy graph growing partitioning
approach (GGGP) [16]. GGGP is a simple approach to
bisect a graph. It starts from a vertex and grows its re-
gion in a greedy and breadth-first fashion. While the
number of nodes in the region is smaller than half of
the nodes in the graph, the algorithm will add new ver-
tices into the region. In each iteration, a vertex (from
the vertices that are adjacent to the current region) is se-
lected if moving it into the current region results in the
smallest edge-cut between the two regions. Since the al-
gorithm is sensitive to the choice of the initial vertex, we
randomly select the initial vertex and repeat the process
multiple times. The partition with the smallest edge-
cut is selected as the final output. The number of initial
vertices to be selected is configurable in our implemen-
tation and the default value is set to five– the default
in [16]. We found that five initial vertices are sufficient
in all our evaluation experiments, but users may select a
higher value to produce better partitions when the input
FDG is large.

5. Phase II: Sub-scenario Experiments

After determining the partitions (sub-scenarios) (S1,
S2, · · · , Sj), our goal is to obtain the desired performance
measurements, such as the goodput of flows, from these
sub-scenarios. Without loss of generality, letS1 be a
sub-scenario containing the flows of interest, and let
there bem sub-scenarios thatinteractwith S1, i.e., they
belong to the same connected component in the FDG.
We define ashared linkas a link in the original network
topology that is shared by flows in more than one sub-
scenario. Assume that there aren shared links inS1.
In order to obtain measurements for the flows of inter-
est (inS1), we need to generate workloads on thesen
shared links for flows in{S2, · · · ,Sm} (since these flows
are not inS1). To achieve this, we propose to conduct
the experiments in multiple iterations.

5.1. First Iteration

In the first iteration, we conduct experiments inde-
pendently for each sub-scenario. For interacting sub-
scenarios, there will be flowsmissingon the shared
links, compared to the original large scenario. For ex-
ample, Fig. 2 contains two sub-scenarios (S1 andS2).
When we conduct the experiment forS1 in the first iter-
ation, flow 4 and flow 6 will not generate any workload
on link R0-R9 since they are not included inS1, and
flow 0 will also be missing fromS2. As a result, the
measurements in this iteration may be dramatically dif-
ferent, compared to those in the original scenario, e.g.,

5

W. Yao and S. Fahmy / Computer Networks 00 (2013) 1–20 6

the throughput of flow 0 may increase since flow 0 does
not need to compete for bandwidth with flow 4 and flow
6. Therefore, we collect packet traces for these inter-
acting flows, in order to later use information computed
from these traces to generate workload that models the
missing flows.

5.2. Subsequent Iterations
In subsequent iterations, we sequentially conduct

experiments for each sub-scenario that interacts with
others, but we now incorporate information computed
from the previous iteration to model its interacting sub-
scenarios. Multiple iterations may be required to prop-
agate the interactions among flows. Measurements col-
lected in the final iteration approximate the results of the
original experiment. The number of required iterations
varies depending on the partitioning of the FDG. As we
will discuss in Section 6, in most cases, FSP requires
no more than five iterations – typically two iterations
suffice.

5.2.1. Workload and network modeling
Since many flows areclosed-loop, wecannot simply

replay the collected packet traces on the shared links.
We must model the workload of flows at the applica-
tion level, and model theconditions experienced by
these flows in the non-shared linksin interacting sub-
scenarios. This is crucial so that the missing flows are
no more aggressivethan they would have been in the
original unpartitioned experiment. In other words, the
conditions in the network, such as congestion level and
delays experienced by the missing flows during the sec-
ond iteration, must mimic the original unpartitioned ex-
periment, so that the transport and application layers at
the end hosts can react similar to their reaction in the
original experiment. This is critical when the flows are
bottlenecked in another partition or their propagation
delays in another partition are high.

In our experiments in this paper, we investigate the
use of the three tools (1) Tmix [11], (2) Harpoon [13],
and (3) Swing [12] to (i) process packet traces collected
during an iteration, and (ii) model non-shared network
conditions and generate application workloads in the
next iteration. These tools capture application traffic
characteristics (e.g.,connection vectorsrepresenting re-
quests, responses, and think times), as well as network
conditions (e.g., round-trip-time (RTT) and packet loss)
on the parts of the network that arenot shared among
partitions.

Observe that additional experimental nodes may be
required to generate the workload to represent the inter-
acting partitions. Depending on the testbed resources,

these additional nodes can be hosted on additional
testbed machines or virtualized on the nodes in the sub-
scenario. We can consider this when configuring the
maxNodeparameter.

5.2.2. Modeling example
Consider the simple network scenario with three

flows shown in Fig. 4. After the first phase of FSP,
the scenario is partitioned into two sub-scenarios where
Flow 1 and Flow 2 belong to the first sub-scenario, and
Flow 3 belongs to the second sub-scenario.

N1 N2

N3R1 R2 R3

N4

N5

Flow 1

Flow 2

Flow 3

Figure 4. An example scenario with three flows. The scenario is par-
titioned into two sub-scenarios where the first sub-scenario contains
Flow 1 and Flow 2 and the second sub-scenario contains Flow 3.

When conducting the first iteration of sub-scenario
one in the testbed (Fig. 5), we collect the packet trace
on the shared link (R1-R2) using tcpdump. This packet
trace is processed by Tmix to extract the application
workload model of Flow 1 and Flow 2. This applica-
tion workload model includes a vector for each connec-
tion representing request sizes, response sizes, and ap-
plication think times. Other tools such as Swing [12]
additionally capture session-level characteristics, e.g.,
correlations among different TCP connections. We will
compare these tools in Sections 9 and 10.

For each flow that traverses a shared link, we also
need to model the network conditions experienced by
the flow in the non-shared links(i.e., the paths before
and after the shared link). To balance the tradeoff be-
tween experimental complexity and fidelity, FSP cur-
rently models the network conditions via the bottleneck
link capacity, the average packet drop ratio, and the av-
erage packet delay on the non-shared links.

The bottleneck link capacity can be observed directly
from the network topology. For example, the bottleneck
capacity for Flow 2 on path N1-R1 is 10 Mbps and on
path R2-R3-N3 is 5 Mbps from Fig. 5. The average
packet loss and delay can be calculated from the per-
flow packet loss and delay on the associated non-shared

6

W. Yao and S. Fahmy / Computer Networks 00 (2013) 1–20 7

links. For instance, the average packet delay on path
R2-R3-N3 is the sum of delays measured on links R2-
R3 and R3-N3.

N1
N2

N3R1 R2 R3

Flow 1

Flow 2

10M

100M
20M

10M

5M

Figure 5. The first iteration of sub-scenario one.

In subsequent iterations, additional nodes are at-
tached to the shared links to generate workload that rep-
resents the interacting partitions. For example, in the
second iteration of sub-scenario two (Fig. 6), two pairs
of Tmix processes, (T1, T3) and (T2, T4), are gener-
ating workload to represent Flow 1 and Flow 2 using
the application-level model extracted from the previous
iteration of sub-scenario one (Fig. 5).

Each Tmix process is connected to a “delay box” [11]
before connecting to the shared link. The delay boxes
are configured to reflect the network conditions that the
Tmix traffic should encounter. For instance, delay box
D4 is configured to have 5 Mbps link capacity and in-
troduces additional loss and delay on transmitted pack-
ets according to the measurements on path R2-R3-N3 in
Fig. 5.

Note that it may be possible to host multiple Tmix
processes and delay boxes onto the same testbed ma-
chine. For example, as illustrated in Fig. 6, T1 and
T2 are two Tmix processes running on machine Tmix1.
The two delay boxes, D1 and D2, can be implemented
as Linux traffic shaping rules on Tmix1 and R1.

R1 R2

N4 N5

Flow 3

Tmix2Tmix1
T1

D1 D2

T2

10M 10M

Tmix workload (Tmix2)(Tmix1)

T3

D3 D4

T4

100M

Figure 6. The second iteration of sub-scenario two. Two additional
machines, Tmix 1 and Tmix 2 are used to generate the workload for
Flow 1 and Flow 2.

5.2.3. Importance of modeling interacting partitions
The key to obtaining correct results from sub-

scenarios is to utilize a modeling procedure (such as that

discussed in the previous subsection) to model the traf-
fic and network conditions in missing partitions, as op-
posed to simply replaying collected packet traces. Con-
sider a dumbbell topology withN flows and 2N + 2
nodes. Let the link between the two routers in the
dumbbell be the bottleneck link (C Mbps) and each sub-
scenario contains only a single flow.

Fig. 7 illustrates the average throughput of theN
flows (on thex-axis) in the dumbbell topology. As
shown in the figure, since there is a single flow in each
sub-scenario, all flows are able to utilize the full link
capacityC in experiments in the first iteration. In sub-
sequent iterations, the workload of the flows fromN−1
sub-scenarios is generated at the application level on top
of the TCP protocol and experiences conditions of the
missing partitions. Therefore, the throughtputs of flows
on the bottleneck link in the second iteration are close
to C/N, for any value ofN.

 0

 2

 4

 6

 8

 10

 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

M
bp

s)

Number of Flows / Sub-scenarios

Original
Iteration 1
Iteration 2

Figure 7. Average/Max/Min goodput of the flows in a dumbbell topol-
ogy. Each sub-scenario contains a single flow and the bottleneck link
is 10 Mbps with 10 ms delay.

5.3. Illustrative Examples

To further understand the second phase of FSP, we
use a set of simple illustrative examples. We study net-
work scenarios with FTP and HTTP flows using the
popular network simulator ns-2 (Version 2.31) [2]. We
use the topology given in Fig. 2, and set all “last-mile”
links to 100 Mbps to create more interaction among
flows. The FDG for the closed-loop scenarios is given
in Fig. 2(b). For FTP, a client at the source host will
send requests to download files from an FTP server at
the destination host. Each time the client downloads a
5 MB file, and the interval between requests is exponen-
tially distributed with the rate parameter (λ) set to 0.1,
1, or 2. We generate HTTP flows using the PackMime-
HTTP [17] traffic generator. We control the rate param-

7

W. Yao and S. Fahmy / Computer Networks 00 (2013) 1–20 8

eter in the traffic generator to study network scenarios
under different loads.

5.3.1. Uncongested scenarios
We first study the performance of our method in

lightly loaded network scenarios. We use 8 FTP flows
and the rate parameter (λ) is 0.1. We measure the
goodput and packet drop rate for all 8 flows. As ex-
pected, the measurements from the original scenario
and sub-scenarios (iteration 1) are almost identical (re-
sults omitted for brevity), and we observe similar re-
sults for lightly loaded network scenarios with 8 HTTP
flows (rate = 1). This confirms the intuition that under
lightly loaded scenarios, results from a single iteration
suffice to accurately approximate results of the original
scenario, which is the rationale for pruning uncongested
links in Section 4.

5.3.2. Congested scenarios
We now increase the load in the network to increase

interaction among flows. Table 1 lists the average re-
sults for a heavily loaded network with 8 FTP flows
(λ = 2), repeating each experiment 10 times.

Table 1. The goodput (Mbps) of 8 FTP flows collected from the orig-
inal scenario and the second iteration of FSP.

Flow Original FSP Difference
0 30.65 32.22 1.57 (5.11%)
1 48.60 48.57 -0.03 (-0.06%)
2 48.59 48.34 -0.25 (-0.51%)
3 61.12 60.55 -0.57 (-0.93%)
4 34.65 35.70 1.05 (3.03%)
5 57.09 58.37 1.27 (2.23%)
6 34.55 36.73 2.18 (6.30%)
7 60.86 59.05 -1.81 (-2.97%)

As depicted in Fig. 2, we have 2 sub-scenarios (P1,P2)
and link R0-R9 is shared among them. In the first iter-
ation, we conduct an experiment forP1, and collect a
packet trace on link R0-R9, which contains packets for
flow 0. We collect another packet trace on link R0-R9
which includes flow 4 and flow 6 when running the ex-
periment forP2.

In the second iteration, the packet trace on link R0-
R9 is input to the Tmix tool [11] to generate workloads
that represent the missing flows on the link, i.e., flow 4
and flow 6 forP1 and flow 0 forP2. When connecting
the Tmix workload generator to link R0-R9, we insert
a delay box [11] between the link and each Tmix traf-
fic generator. As discussed in Section 5.2.2, the delay
box introduces delays representing the one way portion

of the RTT of each flow, minus the delay of the shared
path. The capacity of the delay box is configured to
be the bottleneck link capacity of a flow. We assign
loss rates to the delay box to model the network con-
ditions encountered in interacting partitions. For each
path, we compute the packet loss rates and delays of the
non-shared links from the trace collected in the previ-
ous iteration. For example, letn1,n2,n3, andn4 be the
nodes on the path of flow 0, wheren1 andn4 are the
source and destination of the flow andn2 andn3 are the
two end points of the shared link. The four loss rates
on the non-shared parts of the flow (in both directions),
i.e., (n1,n2),(n3,n4),(n4,n3), and(n2,n1), are used in
the delay box configuration. Tmix also infers detailed
application behavior from the trace and represents it as
connection vectors [11].

The results in Table 1 demonstrate that long-term
metrics, such as the average goodput of a flow, can be
reasonably predicted using our method.

5.3.3. Shared links are bottlenecks
In the previous experiment, although the network is

congested, the shared link R0-R9 is not a bottleneck in
the original network because flows 4 and 6 and flow 0
are downloading files in opposite directions. We now
reverse the direction of flow 0 to make link R0-R9 the
bottleneck link. The goodput of the flows is given in
Table 2. We are especially interested in flows 0, 4, and
6, since they are the flows on the shared link R0-R9.
In the first iteration, the goodput of flows 0, 4, and 6 is
21.31, 13,81, and 13.17 Mbps higher than the goodput
they obtain in the original scenario. This is due to the
missing flows in each sub-scenario, e.g., flow 0 does not
exist inP2.

Table 2. The goodput of 8 FTP flows (Mbps) in different iterations.

Flow Original Iteration 1 Iteration 2
0 30.50 51.81 27.64
1 48.51 48.03 51.21
2 48.80 49.02 45.95
3 61.19 49.81 59.60
4 34.25 48.07 36.85
5 57.44 44.00 61.51
6 35.09 48.26 38.22
7 60.19 49.83 58.07

After the second iteration, we are better able to pre-
dict the goodput of all flows. Note that in both ex-
amples, there are small variances between the results
collected from the original scenario and from the sec-
ond iteration of FSP. For example, the goodput of flow

8

W. Yao and S. Fahmy / Computer Networks 00 (2013) 1–20 9

0 in Table 2 is still 2.85 Mbps lower than the correct
value. Recall that when we generate the workload for
flow 4 and flow 6 intoP1, the network conditions ofP2

are modeled as the delay, link capacity, and loss on the
Tmix delay boxes. Ideally, the loss rates and delays ac-
curately capture the impact of other flows inP2 (flow 3
and flow 7). However, to reduce complexity, we do not
capture the dynamics encountered by each flow in the
interacting partition. As a result, the workload gener-
ated by Tmix in the second iteration ofP1 fails to accu-
rately constrain the goodput of flow 0. We are currently
investigating alternative Tmix configurations that more
accurately represent the workload of missing flows, at
the expense of space and time complexity.

5.3.4. Fine-grained and coarse-grained metrics

Fig. 8 plots the packet delay distribution of flow 1 in
the previous experiment. Table 3 lists the percentage
difference of the results between the original scenario
and the second iteration of FSP in that experiment. We
observed that the overall statistics (coarse-grained met-
rics) such as the average goodput, packet delay, and de-
lay jitter as well as their cumulative distribution func-
tions (CDFs) can be accurately predicted by FSP.

Since the delay and loss in the interacting partitions
are abstracted into simplified models, such as the aver-
age packet loss on non-shared links, fine-grained met-
rics are not preserved by FSP. For example, Fig. 9 illus-
trates the one-way packet delay of the first 100 packets
in flow 1. Even though flow 1 does not directly interact
with flows in other partitions, the packet delays of indi-
vidual packets are different from the original scenario.
As a result, FSP does not target experiments that require
fine-grained metrics to be preserved.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45

R
at

io
 o

f p
ac

ke
ts

Packet Delay (ms)

Original
FSP

Figure 8. The packet delay distribution of the packets in flow1.

Table 3. Percentage difference of the results between the original sce-
nario and the second iteration of FSP. The is the same experiment as
Table 2.

Flow Goodput Sent Dropped Packet Delay
Packets Packets Delay Jitter

0 -9.37% -9.13% -6.75% -12.38% 10.30%
1 5.57% 5.35% 1.09% -1.71% -5.28%
2 -5.85% -5.85% -5.82% -3.11% 6.20%
3 -2.60% -1.89% 23.92% 3.53% 2.68%
4 7.59% 6.42% -7.24% -5.99% -7.06%
5 7.09% 7.19% 10.79% 8.00% -6.62%
6 8.92% 7.93% -4.12% -4.25% -8.18%
7 -3.52% -2.66% 27.62% 6.45% 3.66%

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 20 40 60 80 100

P
ac

ke
t D

el
ay

 (
m

s)

Packet ID

Original
FSP

Figure 9. The packet delay of the first 100 packets in flow 1.

6. Multiple Interacting Partitions

We now examine an important aspect of the tradeoff
between experimental fidelity and complexity. As dis-
cussed earlier, FSP represents the relationship between
flows by an FDG, where each flow is a vertex in the
graph and two flows can influence each other as long as
there is a path between them. If there is no direct edge
between two flows, the interaction among the two flows
can only be propagated transitively via other flows. If
the flows belong to different sub-scenarios, this propa-
gation process can only take place in a subsequent it-
eration. Naturally, this leads to the following question:
how many iterations are required when there are multi-
ple interacting sub-scenarios?

6.1. Four Interacting Sub-scenarios

Consider the network scenario shown in Fig. 10. In
this simple scenario, all links are 10 Mbps with 5 ms
delay and there are four macro-flows, each belonging to
a different partition (∀1≤ x≤ 4 :Fx∈Px). Each macro-
flow contains a number of concurrent TCP connections
sending traffic continuously from the source to the des-
tination node for 600 seconds. In all experiments, we

9

W. Yao and S. Fahmy / Computer Networks 00 (2013) 1–20 10

F1 F3 F4F2

0

1
2

3

87

654

12119

1413 171615 1918

Flow 1

Flow 2

10

Flow 3Flow 4

Figure 10. A scenario with up to four (indirectly) interacting sub-
scenarios and its flow-dependency graph.

employ Tmix togenerate the application workloadand
model the network conditionsvia losses and delays in
interacting partitions.

Tables 4 and 5 give the goodput of the four macro-
flows, each containing one connection or three TCP
connections, respectively. When the network is lightly
loaded (Table 4), two iterations are sufficient as the re-
sults stabilize in later iterations. The application behav-
ior extracted by Tmix for all four macro-flows, each a
single long-term TCP flow, remains unchanged in all it-
erations, since we are using the same application traffic
model. Tmix correctly infers that model from the traf-
fic traces. The network conditions (delay and loss) ex-
tracted from the traces vary within a small range from
the second iteration onwards as most links have low
packet losses and queuing delays in this lightly loaded
network.

Note that the interactions among partitions that are
not directly connected in the FDG (e.g.,P4 andP1) are
propagated through the network conditions of interme-
diate partition(s) (e.g.,P3). The similarity between the
network conditions measured in different iterations also
implies that the partitions which do not have common
shared links have little influence on each other in this
scenario. For example, flow 4 interacts with all other
flows in subsequent iterations (3rd and 4th iterations for
flow 1 and flow 2). However, as seen in Table 4, the
goodputs of flow 1 and 2 remained almost unchanged
after iteration 2. Although the goodput of flow 3 be-
comes more accurate in iteration 3, the improvement is
insignificant (within 5% of the link capacity).

As we increase the workload in the network, interac-
tions between any two sub-scenarios are no longer dom-
inated by the application workload generated by Tmix

and two iterations are insufficient to obtain accurate re-
sults. As illustrated in Table 5, it takes four iterations
to obtain results with reasonable accuracy. The number
of iterations to propagate the interaction from one sub-
scenario to any other sub-scenario is upper-bound by the
number of sub-scenarios in the largest connected FDG
component, e.g., if the largest FDG component needed
to be partitioned into four sub-scenarios, four iterations
are sufficient to propagate the interaction between any
two interacting sub-scenarios. This maximum iteration
value is labeledmaxChain.

Note that despite executing additional iterations, the
results from the second experiment (Table 5) are less
accurate then those from the first experiment (Table 4).
Since in both experiments the application traffic mod-
els are correctly inferred by Tmix, the loss of fidelity
stems from the simplified network condition model
which is amplified when propagated through multiple
sub-scenarios.

The examples in this section highlight a fundamental
tradeoff: fidelity of the results versus the time and space
complexity of the experimentation process. When sim-
ple aggregate measurements, e.g., average delay or loss
over the entire experiment, are input to a tool like Tmix
to model network conditions encountered by a flow,
loss of fidelity will occur, compared to having more de-
tailed representations of network conditions, e.g., a time
series of packet loss over the entire experiment dura-
tion. We are currently exploring this tradeoff in greater
depth. The choice of which tool to use (Tmix, Harpoon,
Swing) is a critical aspect of the tradeoff, and we exam-
ine this via testbed experiments in Section 9.

6.2. Required Iterations

Let us return to the question posed at the begin-
ning of this section. In the two previous examples,
FSP requires two tomaxChainiterations. The value of
maxChaindepends on the input scenario and the value
of maxNode. For example, Fig. 16 in Section 7.3 illus-
trates themaxChainvalue calculated for a set of ran-
domly generated network scenarios. We have observed
that only a few iterations are needed for all scenarios
we generated: we need four to five iterations in most
cases, based on the size of the largest set of interacting
sub-scenarios.

Naturally, the examples illustrated in this section can-
not represent all possible network scenarios and fewer
or more iterations may be required. To speed-up the ter-
mination of FSP, several heuristics can be used as dis-
cussed in the following subsections.

10

W. Yao and S. Fahmy / Computer Networks 00 (2013) 1–20 11

Table 4. The goodput of TCP flows in kbps. Each macro-flow contains one TCP connection.

Flow Original Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5
1 4998 8544 4998 4998 4998 4998
2 4998 8544 4998 5075 5075 5075
3 4228 4270 3716 4214 4217 4216
4 5618 5695 5657 5675 5642 5610

Table 5. The goodput of TCP flows in kbps. Each macro-flow contains three TCP connections.

Flow Original Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5
1 4895 9997 3161 4254 4455 4331
2 5098 9996 3089 3492 4247 4017
3 723 9992 2919 917 1045 945
4 9270 9992 9373 9286 9324 9309

6.2.1. FDG edge-pruning
As mentioned in Section 4.1, uncongested links in the

network can be identified and the associated FDG edges
are removed when constructing the FDG. This reduces
the size of the connected components in the FDG and
reducesmaxChainvalue.

6.2.2. Minimize interactions among partitions
In addition to identifying uncongested links conser-

vatively (e.g., Fig. 3), one can also predict the uncon-
gested links based on known traffic workload [18] or
simulation results. For example, before conducting a
testbed experiment using FSP, a full-scale simulation
with simplified application workloads can be conducted
to predict potential uncongested links. Although we
may not wish to prune all their associated FDG edges
during the FSP partitioning phase as these links are not
guaranteed to be uncongested, one can easily modify
the GGGP algorithm to select them as edge cuts to min-
imize the interaction among partitions.

6.2.3. Early termination
As seen in Table 4, it is often possible to obtain

accurate results beforemaxChainiterations. This oc-
curs when the extracted application and network mod-
els from all partitions converge to the same values in
two consecutive iterations. Note that the inputs to the
workload generation tool (e.g., Tmix) for the(n+ 1)st
iteration are extracted from thenth iteration and FSP can
terminate immediately without conducting the(n+1)st
iteration.

6.2.4. Partial results and feedback mechanism
If FSP fails to converge within a specified number

of iterations, FSP can terminate and report only the re-
sults from partitions that converged. If not all flows of

interest are covered by these partitions, the user can in-
crease themaxNodevalue and repeat the FSP proce-
dure. By merging interacting partitions that do not con-
verge into a single partition, we are able to estimate a
recommendedmaxNodevalue for the next FSP proce-
dure.

7. Partitioning Experiments

In this section, we investigate the first phase of FSP.
Given the size of a backbone network (the number of
routers) and the number of flows we wish to have in a
network scenario, we generate a set of Rocketfuel [19]
topologies representing the backbone network using our
Rocketfuel-to-ns tool [20]. For each flow, we insert two
end hosts as the source and the destination of this flow,
and randomly attach these end hosts to the backbone
network. The end hosts are only attached to routers with
degree no larger than three and, to avoid trivial cases,
the source and destination nodes of a flow are not at-
tached to the same router.

7.1. Weights in Partitioning

We first evaluate our choice of weight function in the
first phase of FSP. Recall that we compute the weight of
an edge cut in the FDG as the number of distinct nodes
(hosts and routers in the original network topology) that
are shared by flows represented in the cut (Section 4).
Since the graph partitioning algorithm in our method
aims to select partitions with low edge cut weight, the
function we choose to calculate the weight of an edge
cut should help reduce the interactions among parti-
tions. In this section, we show how our weight function
compares to a simpler function that uses the number of
FDG edges on an edge cut as the weight. Since an edge

11

W. Yao and S. Fahmy / Computer Networks 00 (2013) 1–20 12

in the FDG implies dependence among two flows, fewer
FDG edges between partitions also implies less depen-
dence among partitions.

Fig. 11 demonstrates the average number of shared
links between partitioned network scenarios when us-
ing these two methods of computing the weight of an
edge cut. In this experiment, we generate different net-
work scenarios by randomly assigning 50 or 100 flows
with their end hosts onto a fixed Rocketfuel backbone
with 100 routers. We compute the average number of
shared links among partitions and the average results
from 30 experiment runs are plotted. From Fig. 11,
we find that using the number of distinct nodes as the
weight of an edge cut can lead to fewer shared links
among sub-scenarios than simply using the number of
dependent flows. This not only indicates that we have
fewer packet traces to collect in the second phase of our
method, but also implies that there may be less complex
interactions among sub-scenarios.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 li

nk
s

sh
ar

ed
 b

et
w

ee
n

pa
rt

iti
on

s

Maximum Number of Nodes in a Partition

Cut weight = nodes (50 flows)
Cut weight = edges (50 flows)

Cut weight = nodes (100 flows)
Cut weight = edges (100 flows)

Figure 11. Number of shared links among sub-scenarios with two
methods to calculate the weight of an edge cut.

7.2. Time Complexity

The time required for the second phase of FSP de-
pends on the number of sub-scenarios and the tool used
(e.g., Tmix vs. Harpoon) which can significantly vary
(see Section 9). As seen in Algorithm 1, the time com-
plexity of the first phase of FSP, i.e., partitioning a large
network scenarios into sub-scenarios, is dominated by
the graph partitioning algorithm. Our current imple-
mentation uses the recursive bisection algorithm with
complexityO(|FE| logk), whereFE denotes the edges
in the FDG andk denotes the number of partitions gen-
erated by the algorithm [16]. The worst case time com-
plexity of our complete algorithm isO(|F |4) where|F |
is the number of input flows.

We computed the runtime for partitioning scenarios
with 100 to 500 flows, randomly generating 30 scenar-
ios for each value of the number of flows. As illustrated
in Fig. 12, the runtime is proportional to the number of
flows in the network scenario. The runtime can vary
from seconds to hours for the same number of flows de-
pending on the complexity of the scenario or, in other
words, the number of edges in the FDG. Despite the
fact that FSP took up to a few hours for some scenarios
with 500 flows, partitioning will typically be invoked
offline, and hence FSP is still feasible. Moreover, the
current FSP prototype does not take advantage of possi-
ble performance optimizations; we will develop a faster
implementation by selecting a faster graph partitioning
algorithm, e.g., the k-way multilevel partitioning algo-
rithm with O(|E|) [16], and using more sophisticated
program optimization techniques.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 100 150 200 250 300 350 400 450 500 550

F
S

P
 R

un
tim

e
(m

in
.)

Number of Flows

maxNode = 25
maxNode = 50

maxNode = 100

Figure 12. The average runtime of FSP phase 1 versus the number of
flows in randomly generated network scenarios.

7.3. Partition Characteristics

We now take a closer look at the partitioning re-
sults. We generate sets of random network scenarios,
each with 50 routers. We generate 50 to 250 unidi-
rectional open-loop flows in the network, i.e., there are
50+ 2× |F | total nodes (hosts and routers) in the net-
work. For each set of experiments, we generate 50 ran-
dom scenarios and execute the FSP partitioning phase
with differentmaxNodevalues. We investigated (i) the
number of partitions, (ii) the value ofmaxChain(de-
fined in Section 6), and (iii) the number of links and
routers shared among partitions.

Fig. 13 and Fig. 14 show the number of directly de-
pendent flows, and the number of links shared among
partitions. Since the number of dependent flows is
large, and there are many links shared among partitions,
we conclude that the random network scenarios we are

12

W. Yao and S. Fahmy / Computer Networks 00 (2013) 1–20 13

studying are complex enough to represent interesting
scenarios.

Fig. 15 shows the number of partitions generated by
our algorithm, and Fig. 16 shows themaxChainvalue
computed after partitioning, which typically influences
the required number of iterations. As expected, we find
that the larger the value ofmaxNode, the fewer the num-
ber of partitions and the smaller themaxChainvalue.
A flow in any of our randomly generated scenarios in-
volves two end hosts and several routers on its path.
Although a flow can only appear in one partition, the
routers on its path can beduplicatedin multiple parti-
tions. We observed that a router may appear in 10 to 20
partitions. The number of duplicated routers is signifi-
cantly reduced whenmaxNodeincreases.

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60

N
um

be
r

of
 fl

ow
s

maxNode

Flows = 50
Flows = 100
Flows = 150
Flows = 200
Flows = 250

Figure 13. Average/min/max number of flows involved among parti-
tions.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 10 20 30 40 50 60

N
um

be
r

of
 li

nk
s

maxNode

Flows = 50
Flows = 100
Flows = 150
Flows = 200
Flows = 250

Figure 14. Average/min/max number of links shared among parti-
tions.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60

N
um

be
r

of
 p

ar
tit

io
ns

maxNode

Flows = 50
Flows = 100
Flows = 150
Flows = 200
Flows = 250

Figure 15. Average/min/max results of FSP partitioning under differ-
ent network scenarios andmaxNodevalues.

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60

N
um

be
r

of
 it

er
at

io
ns

maxNode

Flows = 50
Flows = 100
Flows = 150
Flows = 200
Flows = 250

Figure 16. ThemaxChainvalue for randomly generated network sce-
narios.

8. Simulation Experiments

8.1. Botnet Experiments

Denial of Service (DoS) attacks have been launched
against Internet sites for decades, and distributed DoS
attacks are extremely difficult to defend against. With
the prevalence of botnets in today’s Internet, individuals
can easily launch a massive DDoS attack from a rented
botnet for just a few hundred dollars per day. In this
section, we use both phases of FSP on a scenario that
studies the impact of a large-scale DDoS attack target-
ing a busy web server at Purdue University.

To understand the availability of our web server to
visitors during the attack, we selected 200 domains as
sources of the legitimate users and 50 subnets as the at-
tackers. The 200 (out of 14407) domains cover more
than 70% of the service providers of all visitors to our
web server between May 2009 and May 2010, and the
50 subnets are selected from the black list generated by
DShield.org [21] in June 2010. We use traceroute from

13

W. Yao and S. Fahmy / Computer Networks 00 (2013) 1–20 14

the web server to all 200+50=250 /24 subnets to gener-
ate the network topology, and find 1232 routers. Sev-
eral heuristics are then applied to reduce the number of
routers. For example, if the last 8 hops of a traceroute
record are not used by any other flow, we aggregate
the delays between them and remove the 7 intermedi-
ate hops. After reductions, there are 438 nodes and 462
links in this network topology as shown in Fig. 17. Note
that the end hosts for legitimate users and attackers are
aggregated. For instance, the 50 attack flows represent
thousands of attackers from the 50 /24 subnets. All links
are set to 100 Mbps. During the attack, 67% of the links
in the network are highly congested, including the link
directly linking to the web server.

Web Server

Figure 17. The network topology of the botnet experiment.

Since the size of this topology is larger than the DE-
TER testbed, we use ns-2 to compare between the origi-
nal and the partitioned experiments. The 200 legitimate
flows are generated by the PackMime-HTTP module in
ns-2 with 2 requests per second using both HTTP/1.0
and HTTP/1.1. For each HTTP/1.0 session, the client
requests a 36 kB page, which is the size of the most
popular page in our web site, and terminates the TCP
connection once it is received. For HTTP/1.1 sessions,
the client first requests the same page as in HTTP/1.0,
but requests up to two other pages using the same persis-
tent connection. This 3-page per session is based on the
fact that most of our site visitors (85.89%) view at most
three pages during their visit. Each page contains sev-
eral objects and the size and number of the objects are
generated by PackMime-HTTP. For the attack flows, we
send UDP packet bursts to the web server at 5 Mbps and
exponential on/off time with mean set to 2 seconds.

We execute FSP on this scenario withmaxNodeset

to 100 to generate sub-scenarios which can easily fit
onto a testbed like DETER. The large scenario with 438
nodes is partitioned by FSP into 8 sub-scenarios where
the largest one contains 83 nodes – a reasonable size for
DETER.

We use a user-perceived metric, the ratio of success-
ful HTTP sessions, in both the original and the parti-
tioned experiments. An HTTP session is successful if
its duration is less than 60 seconds or the delay be-
tween receiving objects from the server is less than 4
seconds [22]. Fig. 18 and Fig. 19 give the percentage of
successful HTTP/1.0 and HTTP/1.1 sessions in the 300-
second period when the server is under DoS. We also
examined the download time distributions for pages and
objects. Clearly, results from the first iteration are erro-
neous (100% success) since attack flows and legitimate
flows are mostly in separate partitions, while the results
from the second iteration reasonably match the original
scenario.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

S
uc

ce
ss

fu
l H

T
T

P
/1

.0
 S

es
si

on
s

(%
)

HTTP Flow ID

Origional
Iteration 1
Iteration 2

Figure 18. Percentage of successful HTTP/1.0 sessions. Only the first
25 flows are shown due to space constraints.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

S
uc

ce
ss

fu
l H

T
T

P
/1

.1
 S

es
si

on
s

(%
)

HTTP Flow ID

Origional
Iteration 1
Iteration 2

Figure 19. Percentage of successful HTTP/1.1 sessions. Only the first
25 flows are shown due to space constraints.

A closer look at the results in Fig. 18 and Fig. 19
14

W. Yao and S. Fahmy / Computer Networks 00 (2013) 1–20 15

reveals that, while most flows have similar results in
both experiments, a few flows (e.g., flow 9) have a sig-
nificantly lower success ratio in the partitioned experi-
ments. Comparing Fig. 18 and Fig. 19, the success ra-
tios for HTTP/1.1 sessions are lower than the HTTP/1.0
sessions, and the results from the second iteration have a
greater error for HTTP/1.1. This is due to the HTTP/1.1
persistent connections. The HTTP/1.1 session has more
objects and pages in the first iteration than in the origi-
nal scenario and the Tmix-injected TCP flows are thus
more aggressive. This is because when a requested
page is dropped in the original scenario, a client will
not request the objects in that page. Since there are no
dropped requests in the first iteration (the horizontal line
in the figure for iteration 1), a client will request more
objects and pages in a connection.Such changes in user
behavior are hard to capture by workload generators
unless they have application-layer knowledge, which is
avoided by Tmix because it hinders scalability and ex-
tensibility to new applications. As we will discuss in
Section 9, Tmix [11], Harpoon [13], and Swing [12]
make different choices in terms of the user, session,
connection, and network characteristics that they extract
and model, and hence the fidelity of the results obtained
varies according to which of these tools we use, and how
we configure the selected tool.As we extract and model
more information, space and time complexity increase,
but fidelity also increases. This tradeoff must be bal-
anced according to the goals of the experiment to be
partitioned, and the time and space constraints.

8.2. Comparisons to Downscaling
In this section, we compare FSP with a downscal-

ing technique. We select the TranSim time-sampling
approach [23] since it is designed for arbitrary traf-
fic (whereas other downscaling techniques in the liter-
ature [24, 14] make assumptions about traffic models).
TranSim aims to accelerate a simulation experiment by
reducing the number of packet events in the simulation.
While TranSim can also be applied to testbed experi-
ments to reduce the hardware requirements, perhaps by
running experiments on slower testbed machines, Tran-
Sim was designed to speed up simulations [23] and it is
not entirely clear how it can reduce the number of ma-
chines required on a testbed. Thus, we compare Tran-
Sim and FSP via simulation experiments.

In our first experiment, we consider a scenario where
50 backbone routers are generated using Rocketfuel-to-
ns [20] and there are 50 pairs of end hosts randomly
attached to the backbone. The topology of our second
experiment is a simple dumbbell as shown in Fig. 20.
For each pair of hosts, a client continuously requests a

file from a server at a fixed rate. The first experiment has
50 long-lived FTP flows where the requested file size is
5 MB and the request rate is one per second. In the sec-
ond experiment, there are 25 long-lived (class 0) HTTP
flows and 25 short-lived (class 1) HTTP flows. The re-
quested file sizes are 100 kB and 1 kB, and the request
rates are 2 and 50 per second, respectively. In both ex-
periments, the downscaling parameterα in TranSim is
set to 0.5 and 0.25. To correspond to this, themaxNode
parameter in FSP is configured so as to partition the 50
flows into 2 and 4 sub-scenarios. We use ns-2 with Tmix
as the modeling tool in FSP.

50 Mbps
10 ms

Class 0 flows

...

......

...

Class 1 flows

Figure 20. The network topology of 25 long-lived TCP flows and
25 short-lived TCP flows. Unless otherwise specified, all links are
100 Mbps and 10 ms delay.

We use throughput as the metric in the first experi-
ment since there are many active TCP connections when
the simulation ends. In the second experiment, we com-
pute the success ratio of HTTP requests [22]. In this ex-
periment, we consider an HTTP request successful if it
is completed within 10 seconds. We find that throughput
CDFs for FSP and TranSim are similar for the first ex-
periment in Fig. 21. In the second experiment (Fig. 22),
the fidelity of FSP is significantly higher than Tran-
Sim, especially compared to the 0.25 downscaling pa-
rameter. These TranSim results agree with our previ-
ous study [25]. TranSim loses fidelity with short-lived
flows, since control packets, such as the TCP handshake
packets and HTTP request packets, cannot be sampled.
The short-lived flows are thus relatively more aggres-
sive.

As with FSP, TranSim is not designed to preserve
fine-grained metrics. When conducting a downscaled
experiment using TranSim, onlyα percentage of the
packets in a flow are transmitted. The sampling of pack-
ets can significantly impact the fidelity of packet-level
metrics such as the packet delay jitter. Table 6 gives
the differences in the delay jitter between the original
and the downscaled experiments measured in the sec-
ond network topology (Fig. 20). We observe that the
fidelity of packet-level metrics decreases as TranSim se-
lects fewer packets to represent a flow in a downscaled

15

W. Yao and S. Fahmy / Computer Networks 00 (2013) 1–20 16

experiment.

Compared to TranSim, FSP requires additional traf-
fic modeling processes and longer run-time to conduct
sub-scenario simulations in multiple iterations. The key
advantage of FSP is that it can be directly applied to ex-
perimental and emulation testbeds to reduce the number
of required machines, whereas prior work only consid-
ered how to reduce simulation time [24, 14, 23].

Table 6. Percentage difference of average packet delay jitter between
the original and the downscaled experiments.

Short-lived TCP Long-lived TCP
FSP (maxNode=60) 0.84% 3.08%
FSP (maxNode=30) 1.34% 2.90%

TranSim (α=0.5) 51.06% 6.43%
TranSim (α=0.25) 74.70% 39.09%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

R
at

io
 o

f f
lo

w
s

Throughput (Mbps)

Original
FSP (maxNode=100)
FSP (maxNode=50)

TranSim (a=0.5)
TranSim (a=0.25)

Figure 21. The throughput distribution of the 50 long-livedflows.
Note that the results from TranSim are normalized (×1/α).

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

Short-lived Flows Long-lived Flows

S
uc

ce
ss

fu
l H

T
T

P
 R

eq
ue

st
s

(%
)

Flow Type

Original
FSP (maxNode=60)
FSP (maxNode=30)

TranSim (a=0.5)
TranSim (a=0.25)

Figure 22. The success ratio of long-lived and short-lived HTTP
flows.

9. DETER Testbed Experiments

In this section, we discuss two sample experiments
on the DETER testbed [5] that compare Harpoon [13],
Swing [12], and Tmix [11]. We directly use the author-
provided Harpoon implementation, but port Tmix and
Swing to DETER. The network topology is the same
as in Fig. 2(a) where all links are 10 Mbps with 10 ms
delay. Only 3 macro-flows, flow 0, flow 4, and flow 6,
are included to simplify comparisons among the tools.

Flow 4 is an HTTP flow generated by httperf [26].
The requested file size is 100 kB and the request rate
is 5 per second for a total of 600 requests. The request
timeout is set to 3 seconds to make the flow more sen-
sitive to the dynamics of flow 0. Flow 6 (only used in
the second experiment) emulates a pulsing DoS attack.
The idle period is 5 seconds and 40 TCP connections
arrive during the attack period. This arrival rate and the
flow size of 50 kB saturate the 10 Mbps link during the
attack periods. In the first experiment, flow 0 (labeled
Flow I) is also an httperf flow with the same param-
eters as flow 4, but with an exponentially distributed
request inter-arrival time (mean=0.15 seconds). In the
second experiment, flow 0 (labeled Flow II) consists of
10 clients downloading a series of files from a server.
All files are 500 kB and the “think time” between con-
secutive downloads is 2 seconds. In iteration 1 of the
second phase of FSP, we collect traces for all flows on
link R9-R0, and use them to model missing flows in iter-
ation 2. We repeat each experiment 5 times and average
the results.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Flow I Flow II

S
uc

ce
ss

fu
l H

T
T

P
 R

eq
ue

st
s

(%
)

Flow Type

Original
Harpoon

Swing
Tmix

Figure 23. The success ratio of flow 4.

The results of the two experiments are depicted in
Fig. 23. In the first experiment (Flow I), results from
Tmix and Swing are close to the original scenario. Al-
though all three tools correctly model the traffic and
network conditions, Harpoon has the lowest fidelity be-
cause of its use of time granularity. Unlike the other

16

W. Yao and S. Fahmy / Computer Networks 00 (2013) 1–20 17

two methods that inject exactly 600 TCP connections,
Harpoon divides time into intervals of lengthInterval-
Duration, configured to 60 seconds in this experiment,
and does not aim to accurately model dynamics within
an interval. Due to this, Harpoon generates more ag-
gressive flow 0 traffic, which reduces the success ratio
for flow 4. In the second experiment (Flow II), Swing
yields the highest fidelity, because connections within a
session are not modeled independently. Unlike Harpoon
and Tmix, a connection will not start before the previ-
ous one is finished, even during the attack period when
connections take longer. The think time between down-
loads is preserved, and the modeled traffic in iteration 2
is no more aggressive than the original scenario.

Comparing the three methods, Harpoon has the low-
est fidelity but exhibits the lowest complexity. Unlike
Swing and Tmix that require packet-level traces, a much
smaller Netflow trace is used by Harpoon. A trace that
includes 0.8 M packets or 12 k connections required
74 MB from tcpdump but was only 1.2 MB in Netflow
format. Collecting flow-level traces takes less effort
compared to tcpdump, since Netflow is typically sup-
ported by routers. Swing and Tmix have similar storage
requirements. However, while Tmix models connec-
tions independently, Swing’s structural model has the
highest fidelity since correlations among connections in
a session are captured. Tmix gives good results with
moderate complexity in all our experiments when con-
nections arenot highly correlated. In our implementa-
tions of Tmix and Swing, a 74 MB tcpdump trace can
be processed in only 35 seconds by Tmix, whereas an
additional 40 seconds are required by Swing.

Table 7. Properties captured by different traffic modeling tools.

Property Swing Tmix Harpoon

Average traffic volume Yes Yes Yes
Connection start time/size Yes Yes No
Session-level think time Yes No No

Packet timing/order No No No

Table 7 summarizes example properties that can be
extracted using different tools. None of the three tools
can precisely capture the original packet-level behavior
such as the timing and order of packets or the packet
delay jitter. While Swing and Tmix are able to extract
more details from the traces, all three tools can be used
to model the average traffic volume of flows, and can be
integrated into FSP to provide results with different de-
grees of fidelity according to the experimenter require-
ments.

10. Discussion

10.1. Choice of Modeling Tool

The choice of the traffic modeling tool does not al-
ter the FSP algorithms. The procedures to extract the
network conditions and the locations where traces must
be collected are independent of the tool. Using Table 7
as a guideline, we can identify the appropriate tool that
can be used to capture the required flow and network
characteristics. For example, consider a one-day trace
with macro-flows that are composed of a large number
of independent TCP connections. One should use Har-
poon in this scenario since it is not required to model
the exact order of TCP connections to generate work-
load that matches the traffic volume. Harpoon has the
lowest complexity among the tools.

Although it is possible to integrate more sophisticated
modeling tools in FSP for higher fidelity, current tools
focus on transport-level and session-level characteris-
tics, and require the flows to have similar application-
level behavior in both the original and the partitioned
scenarios. For instance, consider a video streaming ap-
plication that automatically adjusts its bit rate according
to the encountered network conditions. Compared to the
original scenario, the application transmits more traf-
fic in a less congested sub-scenario experiment. Since
the highly variable application behavior cannot be eas-
ily extracted from the different iterations of the sub-
scenario experiments using current modeling tools, re-
sults from FSP may have lower fidelity.

10.2. Scalability of FSP

Given a network scenario and the available machines
in a testbed (maxNode), FSP can partition the sce-
nario, regardless of the size of the network, as long as
the longest flow in the network traverses no more than
maxNodenodes. In the extreme case, each sub-scenario
will contain only a single flow and all traffic generation
nodes (e.g., Tmix nodes and delay boxes) are embedded
on the routers.

We define the scaling factor of FSP as the size of the
original network scenario divided bymaxNode. As one
increases the scaling factor in an FSP experiment (i.e.,
selecting a smallermaxNodevalue), the number of in-
teracting sub-scenarios increase and can adversely im-
pact the experimental fidelity. The optimal scaling fac-
tor is often challenging to predict without conducting
a series of FSP experiments. Our experience from the
evaluation experiments indicates that FSP can provide
acceptable accuracy when applied to a network scenario
that is one order of magnitude larger than the testbed
size.

17

W. Yao and S. Fahmy / Computer Networks 00 (2013) 1–20 18

10.3. Applications of FSP

FSP can be applied to both network simulation
and testbed experiments. Since the partitioned sub-
scenarios require fewer computational resources for a
simulator or fewer testbed machines, larger experiments
can be conducted on a resource-limited experimental
platform when partitioned by FSP.

FSP can aid parallel simulation. Unlike most parallel
simulators that require manual partitioning of the net-
work topology, FSP can automatically partition a large
experiment into sub-scenarios that can be executed in
parallel.

The first phase of FSP can also be used to analyze
dependencies and tune an experiment. For example,
consider assigning nodes randomly in a network to gen-
erate background traffic. The flow dependency graph
(FDG) can be used to analyze if the nodes are assigned
properly, i.e., ensure that the background traffic inter-
acts with target flows.

11. Related Work

The experimental scalability problem has been stud-
ied in the context of simulation, emulation, and testbed
experiments. The proposed approaches can be broadly
classified into two categories: (1) approaches that re-
duce the size or events in a given experimental sce-
nario, and (2) approaches that perform intelligent re-
source allocation to map a given scenario onto available
resources.

The goal of the approaches in the first category is
to generate adownscaledversion of the original net-
work scenario that preserves important properties of the
original scenario. For example, Panet al. [24] pro-
pose Small-scale Hi-fidelity Reproduction of Network
Kinetics (SHRiNK). Using SHRiNK, one can construct
a downscaled network replica by sampling flows, reduc-
ing link speeds, and downscaling buffer sizes and Active
Queue Management (AQM) parameters. The intuition
behind their approach is to reduce the traffic and the re-
sources consumed by that traffic by the same factor.

Instead of sampling traffic flows, Kimet al. [23] pro-
pose TranSim to slow down the simulation and sample
time intervals(also referred to astime expansion). By
maintaining the bandwidth-delay product invariant, net-
work dynamics (such as queue sizes) and TCP dynamics
(such as congestion windows) remain unchanged in the
process of network transformation.

Another noteworthy approach in the first category
is DSCALE, proposed by Papadopouloset al. [14].
DSCALE includes two methods, DSCALEd and

DSCALEs, that prune uncongested network links,
based on earlier work on queuing networks [27]. Their
follow-up work considers how to identify uncongested
links for pruning [18]. Petitet al. [28] investigate meth-
ods similar to DSCALE, and point out that downscaling
methods are highly sensitive to network traffic, topol-
ogy size, and performance measures. This is consistent
with our findings in [25].

Instead of pruning uncongested links in a path, the
path emulator proposed by Sanagaet al. [29] simplifies
a network path into a single hop. By collecting param-
eters from end-to-end observations of the Internet, the
emulator abstracts characteristics of the path and can
emulate the path without the detailed router-level topol-
ogy. Other work has also considered the downscaling
problem in specific contexts. For example, Weaveret
al. [30] focus on downscaling worm attacks. Carlet
al. [31] study how to preserve routing paths among Au-
tonomous Systems (ASes) while reducing the number
of ASes through Gaussian elimination. Krishnamurthy
et al. [32] consider preserving topological characteris-
tics when reducing a network graph.

Approaches in the second category map an experi-
mental scenario onto available resources. These ap-
proaches include the application of a range of parallel
and distributed simulation techniques such as in [6, 33].
For example, Walkeret al. [34] employ software vir-
tualization to migrate running node images from one
switch to another, in order to maintain the proximity of
the nodes attached to each RF switch.

An important technique in this category is virtualiza-
tion. The capacity of a testbed scales when multiple
experimental nodes are hosted as virtual machines on
a single physical machine [7, 35]. Container based net-
work emulators [36, 37, 38] utilize lightweight OS-level
virtualization techniques. These tools run high fidelity,
but small scale, emulation testbeds on a single machine.
Real-time network simulators such as [39, 40, 41, 42]
are able to interact with real network traffic and further
improve the capacity of existing testbeds. In contrast to
FSP, approaches in this second category typically map
multiple nodes in the original scenario to a single node
in the experiment, potentially introducing artifacts in
experiments that overload resources, especially in DoS
experiments [3, 37].

Our approach is orthogonal to techniques in both cat-
egories, and can be integrated with them. For example,
downscaling techniques can be applied to an experimen-
tal scenario before or after FSP to simplify the original
scenario or to speed up the execution of a sub-scenario.
Virtualization techniques can also be used on a sub-
scenario when appropriate, allowing it to be executed

18

W. Yao and S. Fahmy / Computer Networks 00 (2013) 1–20 19

on a smaller number of testbed machines. FSP is a sim-
ple platform-independent approach for different types
of experiments, including DoS experiments that pose
significant challenges with other approaches [3, 25, 37].

12. Conclusions and Future Work

In this paper, we have proposed a platform-
independent mechanism, Flow-based Scenario Parti-
tioning (FSP), to partition flows in a large network ex-
periment into a set of smaller experiments that can be
sequentiallyexecuted. The results of the smaller exper-
iments approximate the results of the original experi-
ment. FSP is platform-independent since it does not re-
quire any modifications to the experimentation testbed.
Since the original large experiment and the partitioned
smaller experiments can be viewed as independent ex-
periments, our approach can be integrated with existing
scaling solutions. For example, we can use our tools to
understand or simplify a large network experiment be-
fore applying virtualization or hybrid simulation tech-
niques.

Our results from simulation and DETER testbed ex-
periments indicate that FSP approximates application
performance under different levels of congestion and
open/closed-loop traffic. Our future work plans include
optimization of the partitioning process, and an in-depth
analysis of the granularity of modeling interacting par-
titions.

We are also experimenting with FSP on a variety of
topologies and flow mixes, including large CDNs and
P2P systems. The focus of these experiments is to fur-
ther explore the fundamental tradeoff between experi-
mental fidelity and space/time complexity of the exper-
imentation process. Finally, we are examining the in-
tegration of hybrid simulation, emulation, and experi-
mentation techniques into FSP, in order to relax the as-
sumptions we made, especially regarding dynamic route
changes and route symmetry.

Acknowledgments

This work has been sponsored in part by Northrop
Grumman Information Systems, and by NSF grant
CNS–0831353. Part of this work appeared in the Pro-
ceedings of the IEEE International Conference on Dis-
tributed Computing Systems in June 2011.

References

[1] Digital fears emerge after data siege in Estonia,http://www.
nytimes.com/2007/05/29/technology/29estonia.html
(2007).

[2] The network simulator,http://www.isi.edu/nsnam/ns/.
[3] R. Chertov, S. Fahmy, Forwarding devices: From measurements

to simulations, ACM Transactions on Modeling and Computer
Simulation 21 (2) (2011) 12:1–12:23.

[4] Network emulation testbed,http://www.emulab.net/.
[5] Cyber-defense technology experimental research laboratory

testbed,http://www.isi.edu/deter/.
[6] Parallel/distributed ns, http://www.cc.gatech.edu/

computing/compass/pdns/index.html.
[7] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad,

T. Stack, K. Webb, J. Lepreau, Large-scale virtualization in the
Emulab network testbed, in: Proc. of USENIX ATC, 2008.

[8] S. Robinson, Simulation: The Practice of Model Development
and Use, Wiley, 2004.

[9] R. Ricci, C. Alfeld, J. Lepreau, A solver for the network testbed
mapping problem, in: SIGCOMM Comput. Commun. Rev.,
2003.

[10] K. Schloegel, G. Karypis, V. Kumar, The sourcebook of parallel
computing, Morgan Kaufmann Publishers Inc., 2003, Ch. Graph
partitioning for high-performance scientific simulations.

[11] M. C. Weigle, P. Adurthi, F. Hernández-Campos, K. Jeffay, F. D.
Smith, Tmix: a tool for generating realistic TCP application
workloads in ns-2, in: SIGCOMM Comput. Commun. Rev.,
2006.

[12] K. V. Vishwanath, A. Vahdat, Realistic and responsive network
traffic generation, in: Proc. of SIGCOMM, 2006.

[13] J. Sommers, P. Barford, Self-configuring network traffic gener-
ation, in: Proc. of IMC, 2004, pp. 68–81.

[14] F. Papadopoulos, K. Psounis, R. Govindan, Performancepre-
serving topological downscaling of Internet-like networks,
IEEE Journal on Selected Areas in Communications 24 (12)
(2006) 2313–2326.

[15] M. Berger, S. Bokhari, A partitioning strategy for nonuniform
problems on multiprocessors, IEEE Transactions on Computers
100 (36) (1987) 570–580.

[16] G. Karypis, V. Kumar, A fast and high quality multilevelscheme
for partitioning irregular graphs, SIAM Journal on Scientific
Computing 20 (1) (1998) 359–392.

[17] J. Cao, W. Cleveland, Y. Gao, K. Jeffay, F. Smith, M. Weigle,
Stochastic models for generating synthetic HTTP source traffic,
in: Proc. of INFOCOM, 2004.

[18] F. Papadopoulos, K. Psounis, Efficient identification of uncon-
gested Internet links for topology downscaling, in: SIGCOMM
Comput. Commun. Rev., 2007.

[19] N. Spring, R. Mahajan, D. Wetherall, T. Anderson, Measuring
ISP topologies with rocketfuel, Networking, IEEE/ACM Trans-
actions on 12 (1) (2004) 2–16.

[20] Rocketfuel to ns tool suite,http://www.cs.purdue.edu/
homes/fahmy/routing.html.

[21] Distributed intrusion detection system,http://www.dshield.
org/.

[22] J. Mirkovic, A. Hussain, S. Fahmy, P. Reiher, R. Thomas,Accu-
rately measuring denial of service in simulation and testbed ex-
periments, IEEE Transactions on Dependable and Secure Com-
puting 6 (2) (2009) 81–95.

[23] H. Kim, H. Lim, J. C. Hou, Accelerating simulation of large-
scale IP networks: A network invariant preserving approach, in:
Proc. of INFOCOM, 2006.

[24] R. Pan, B. Prabhakar, K. Psounis, D. Wischik, SHRiNK: a
method for enabling scalable performance prediction and effi-
cient network simulation, IEEE/ACM Transactions on Network-
ing 13 (5) (2005) 975–988.

[25] W. Yao, S. Fahmy, Downscaling network scenarios with denial
of service (DoS) attacks, in: Proc. of Sarnoff Symposium, 2008.

[26] D. Mosberger, T. Jin, httperf-a tool for measuring web server

19

W. Yao and S. Fahmy / Computer Networks 00 (2013) 1–20 20

performance, in: SIGMETRICS Perform. Eval. Rev., 1998.
[27] D. Eun, N. Shroff, Simplification of network analysis inlarge-

bandwidth systems, in: Proc. of INFOCOM, 2003.
[28] B. Petit, M. Ammar, R. Fujimoto, Scenario-specific topolgy re-

duction in network simulations, in: Proc. of SPECTS, 2005.
[29] P. Sanaga, J. Duerig, R. Ricci, J. Lepreau, Modeling andemula-

tion of Internet paths, in: Proc. of NSDI, 2009.
[30] N. Weaver, I. Hamadeh, G. Kesidis, V. Paxson, Preliminary re-

sults using scale-down to explore worm dynamics, in: Proc. of
ACM workshop on Rapid malcode, 2004.

[31] G. Carl, S. Phoha, G. Kesidis, B. B. Madan, Path preserving
scale down for validation of internet inter-domain routingpro-
tocols, in: Proc. of Winter Simulation Conference (WSC), 2006.

[32] V. Krishnamurthy, M. Faloutsos, M. Chrobak, L. Lao, J.-H. Cui,
A. Percus, Reducing large Internet topologies for faster simula-
tions, in: Proc. of IFIP Networking, 2005.

[33] D. M. Nicol, J. Liu, M. Liljenstam, G. Yan, Simulation oflarge-
scale networks using SSF, in: Proc. of Winter Simulation Con-
ference (WSC), 2003.

[34] B. Walker, J. Seastrom, G. Lee, K. Lin, Addressing scalability
in a laboratory-based multihop wireless testbed, in: Mobile Net-
works and Applications, 2009.

[35] K. Yocum, E. Eade, J. Degesys, D., Becker, J. Chase, A. Vahdat,
Toward scaling network emulation using topology partitioning,
in: Proc. of MASCOTS, 2003.

[36] B. Lantz, B. Heller, N. McKeown, A network in a laptop: Rapid
prototyping for software-defined networks, in: Proc. of the9th
ACM SIGCOMM Workshop on Hot Topics in Networks, 2010.

[37] B. Heller, N. Handigol, V. Jeyakumar, B. Lantz, N. McKeown,
Reproducible network experiments using container based emu-
lation, in: Proc. of CoNEXT, 2012.

[38] J. Ahrenholz, C. Danilov, T. Henderson, J. Kim, Core: A real-
time network emulator, in: Military Communications Confer-
ence, 2008. MILCOM 2008. IEEE, 2008.

[39] J. Liu, Y. Li, Y. He, A large-scale real-time network simulation
study using prime, in: Proc. of Winter Simulation Conference
(WSC), 2009.

[40] ns-3,http://www.nsnam.org/.
[41] S. Wang, Y. Huang, NCTUns distributed network emulator, In-

ternet Journal 4 (2) (2012) 61–94.
[42] D. Gupta, K. Vishwanath, A. Vahdat, DieCast: Testing dis-

tributed systems with an accurate scale model, in: Proc. of
NSDI, 2008.

20

