
A Practical Approach for Provenance Transmission in Wireless Sensor
NetworksI

S. M. Iftekharul Alam

School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907

Sonia Fahmy

Department of Computer Science, Purdue University, West Lafayette, IN, 47907

Abstract

Assessing the trustworthiness of sensor data and transmitters of this data is critical for quality assurance. Trust evalua-
tion frameworks utilize data provenance along with the sensed data values to compute the trustworthiness of each data
item. However, in a sizeable multi-hop sensor network, provenance information requires a large and variable number
of bits in each packet, resulting in high energy dissipation due to the extended period of radio communication. In this
paper, we design energy-efficient provenance encoding and construction schemes, which we refer to as Probabilistic
Provenance Flow (PPF). Our work demonstrates the feasibility of adapting the Probabilistic Packet Marking (PPM)
technique in IP traceback to wireless sensor networks. We design two bit-efficient provenance encoding schemes along
with a complementary vanilla scheme. Depending on the network size and bit budget, we select the best method based
on mathematical approximations and numerical analysis. We integrate PPF with provenance-based trust frameworks
and investigate the trade-off between trustworthiness of data items and transmission overhead. We conduct TOSSIM
simulations with realistic wireless links, and perform testbed experiments on 15-20 TelosB motes to demonstrate the
effectiveness of PPF. Our results show that the encoding schemes of PPF have identical performance with a low bit
budget (∼ 32-bit), requiring 33% fewer packets and 30% less energy than PPM variants to construct provenance. With
a two-fold increase in bit budget, PPF with the selected encoding scheme reduces energy consumption by 46-60%.

Keywords: provenance; trust framework; energy-efficiency; sensor networks

1. Introduction

New micro sensors have enabled wireless sensor net-
works (WSNs) to gather real-time data from the phys-
ical world [1, 2]. Planet-wide sensor networks [3, 4],
sensor networks for large-scale urban environments [5],
and physical infrastructure systems [6] indicate poten-
tial deployments of multi-hop networks consisting of
hundreds of sensor nodes. In such networks, data pro-
duced by the sensors are collected at the base station and
made available to decision makers for further analysis.
As the quality of decision making is critically depen-
dent on the quality of transmitted information [5], trust-
worthiness of information and information-transmitting

IThis work has been sponsored in part by NSF grants CNS-
0964294 and CNS-0964086.

Email addresses: alams@purdue.edu (S. M. Iftekharul
Alam), fahmy@cs.purdue.edu (Sonia Fahmy)

nodes is important [7]. In a multi-hop network, prove-
nance includes knowledge of the originator and pro-
cessing path of data since its generation. While a
few provenance-based trust evaluation frameworks have
been proposed [8, 9], they do not consider energy dissi-
pation due to provenance transmission.

Provenance of a data item can be represented by a tree
that is embedded as meta-data with the item, and up-
dated along the path used to forward the item to the base
station [9]. In this case, every intermediate node carries
provenance of length proportional to the hop count be-
tween that node and the originator of the data item. In
a network with a large diameter (hop count), this in-
creased meta-data length results in an extended period
of radio communication and energy dissipation at ev-
ery intermediate node. We consider a real deployment
of a 46-hop network [10] in our simulations, and ob-
serve that aggregated energy dissipation of the network

Preprint submitted to Ad Hoc Networks October 9, 2013

increases by 27% when a traditional trust framework is
employed. Although large networks can be hierarchi-
cally organized [11], they still require a significant num-
ber of hops [12], with non-negligible energy usage for
provenance transmission.

Provenance encoding and construction is similar in
nature to the well-known IP traceback problem [13,
14]. IP traceback aims to determine the forwarding
paths of spoofed packets in the Internet. Among the
many proposed solutions to this problem, Probabilis-
tic Packet Marking (PPM) can most easily be adapted
to WSNs [15]. We have shown that direct application
of PPM to WSNs is infeasible since it embeds a sin-
gle node identifier in each packet, and hence requires
a large number of packets to construct the forwarding
path [16]. Instead, we propose a new approach, Proba-
bilistic Provenance Flow (PPF), where a connected sub-
graph of the forwarding path is probabilistically embed-
ded into a packet. PPF includes three new bit-efficient
provenance encoding schemes that quickly construct
provenance of an arbitrarily large multi-hop network.

We integrate a simple but robust scheme into PPF
to handle topological changes. Since encoded prove-
nance is matched against previously constructed prove-
nance graphs at the base station, we can reduce de-
coding errors to negligible levels and speed up conver-
gence. We also integrate PPF with provenance-based
trust frameworks and explore how trust scores evolve
faster with data items having dissimilar provenance than
with the items having shared provenance. This study
exposes the trade-off between trustworthiness or prove-
nance dissimilarity of data items and transmission over-
head: making provenance more dissimilar increases
transmission overhead. We investigate this trade-off and
propose a solution to provide decision makers with a
tunable parameter to control the extent of provenance
dissimilarity and transmission overhead.

We perform extensive simulations using TOSSIM to
demonstrate the performance of PPF in a highly dy-
namic and asymmetric network. We further evaluate
PPF using a testbed consisting of 15-20 TelosB motes
in different settings. Our simulation and testbed results
show that PPF with the selected encoding scheme can
consume up to 46-60% less energy and converge with
45% fewer packets than the traditional approach, which
significantly increases the network life-time.

The remainder of this paper is organized as follows.
We formulate the problem of energy-efficient prove-
nance transmission in Section 2. Section 3 discusses
related work. Section 4 explains three different encod-
ing schemes for PPF. We discuss the corresponding ap-
proaches to decode and construct provenance in Sec-

tion 5. Section 6 discusses integration of PPF with
provenance-based trust frameworks. In Section 7, we
examine the parameter selection for one of the encod-
ing methods. We analyze the bit requirements for em-
bedding provenance using all encoding schemes in Sec-
tion 8. Section 9 and 10 present simulation and testbed
results, respectively. Finally, Section 11 concludes the
paper.

2. Problem Formulation

2.1. Network Model

We consider a multi-hop WSN where changes in
topology due to failure or mobility can occur, but are
infrequent. We make the following assumptions regard-
ing the network and traffic:

(1) A Base Station (BS) acts as a central command
authority and the root of a routing tree. It has no re-
source constraints and cannot be compromised by an at-
tacker.

(2) Sensor nodes monitor their surroundings and pe-
riodically report to the base station or their designated
cluster head (if any).

(3) Multiple sensors are used to monitor an event.
Within a particular time window, independent observa-
tions obtained at cluster heads (if any) or the base sta-
tion from different sensors are concerned with the same
event.

(4) A provenance-based trust management method
such as [8, 9] is used in the application layer to evaluate
and manage trust in an adaptive manner. More details
can be found in [17].

2.2. Problem Statement

We consider a network of N nodes, where the max-
imum length (depth) of any forwarding path (tree) is
L. Assume that the maximum number of bits that can
be used to embed provenance information in a single
packet is B. Based on this bit budget, there is an inte-
ger m, 1 < m ≤ L such that at most m consecutive
node identities (that is, m − 1 consecutive edges) can
be embedded into a single packet. We must perform the
following operations:

(1) Provenance Embedding: In a forwarding tree
G = (V,E) rooted at the base station, each node
ni ∈ V makes an independent decision whether to em-
bed its identity into the packet, starting a connected
sub-graph, with probability pi. We need to design a
provenance embedding method to carry a partial path
P =< ni1 , ni2 , · · ·nim > into a single packet where
nij ∈ V, 1 ≤ j ≤ m and (nik , nik+1) ∈ E, 1 ≤ k ≤

2

m − 1. This problem is a simple extension of the edge
sampling approach in IP traceback [13].

(2) Provenance Construction: At the base station,
we must construct the entire provenance tree G =
(V,E) by exploiting partial path information collected
from a number of received packets, with an upper bound
on the number of packets required to construct the
provenance.

(3) Provenance Evolution: After topological
changes, e.g., due to failures or mobility, we must bound
the time that it takes to reflect the changes in the con-
structed provenance.

(4) Provenance Delivery: We must specify inter-
faces or methods to deliver the constructed provenance
to an existing provenance-based trust framework.

3. Related Work

Few provenance-based trust frameworks have been
proposed to date [8, 9]. These frameworks do not con-
sider energy-efficiency in WSNs.

The problem of provenance transmission is related to
the IP traceback problem that determines the forward-
ing path of spoofed packets [18]. IP traceback meth-
ods include hop-by-hop tracing [19, 20], out-of-band
ICMP traceback [21], and in-band probabilistic packet
marking [13, 14]. Hop-by-hop tracing is not well-suited
to WSNs due to its large storage requirement. Hot-
spot based traceback methods designed for mobile ad-
hoc networks [22, 23] store packet information at the
nodes, and traceback is performed hop-by-hop to deter-
mine the hot-spot where the attacker is located. In our
case, provenance information is continuously required
at the base station to compute trust scores of descendant
nodes. Hot-spot based methods would incur unneces-
sary delay in trust score calculation. Out-of-band ICMP
traceback requires out-of-band communication and in-
creased bandwidth which limit its usability in resource-
constrained WSNs.

In this work, we adapt Probabilistic Packet Mark-
ing (PPM) since it does not require additional storage
or out-of-band communication. PPM assumes static
routes which may not hold in our case. Additionally,
PPM requires a significant number of packets to con-
struct the forwarding path. Network coding variants of
PPM [24, 25] require fewer packets to construct the for-
warding path. Network coding approaches, however,
have a high computational complexity and increase the
length of the packet, as marking coefficients are trans-
mitted with the packet. Cheng et al. [26] determine the
optimal marking probability for each node to reduce the

number of packets required to construct the forwarding
path.

Multi-hop Network Tomography (MNT) [27] is a re-
cently proposed algorithm for reconstructing the packet
path, the per-hop arrival order, and the per-hop arrival
timing of individual packets. The algorithm is, however,
particularly designed for networks where nodes have
the dual functionality of both generating and forward-
ing packets. In contrast, our approach is more generic
and does not make specific assumptions about the roles
of nodes.

Sultana et al. [28] proposed a secure provenance
scheme for wireless sensor networks that uses in-packet
Bloom filters to encode provenance. However, even for
a 14-hop path, their scheme requires 240 bits to embed
provenance information. This limits the practical us-
ability of this scheme in large scale multi-hop networks.

4. Probabilistic Provenance Embedding

In this section, we present three provenance embed-
ding schemes as part of our Probabilistic Provenance
Flow (PPF) approach. All three methods incorporate
node identifiers into a packet probabilistically and only
differ in how they encode these identifiers.

4.1. Juxtaposition of Ranks

In the rank method, instead of embedding the node ID
directly into a packet, rank(ID) (defined in Definition 1
below) of the node is embedded, since every node ID
is uniquely identifiable by its rank, and the rank would
need fewer bits than the identity.

Definition 1. Consider U = {ID1, ID2, · · · IDN} as
the set of N node IDs. There is a permutation of U ,
σ(U) = {IDa1 , IDa2 , · · · IDaN }, such that, IDaj <
IDaj+1 , for 1 ≤ j ≤ N − 1. Rank of any node ID,
IDi ∈ U , denoted as rank(IDi), is the position of IDi

in σ(U).

Assume that the packet meta-data has space to hold
identities of up to m nodes. We use a counter of log2m
bits to track the number of already embedded ranks in
the packet. Initially, the buffer and counter contain ze-
roes. Every node ni decides to start a connected sub-
graph with probability pi. Once it decides to do so, it
overwrites the previous information by doing the fol-
lowing: it zeroes out the entire provenance field and
then embeds its rank at the beginning of the buffer and
sets the counter to one. If a node decides not to over-
write, it checks for empty buffer space using the counter

3

field. If there is space, it adds its rank into the first avail-
able slot in the buffer and increments the counter. Fig. 1
shows an example of this method where the buffer space
can hold at most three node identities in a single packet.

Decision: Overwrite Not Overwrite Overwrite Not Overwrite

5 19 19 20

Ranks Binary counter

0 1 1 0 0 1 1 05 6

Not Overwrite

5 6 1 17

7 19 205 6

Figure 1: Provenance encoding using juxtaposition of ranks (numbers
inscribed in the circles indicate rank of nodes).

4.2. Prime Multiplication
Our second encoding scheme, the prime method, is

based on prime multiplication. In a reasonably large
network, this method can embed more node IDs within
same number of bits (on the average), compared to the
rank method. To the best of our knowledge, this method
has not been used in any prior work.

Table 1: Bit requirements for multiplication of m node IDs, picked
randomly from the first f prime numbers.

f
m = 3 m = 4 m = 6

Avg Max Avg Max Avg Max
500 30.80 36 40.76 47 59.82 69
1000 34.25 39 45.35 52 67.02 76
2000 37.82 42 49.84 56 73.64 83
5000 42.33 47 55.83 62 82.45 93

Definition 2. Let Pn be the largest prime number that
is less than or equal to the positive integer n. We define
the set of usable IDs, QP,s where P is a prime number
and s is a positive integer:

QP,s = {n ∈ N | 2 ≤ n ≤ P and 0 ≤ n− Pn ≤ s}

Definition 3. For any positive integer n ∈ QP,s, for
some P and s, we define two functions:

• prime(n) = Pn (the largest prime number that is
less than or equal to n).

• offset(n) = n− Pn.

The prime method is motivated by the idea of using
prime numbers as node IDs and encoding a set of IDs
through their multiplication which can be uniquely fac-
torized. However, prime multiplication incurs computa-
tional and spatial overhead when the participating prime
numbers become larger. As shown in Table 1, the aver-
age number of bits required to multiply m prime num-
bers increases with the increasing size of the domain

of these numbers. This shows the infeasibility of using
prime numbers directly as node IDs. Thus, we define
QP,s (Definition 2) to ensure that node IDs will not dif-
fer by more than s from their nearest prime numbers
where s is referred as the spread factor. Then, we en-
code a sequence of node IDs by multiplying their near-
est prime numbers and summing up the corresponding
offset values (Definition 3). Before describing the de-
tails of encoding process, we describe the assignment
of node IDs using set QP,s.

4.2.1. Node ID Assignment
For a network of N nodes, we pick a set QP,s =

{q1, q2, · · · qz} with the smallest z such that z ≥ N .
An in-place algorithm is used to produce a random per-
mutation of QP,s, σ(QP,s) = {qa1 , qa2 , · · · qaz} and
members of σ(QP,s) are assigned to all N nodes se-
quentially. For example, in an 8-node network, we can
pick IDs for the nodes from a random permutation of
Q11,7 = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11}.

For a given number of nodes (N), the bit require-
ments for prime multiplication increase the most when
s = 0, which makes QP,s nothing but a set of prime
numbers that are less than or equal to P (= N th prime
number). With an increasing value of s, the set QP,s
can contain numbers upper-bound by relatively smaller
value of P (� N th prime number). By tuning s, the
largest element (P) ofQP,s can be made close to the to-
tal number of nodes (N). This brings about an interest-
ing trade-off: reduction of the number of bits required
for prime multiplication versus increase in the number
of bits required for summation of offsets. We will in-
vestigate this trade-off in Section 7.

4.2.2. Encoding Process
To store provenance information, we divide the

provenance buffer into two parts: product and offset.
Every node ni has an ID, say IDi, that is a member of
QP,s for some P and s. As with the rank method, once a
node ni decides to start a connected sub-graph, it clears
the provenance buffer. It then inserts prime(IDi) into
the product part and offset(IDi) into the offset part
(Definition 3). If a node nj decides not to overwrite,
it retrieves the values stored in the product and offset
parts. It then multiplies the value of the product with
prime(IDj), adds offset(IDj) to the offset, and stores
the newly calculated values into the respective parts.
Fig. 2 shows an example with m = 2.

We no longer need a counter field to track the num-
ber of node identities encoded in the provenance buffer
because there is always a unique prime factorization of

4

5

Decision: Overwrite Not Overwrite Overwrite Not Overwrite

4 18

Prime multiplication Offset

Not Overwrite

25

0+1+25x3x230+15x305 117 1+117x29

Not Overwrite

1+1+217x29x7

30 9

Figure 2: Provenance encoding using prime multiplication (numbers
inscribed in the circles indicate ID of nodes).

the product part which gives the number of participating
nodes.

4.3. Rabin Fingerprints

The prime method can typically accommodate more
node identities (m) than the rank method, but prime
multiplication results increase in size as N and m in-
crease. In order to embed more node IDs into a single
packet without requiring additional bits and excessive
computational complexity, we investigate Rabin finger-
prints [29].

A Rabin fingerprint calculates a near-perfect and
space-efficient unique representation of a sequence of
bits. For a sequence of bits n1, n2, · · ·nm, of length m,
the Rabin fingerprint is given by the following expres-
sion, where α and M are constant integers:

RF (n1, n2, · · ·nm) =

(n1α
m−1 + n2α

m−2 + · · ·+ nm) mod M

The fingerprint of the concatenation of two sequences
X and Y can be computed as follows:

RF (X||Y) = RF (RF (X)||Y)
= RF (RF (X)× αl) +RF (Y)

where, || represents concatenation and l is the length of
Y .

4.3.1. Encoding Fingerprints
The partial path traversed by a packet can be con-

sidered as a bit sequence of IDs of the nodes on that
partial path. We aim at transmitting the fingerprint of
that bit sequence sequence instead of transmitting the
actual sequence. Every node uses two constant inte-
gers α and M to compute its fingerprint. As the packet
traverses the path, we could easily compute the con-
tribution of every node to the fingerprint and add it to
the contributions of its predecessor nodes on that path.
For example, if the packet traverses the partial path
< n1, n2, · · ·nm >, node ni, 1 ≤ i ≤ m has a con-
tribution of IDiα

b(m−i+1) to the fingerprint associated
with that path. Here, b is the number of bits required to

represent a single ID. However, the incremental sum of
these contributions requires a large and variable num-
ber of bits in the packet which is undesirable. Hence,
we exploit the concatenation property of Rabin finger-
prints, which allows any node nk to compute the finger-
print of node IDs from IDn1 to IDnk by concatenating
its own ID (IDnk) to the fingerprint value of previous
nodes IDn1 to IDnk−1 . The following equation makes
this claim clear:

RF (IDn1 , IDn2 , · · · IDnk)
= RF (RF (IDn1 , IDn2 , · · · IDnk−1)||IDnk)

(1)

Thus, every node on a path can update the fingerprint
without requiring any extra bits as the fingerprint value
is always less than the divisor M . Note that since we
perform all arithmetic operations over Z2, the concate-
nation operation and fingerprint calculation (which re-
quire only shift and XOR operations) can be performed
in linear time [30]. The time complexity to calculate
fingerprints can be further improved by using a pre-
computed lookup table as discussed in Appendix A.

To store provenance information, we divide the
provenance buffer into three fields: fingerprint, inter-
mediate node, and length. As in other PPF methods,
every node ni decides to start a connected sub-graph
with probability pi. Once it decides to do so, it clears
the buffer and inserts IDi and 1 into the fingerprint and
length fields, respectively. If a node nj decides not to
overwrite, it retrieves the values stored in the fingerprint
and length fields. If the length is less than m, it up-
dates the current fingerprint value (say X) by comput-
ing RF (X||IDj) and increments the current value of
the length field by one. If the newly computed length is
less than or equal to m, IDj is stored in the intermedi-
ate node field that will aid in decoding the provenance
as discussed later.

4.3.2. Partitioning Fingerprints
Since we need to exploit previous knowledge about

node ordering to retrieve provenance information from
the fingerprint (as we will discuss in the next section),
transmitting large partial provenance information using
fingerprints may not always be advantageous. In WSNs,
nodes are vulnerable and error-prone and the routing
path may change due to the lossy nature of the wire-
less medium. This may cause inconsistency between
the current and the previously stored ordering among
nodes, making the entire fingerprint-based provenance
information useless. To mitigate this problem, we di-
vide the fingerprint field into r(r > 1) parts around the

5

(a) Embedding provenance with non-partitioned fingerprint

(b) Embedding provenance withm = 5 and r = 2

Figure 3: Provenance encoding using Rabin fingerprints (numbers in-
scribed in the circles indicate ID of nodes).

(r − 1) intermediate nodes so that changes in ordering
in one part do not affect other parts and changes in or-
dering can be reflected.

Each part contains fingerprints of at most dm+r−1
r e

node IDs where the length field indicates the total num-
ber of participating node IDs. For example, assume
we wish to embed information about a partial path
< n1, n2, · · ·nm > into a single packet with m = 7
and r = 2. As the packet traverses the network, node
n4 becomes the intermediate node and the first part of
the fingerprint contains RF (ID1, ID2, ID3, ID4) and
the second part contains RF (ID4, ID5, ID6, ID7).

Both parts of the fingerprint are calculated according
to equation 1 and the length field indicates the combined
length of the both parts. Note that, a non-partitioned
fingerprint is a special case where the intermediate node
corresponds to the lone fingerprint. Fig. 3(a) depicts an
example of the non-partitioned case and Fig. 3(b) de-
picts the partitioning approach with m = 5 and r = 2.

4.4. Handling Link Changes

The decoding process for prime and fingerprint meth-
ods requires a priori knowledge of order of nodes (as
discussed in Section 5). Since topological changes are
prevalent in wireless sensor networks, we need to keep
node order information up-to-date so that the prime
and fingerprint encoding methods can correctly decode
provenance. A straightforward solution is to invoke
the rank approach every tembedding seconds. A small
value of tembedding reduces the benefits of applying
the bit-efficient prime and fingerprint methods, while
longer tembedding increases decoding error and reduces
the overall effectiveness of the trust framework.

To study link change, we conduct a simple simulation
experiment. Fig. 4 shows a snapshot of link changes for

 0

 1

 2

 3

 4

 5

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

N
u
m

b
er

 o
f

ch
an

g
es

 i
n
 h

o
p
 c

o
u
n
t

Sequence of packets

Figure 4: Snapshot of topological changes for 2000 packets in a 10×
10 grid network.

2000 packets transmitted from a source to the base sta-
tion in a highly asymmetric 10× 10 grid network. Here
link change for a packet denotes the number of next hop
changes on the way from the source to the base sta-
tion with respect to the path followed by the preceding
packet. We observe that the time interval between two
successive topological changes varies, making it diffi-
cult to choose a fixed value for tembedding . Thus, we
design a reactive approach (shown in Fig. 5) to handle
link changes by exploiting next hop information avail-
able from the network layer. The goal of our approach
is to rapidly detect changes and to transmit provenance
of nodes that are part of the changed links with order
information among them.

Each node maintains a parent list containing its most
recent next hops (towards the base station). When a for-
warder node receives a packet, it updates this list if the
current next hop is not present in the list. It also switches
a single bit (which we call path changed) in the prove-
nance field of the packet to 1 and embeds the rank of its
own ID as provenance. Every node receiving the packet
with the path changed bit set to 1 concatenates the rank
of its ID with the existing provenance information in the
packet. Note that once the path changed bit of a packet
is set to 1, no forwarder node is allowed to override the
provenance information which makes transmission of
provenance of changed links the highest priority. If the
current next hop is present in the parent list, the node
can follow any of the probabilistic encoding schemes
discussed earlier.

We recommend that the size of the parent list of a
node be computed as a function of the number of neigh-
boring nodes, the rate of link changes, and the packet
reception rate (PRR) at the base station for that node.
When PRR at the base station for a node is low, topo-
logical change information passed from that node may
be lost. With a smaller parent list, the node will record

6

Received a packet, p

Is next_hop
present in the
parent_list?

Get the next_hop information
from routing layer

1. insert next_hop into parent_list
2. Set p.path_changed = true
3. p.provenance = rank(node_id)

Forward packet p

p.path_changed =
false

p.provenance = concatenate
(p.provenance, rank(node_id))

No

Yes

No

Yes

Apply probabilistic provenance
embedding on packet p

Figure 5: Handling topological changes in an intermediate node.

fewer next hop changes out of the lost ones. This in-
creases the probability of retransmitting lost topological
change information in a subsequent packet. If the rate
of link change is low, a smaller parent list for a node
suffices as well. When PRR at the base station for a
node is good, a larger parent list allows a node to record
more next hop changes and ensures faster transition to
probabilistic encoding schemes. In our simulation ex-
periments, we found that the performance of PPF is not
highly sensitive to the size of the parent list, and chose
g for a g × g grid network.

Although our proposed topological change handling
scheme requires an extra bit in the provenance field, it
offers several advantages:

• Topological changes are rapidly propagated and re-
flected in the provenance graph constructed at the
base station.

• Rank-based decoding can be used to decode the
provenance information of a packet with the path
changed bit set to 1.

• Nodes can automatically utilize an efficient encod-
ing scheme (e.g., prime or fingerprint) as soon as
no further topological changes are observed.

5. Decoding and Constructing Provenance

The provenance buffer of a packet is examined at the
base station to retrieve the embedded partial provenance
(or path) information. With the rank embedding ap-
proach, we can easily extract the embedded identities
from the provenance buffer, since we have the length
field, and the rank of each node ID uses a fixed number
of bits. However, with both the prime and fingerprint
embedding methods, we assume that information about
ordering among nodes is known from a previously con-
structed provenance graph, Gpre = (Vpre, Epre). Here,
Vpre is the set of node IDs and Epre is the set of edges
among these nodes indicating provenance flow.

5.1. Decoding Process for Prime Method

We apply a standard prime factorization algorithm
over the product part of the provenance buffer to re-
trieve the set of nearest prime numbers (say, X =
{X1, X2, · · ·Xm}). Then, we use Depth-First-Search
(DFS) with backtracking over Gpre to find all the possi-
ble paths consisting ofm node IDs whose nearest prime
numbers form any permutation of X . We need to mod-
ify DFS to compare the nearest prime number to a par-
ticular node ID with the members of setX while visiting
that node, and track the offset of the ID when a match
is found. With this modification, DFS with backtrack-
ing outputs all possible sets of node IDs whose near-
est prime numbers form a permutation of X . Since ev-
ery ID does not differ from its nearest prime number by
more than s, we can find at most sm such sets. For each
such set, we sum up the offset values and calculate the
difference from the offset value retrieved from the re-
ceived packet. If the difference is zero, we record the
matched set as the retrieved provenance.

5.2. Decoding Process for Fingerprint Method

Upon reception of a packet, we retrieve the r fin-
gerprint(s), associated intermediate node ID(s), and the
length field indicating the number of participating node
IDs. For every intermediate node, IDi, 1 ≤ i ≤ r − 1,
we perform a DFS with backtracking over Gpre =
(Vpre, Epre) with the following modifications:

• Set IDi is the root for DFS with backtracking.

• Search all the nodes within dm+r−1
r e hops away

from the node IDi and compute the Rabin fin-
gerprint using a pre-computed lookup table as dis-
cussed in Appendix A.

7

• After computing every fingerprint of length
dm+r−1

r e, we compare them to the retrieved fin-
gerprints RFi and RFi+1. If a match is found, we
record the matched path as provenance of the re-
ceived packet.

Note that, for every intermediate node, we are search-
ing a smaller portion of the graph Gpre using DFS with
backtracking.

False Positive Rate for Fingerprints
Assume that we have at most x = dm+r−1

r e node
IDs per partition, where m is the total number of node
IDs embedded per packet. Since decoding each pair
of partitions is independent of others, it suffices to an-
alyze the false positive probability of fingerprinting a
path of x node IDs originating from a particular inter-
mediate node ID. Assume that there are n such paths in
the provenance graph. Then, the false positive probabil-
ity is ≤ n2x.b

2k
, where k is the number of bits used for

fingerprinting and b is the length of the bit representa-
tion of one node ID.

If the maximum fan-out of the network is f , then n is
upper-bound by fx−1 which gives,

False positive probability ≤ f2(x−1)x.b

2k

=
b(m+ r − 1)f

2(m−1)
r

r.2k
(2)

5.3. Construction of Provenance

Depending on the network characteristics and bit
budget, decision makers may choose one of the three
provenance encoding schemes as the default one. When
a packet is received at the base station, the path changed
bit of the packet is checked to determine the encoding
method that was used to embed provenance. If the path
changed bit is set to 1, provenance (i.e. partial forward-
ing path) of the received packet is extracted using the
decoding process of rank approach. Otherwise, the de-
coding process for the default scheme is used to extract
embedded provenance.

Fig. 6 shows a block diagram of provenance con-
struction using PPF. The process of provenance con-
struction maintains two data structures: (i) G = (V,E)
representing the current provenance graph and (ii)
Gpre(Vpre, Epre) encompassing previously constructed
provenance. Once we have decoded partial path in-
formation from the received packet, provenance con-
struction is straightforward. After collecting sufficient
packets with embedded provenance (i.e., when we have

at least one ID from each node), we combine the par-
tial paths to produce the complete provenance graph,
G = (V,E). Here, V is the set of nodes and for some
vi ∈ V, vj ∈ V , (vi, vj) ∈ E iff (IDi, IDj) belongs to
some partial provenance encoded in a received packet.
Before the next round of provenance construction, we
set Vpre = Vpre ∪ V and Epre = Epre ∪ E to up-
date Gpre(Vpre, Epre) which is used by the decoding
processes of prime and fingerprint methods. Note that
the initial G is constructed from the partial provenance
embedded in the packets carrying changed path infor-
mation (path changed bit 1) only.

With the prime and fingerprint approaches, decoding
errors can occur when a packet carrying changed path
information is lost in the network and the base station is
unaware of the changes. Subsequently sent packets con-
taining encoded information of the changed path will
cause decoding errors at the base station. Further pro-
cessing can be employed to recover from these errors,
such as checking other combinations of partial paths by
checking edges between nodes on the recorded path and
the nodes that are 1 or 2-hop away from them. These
extensions will be the subject of our future work.

5.4. Complexity Analysis
Decoding using the rank method is straightforward

and takes only O(m) time, where m is the maximum
number of nodes embedded per packet.

In case of the prime method, we use the General
Number Field Sieve (GNFS) algorithm for prime factor-
ization. The asymptotic running time for this algorithm
for a b-bit number is O(exp((64b

9)
1
3 (log b)

2
3)).

In an N -node network, node IDs require at
most dlog2Ne bits with the appropriate choice
of s and m. Thus, multiplication of m node
IDs requires at most mdlog2Ne bits which
makes the complexity of prime factorization
O(exp((64mdlog2Ne

9)
1
3 (log(mdlog2Ne))

2
3)).

We also need to perform DFS with backtracking.
This entails sm comparisons to find a path of m nodes
(Section 5.1). We know that s can be approximated as
N

π(N) ∼ lnN (as discussed in the next section). Thus,
the time required to decode provenance from a single
packet becomes

O(exp((
64mdlog2Ne

9
)

1
3 (log(mdlog2Ne))

2
3)+

exp(N) + (lnN)m)

which is exponential in terms of N .
In case of the fingerprint method, we need to search

the provenance graph and update the fingerprint using

8

concatenation while visiting a node on that graph. This
is performed using DFS with backtracking which takes
exponential time in terms of N in the worst case. How-
ever, nodes beyond dm+r−1

r e-hops away from the root
can be pruned in this case. Thus the actual number of
nodes visited by the algorithm is much lower in practice.

Regarding the construction of entire provenance in
an N -node network, we can represent the provenance
graph using an adjacency matrix. The total number of
edges of the graph can be at mostO(N2). Since edge in-
sertion requires constant time, the worst case complex-
ity for constructing the entire provenance isO(N2). We
need O(N2) space to hold the provenance graph apart
from the space required by the trust framework. Alter-
natively, we can use an adjacency list, which offers a
different tradeoff.

6. Trust Framework and PPF

In order to assess the trustworthiness of a data item,
traditional trust frameworks associate a trust score with
each data item. Although the actual meaning of the trust
score varies from application to application, this score
can be used for comparison or ranking [9]. The data
item having the highest trust score value can be labeled
as the most trustworthy item with respect to other data
items. Here we borrow the definition of trust of a data
item given in [8]: “The trust of a data item i, denoted as
T (i), is the probability of i being true, as perceived by
the receiver.”

Provenance-based trust frameworks compute trust
scores over a collection of data items based on their val-
ues and provenance information. These data items per-
tain to the same physical event and are received at the
base station within a specified time window. The trust
score of each data item, T (i) is adjusted based on the
value similarity and provenance dissimilarity of the data
items. If similar data values have different provenance,
this may increase the trustworthiness of data items. If
the two data items have different provenance, they can
be considered supportive to each other. In contrast, if
they share similar provenance, this is not a clear indica-
tion of trustworthiness. Thus both value similarity and
provenance dissimilarity of a data item contribute to its
trust score.

PPF is agnostic of the way provenance dissimilar-
ity is calculated under different trust frameworks. In
order for us to explain the interface between PPF and
trust frameworks, we consider the following definition
of provenance dissimilarity score (ρd), a variant of the

path difference factor proposed in [8]:

ρd =

∑
t∈C,t 6=d ρ(d, t)
|C| − 1

where C denotes a collection of data items and ρ(d, t)
indicates provenance difference between two data items
d and t.

ρ(d, t) =
max{|Gd|, |Gt|} − |I{Gd, Gt}|

max{|Gd|, |Gt|}

Here, Gd and Gt indicate provenance corresponding to
the data items d and t, and I{Gd, Gt} indicates set of
nodes that are common to Gd and Gt.

6.1. Integration with Trust Framework

For a given collection of data items, trust frameworks
require the complete provenance of each data item to
calculate provenance dissimilarity score. Unfortunately,
PPF only typically provides partial provenance of each
data item. The partial provenance of a data item pro-
vided by PPF is either a part of the previously con-
structed complete forwarding path or a part of a new
forwarding path that will be followed by the data items
of the same source in near future. Thus after decod-
ing partial provenance {IDi1 , IDi2 , · · · IDim} of a data
item (originated from source i), PPF returns its com-
plete provenance to the trust framework as follows:

• Find paths from source i to IDi1 and from IDim to
the base station on the current provenance graphG.
If no such paths are found onG, continue searching
over the graph Gpre.

• Concatenate the above paths with the decoded par-
tial paths to form complete provenance for the re-
ceived data item.

Provenance constructed in this manner provide near per-
fect accuracy in trust score calculation as we will ob-
serve in our simulation results (Section 6.1).

6.2. Trustworthiness vs. Transmission Overhead

Since sensor nodes are deployed near the phenom-
ena to be sensed [31], data items with similar values are
likely to share forwarding paths (or provenance). How-
ever, in an ideal (i.e., attack free) environment, trust
scores evolve faster with data items having dissimilar
provenance than with the items having shared prove-
nance [9]. Dissimilar provenance of a collection of data
items may help reduce the severity of an attack because

9

Provenance
Decoder

Provenance Constructor

Decoded
Partial Provenance

Completed Provenance
Graph, G= (V,E)

Gpre = (Vpre, Epre)
Vpre = Vpre U V
Epre = Epre U E

Output to Trust
framework

PPF

Figure 6: Construction of provenance and integration with trust framework

a single attacker cannot be present on multiple forward-
ing paths at the same time. For example, if we con-
sider an adversary model where multiple attackers chain
along a path and forward packets selectively [32], most
of the data items sharing that forwarding path will be
affected. In a threat model where multiple attackers col-
lude to inject false data [33], similar provenance of data
items helps locate the attack region faster. Thus, it is
desirable to control the forwarding path of data items so
that required similarity or dissimilarity among prove-
nance can be ensured.

Forwarding paths are defined and maintained by the
routing protocols on the sensor nodes. These paths or
routes are usually built as part of a minimum cost tree
rooted at the base station. In routing terminology, the
cost for a node is the cost for its next hop plus the cost
of its link to the next hop. Thus the cost of a route is
the sum of the costs of its links towards the base sta-
tion. Assuming expected transmissions (ETX) [34] as
a cost metric, a forwarder node will route the data item
through the next hop that requires the least estimated
number of transmissions (to reach the base station) with
respect to other neighbors. In this case, choosing a
next hop other than the default one would result in
a different forwarding path with a higher ETX value.
This reveals an interesting trade-off between trustwor-
thiness (or provenance dissimilarity) and transmission
overhead: making provenance more dissimilar increases
transmission overhead.

We propose a solution (termed as controlled rout-
ing) integrated with the default TinyOS routing proto-
col (CTP) to provide decision makers with a tunable pa-
rameter to control the extent of provenance dissimilarity
and transmission overhead. Before forwarding a packet,
the next hop function of the CTP routing engine is used
to determine the best next hop (i.e., neighbor with the

smallest ETX) out of the routing table of the forwarder.
Our solution overrides this function with a parameter-
ized next hop function which takes an argument called
ETX threshold (thetx) and performs following steps:

• Before forwarding a packet, we examine the rout-
ing table of the forwarder node to determine a
list of eligible next hops. We discard neighbor-
ing nodes that create self-loops and have estimated
ETX beyond the smallest ETX by more than thetx.

• We hash on the ID of the originator node of the
packet to generate a value i between 1 and the
number of eligible next hops. The i-th next hop in
the eligible next hop list is returned as the output
of the function.

Choosing next hop based on the hash value of the
originator node ID keeps the forwarding path of the data
items (generated from that node) consistent and makes
the solution more tailored to the PPF encoding schemes.
Further, by increasing the value of thetx, we can in-
crease the degree of dissimilarity among provenance of
a collection of data items at the cost of higher transmis-
sion overhead, and vice versa.

7. Spread Factor

The prime method requires two parameters s and P
that define the set of node IDs, QP,s.

7.1. Approximating the Spread Factor

For a given number of nodes, N , we want to deter-
mine the spread factor, s that minimizes the highest
value of QP,s. This value of s depends on the prime
gap.

10

Table 2: Prime gaps below the number n.

n
Prime Gap

Observed mean (µ) Observed stdev gapavg
µ

gapavg

500 5.29 3.11 5.12 1.03
1000 5.96 3.55 5.82 1.02
2000 6.61 4.50 6.52 1.01
5000 7.48 5.30 7.44 1.01

Definition 4. A prime gap is the difference between two
successive prime numbers, pk and p(k+1), where pk is
the kth prime number. Thus, a prime gap of length n is
a run of n− 1 consecutive composite numbers between
two successive primes.

We use the Prime Number Theorem to approximate
the average length of prime gaps. The theorem gives an
asymptotic form for the prime counting function π(n),
which counts the number of primes less than some inte-
ger n. According to this theorem (proved independently
by Hadamard (1896) and de la Valle Poussin (1896)),

π(n) ∼
∞∑
k=0

k!n
(lnn)k+1

∼ n

lnn
+

n

(lnn)2
+

2n
(lnn)3

+ · · · (3)

It has been shown that summation of the first three terms
in equation 3 is a better estimate for π(n) (Derbyshire
2004, pp. 116-117). Now, we can approximate the av-
erage length of prime gaps below n as

gapavg(N) ≈ n

π(n)
∼ 1

1
lnn + 1

(lnn)2 + 2
(lnn)3

.

Table 2 shows the theoretical mean along with em-
pirical mean and standard deviation of prime gaps for
different values of n. The last column of this table gives
the ratio between empirical and theoretical mean which
justifies the approximation above. Assume that Pn de-
notes the nth prime number. By choosing a spread fac-
tor, s, that approximates to gapavg(N) for some N ,
we can obtain a set of numbers upper-bound by some
prime number Pπ(N)+1 ≥ N . We denote this set
as QPπ(N)+1,gapavg(N). Due to the high variation in
prime gaps with respect to gapavg(N) the cardinality
of this set becomes less than N . Assume that using the
same spread factor (s = gapavg(N)), we find a set of
numbers, QPπ(N′),s such that |QPπ(N′),s| is the small-
est number greater than or equal to N . Similarly, by
choosing some values larger than gapavg(N) for spread
factor s, we can have a set of numbersQPπ(N′′),s, where
|QPπ(N′′),s| is the smallest number greater than or equal

to N . Clearly, Pπ(N ′) > Pπ(N ′′), which makes the lat-
ter set more favorable in terms of bit requirements (as
observed in Table 1). We use the following optimistic
choice:

s ≥ gapavg(N) ≈ N

π(N)
≈ 1

1
lnN + 1

(lnN)2 + 2
(lnN)3

.

(4)

7.2. Choice of Spread Factor
For a network of sizeN , we first calculate gapavg(N)

and by setting s = bgapavg(N)c, we pick a set
QPπ(N′),s such that |QPπ(N′),s| is the smallest number
greater than or equal to N . Considering the require-
ments for prime multiplication and summation of offset,
we estimate the worst case bit requirements per packet
as:

BPworst(s,m) = log2(
m−1∏
i=0

(Pπ(N ′)− i))+ log2(m×s),

where m is the number of node IDs embedded per
packet.

Then we increase s by one and determine the corre-
sponding set of node IDs. After calculating the worst
case bit requirements for the new set, we compare the
newly calculated value with the current one. If the
newly calculated set outperforms the current one in
terms of worst case bit requirements, we set the new set
to be the current one. We continue until the newly cal-
culated set requires more bits than the current one. Ta-
ble 3 shows the comparison among the required number
of bits for different values of s with varying numbers of
nodes and number of per-packet node IDs. For a partic-
ular number of nodes and per-packet node IDs, the last
column gives the best choice for s (s∗).

8. Bit Budget

A fixed budget of bits (Bbudget) is available for em-
bedding provenance of at most m nodes within the
meta-data of a packet. We give the value of m for our
three encoding methods in this section.

8.1. Bit Usage for Rank Method
In an N -node network, bit requirements for the rank

method areBR(m) = m× log2N+log2m, where, the
first term on the right hand side indicates the required
number of bits to embed m ranks, and the second term
accounts for the counter that tracks the number of em-
bedded ranks. Thus, we choose the largest m such that
BR(m) ≤ Bbudget.

11

Table 3: Worst case bit requirements for varying number of nodes, per-packet node IDs, and choice of s.

m N gapavg
s = bgapavgc s = bgapavgc+ 1 s = bgapavgc+ 2 s = bgapavgc+ 3 s = bgapavgc+ 4

s∗
Pmax Bits Pmax Bits Pmax Bits Pmax Bits Pmax Bits

3 500 5 613 32 587 33 563 33 547 33 521 33 5
3 1000 5 1307 36 1229 36 1163 36 1109 36 1063 36 5
3 2000 6 2683 40 2477 39 2377 39 2269 39 2213 39 10
3 5000 7 6779 44 6367 43 6079 43 5857 43 5669 44 10

4 500 5 613 43 587 42 563 42 547 43 521 43 7
4 1000 5 1307 47 1229 47 1163 46 1109 47 1063 47 7
4 2000 6 2683 51 2477 51 2377 51 2269 51 2213 51 7
4 5000 7 6779 56 6367 57 6079 57 5857 57 5669 56 7

5 500 5 613 52 587 51 563 52 547 52 521 52 6
5 1000 5 1307 57 1229 57 1163 57 1109 57 1063 57 6
5 2000 6 2683 62 2477 63 2377 63 2269 62 2213 62 6
5 5000 7 6779 70 6367 70 6079 69 5857 69 5669 69 11

Table 4: Average case bit requirements for varying numbers of nodes
and per-packet node IDs with s∗.

N
m = 3 m = 4 m = 5

s∗ avg s∗ avg s∗ avg
500 5 27.82 7 36.16 6 44.35

1000 5 31.25 7 40.53 6 49.9
2000 10 34.5 7 45.14 6 55.81
5000 10 38.99 7 51.11 11 62.4

8.2. Bit Usage for Prime Method

In an N -node network, we can pessimistically pick a
value of m such that BPworst(m, s

∗) ≤ Bbudget. This
does not guarantee the best usage of available bits since
prime multiplication of m node IDs does not always
need a fixed number of bits (as in the case of rank ap-
proach) and BPworst(m, s

∗) can hold more than m node
IDs in many cases. Hence, we consider average case bit
requirements before choosing an m for a particular bit
budget. The average bit requirements per packet are

BPavg(s,m) = log2(m× s)

+
m

π(N ′)
(log2 π(N ′)−1∑

i=2

(i ∗ [π(2i)− π(2i−1)])

+ log2 π(N ′) ∗ [π(N ′)− π(2log2 π(N ′)−1)]
)
.

Table 4 shows the average number of bits calculated
for different numbers of nodes and per-packet node IDs
with their corresponding s∗. We choose anm∗ such that
BPavg(s

∗,m∗ − 1) ≤ Bbudget ≤ BPavg(s
∗,m∗). For ex-

ample, in a 1000-node network with 40 bits available
for provenance embedding, we choose m∗ to be 4 since
BPavg(5, 3) ≤ 40 ≤ BPavg(7, 4) (Table 4). This choice
provides the opportunity to embed more node IDs per
packet on the average.

Table 5: Choosing (r,m) for different bit budgets in a 5000-node
network with b = 13 and ε = 5.

r
Bbudget = 32 Bbudget = 64 Bbudget = 128
m x m x m x

1 2 2 9 9 25 25
2 n.a. n.a. 7 4 21 11
3 n.a. n.a. n.a. n.a. 16 6
4 n.a. n.a. n.a. n.a. 9 3

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

�
�
�
�

��

�
�
�
�

 0

 10

 20

 30

 40

 50

 60

 70

R
an

k

P
ri

m
e

F
in

g
er

p
ri

n
t

R
an

k

P
ri

m
e

F
in

g
er

p
ri

n
t

R
an

k

P
ri

m
e

F
in

g
er

p
ri

n
t

R
an

k

P
ri

m
e

F
in

g
er

p
ri

n
t

A
v
er

ag
e

n
u

m
b
er

 o
f

b
it

s

Number of IDs embedded per packet

m=2 m=3 m=4 m=5

5000 Nodes

1000 Nodes

500 Nodes

Figure 7: Average bit requirements for per packet provenance in net-
works of different sizes. (Stacked data along a single column is given
in relative values that need to be added to get the absolute values of
each textured bar.)

8.3. Bit Usage for Fingerprint Method

In an N -node network, the bit requirements for em-
bedding m IDs per packet can be expressed as

BF (r,m) =

{
b+ log2m+ k, r = 1,
(r − 1)b+ log2m+ rk, r > 1,

(5)

where r is the number of partitions in the provenance
buffer, k is the number of bits required for each finger-
print and b is the number of bits required to represent
one node ID. We need to choose an m and r such that
BF (r,m) ≤ Bbudget. Here, r = 1 denotes the non-
partitioned case, where the entire provenance buffer can
be regarded as a single partition.

12

Table 6: TOSSIM channel and radio parameters for different topologies.
Topology

Random Grid

Channel Parameters

PATH LOSS EXPONENT 4.7 4.7
SHADOWING STANDARD DEVIATION 3.2 3.2

D0 1.0 1.0
PL D0 55.4 55.4

Radio Parameters

NOISE FLOOR -106.0 -105.0
S11 0.9 3.7
S12 -0.7 -3.3
S21 -0.7 -3.3
S22 1.2 6.0

WHITE GAUSSIAN NOISE 4 4

Assuming a false positive probability of 2−ε, ε ≥ 0,
from equation 2,

k = 2(x− 1) log2 f + log2 b+ log2 x+ ε (6)

where m = (rx− r + 1).
First, we consider the case when r = 1, which leads

to x = m. Then, combining (5) and (6) we have,

2(m− 1) log2 f + 2 log2m ≤
Bbudget − b− log2 b− ε. (7)

Similarly, considering r > 1, we have

r(2(x− 1) log2 f + log2 x+ b+ log2 b+ ε)
+ log2(rx− r + 1) ≤ Bbudget + b. (8)

We determine the maximum value of m for different
values of r ≥ 1 using the above two equations. De-
cision makers are left to choose the appropriate pair of
(r,m) based on the rate of link failure or changes, and
the average fan-out of the network. In Table 5, we con-
sider a 5000-node network with average fan-out f = 4,
b = 13 bits, and ε = 5 to show the possible choices for
(r,m) where x indicates maximum number of node IDs
contained in each partition. Note that fanout should be
restricted so that excessive energy consumption at the
junction node does not partition the network [35]. We
also compare the theoretically calculated average bit re-
quirements of the fingerprint method with the two other
encoding schemes in Fig. 7. Clearly, the fingerprint
method requires fewer bits than the other methods, as
the value of N and m increase.

9. Simulations

We conduct simulations using TOSSIM [36] for net-
works with hop counts ranging from 5 to 31, and num-
ber of nodes ranging from 5 to 500. For energy analysis,
we use POWERTOSSIMZ [37] which uses the micaz

energy model. We do not consider energy consump-
tion related to CPU computations since TOSSIM can-
not capture CPU usage [37]. However, all nodes other
than the base station only perform encoding operations
which have low computational complexity and are un-
likely to draw significant CPU power. A base station
with no resource constraints can perform the decod-
ing operations, e.g., prime factorization, for a moderate
number of nodes in reasonable time. We compare the
performance of the encoding schemes of PPF with the
following two variants of probabilistic packet marking
as they are the closest to our approach (though they were
designed for wired IP networks):

• PPM [13, 14]: The most basic probabilistic packet
marking scheme which embeds one node ID per
packet and uses a distance field to track the posi-
tion of the embedded node ID on the forwarding
path from the source to the base station.

• PPM with Network Coding [24, 25]: Incorpo-
rates network coding with packet marking to em-
bed a linear combination of a probabilistically cho-
sen set of connected node IDs per packet. This
scheme also uses a distance field to track the po-
sition of linearly combined node IDs on the for-
warding path from the source to the base station.

Since PPM and PPM+NC are designed for IP trace-
back, we need to adapt them for wireless sensor net-
works. PPM will use 16 bits for embedding a single
node ID (per TinyOS) and 8 bits for the distance field.
PPM+NC computes a linear combination of node IDs
over F216 (since node IDs are 16 bits). The coefficients
used to compute linear combinations are chosen over
F22 . PPM+NC uses the rest of the bit budget to em-
bed the coefficients and a counter that tracks number of
participating nodes in the linear combination. We note
that, our implementation of PPM+NC is a slightly im-
proved version of the original one. In the original ver-
sion of PPM+NC, a packet received at the base station

13

 0

 50

 100

 150

 200

 250

 300

 5 10 15 20 25 30

N
u
m

b
er

 o
f

p
ac

k
et

s

Number of hops

PPM
PPM+NC
PPF-Rank

PPF-Prime
PPF-Fingerprint

(a) Provenance construction with 32-bit budget

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 5 10 15 20 25 30

E
n
er

g
y
 C

o
n
su

m
p
ti

o
n
 (

m
J)

Number of hops

PPM
PPM+NC

PPF-32 bits

(b) Aggregate energy consumption with 32-bit budget

 0

 10

 20

 30

 40

 50

 5 10 15 20 25 30

N
u
m

b
er

 o
f

p
ac

k
et

s

Number of hops

PPF-Rank
PPF-Prime

PPF-Fingerprint
PPM+NC

(c) Provenance construction with 64-bit budget

Figure 8: Comparison among different encoding schemes of PPF and PPM variants in a random topology.

0

30000

60000

90000

120000

150000

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

m
J
)

PPF−R
an

k

PPF−P
rim

e

PPF−F
in
ge

rp
rin

t

PPM
+N

C

Figure 9: Energy consumption for 25-hop network with 64-bit budget.

does not contain any linear combination of node IDs if
no intermediate nodes mark the packet. We modified
this so that a packet received at the base station contains
a linear combination of the first few node IDs even if no
intermediate nodes mark the packet.

9.1. Performance Metrics

The following performance metrics are considered to
evaluate our proposed schemes:

• Number of transmitted packets: The total number
of packets transmitted by all nodes on a path from
a particular source to the base station before com-
plete provenance is constructed for that path.

• Aggregate energy consumption: The total energy
consumed (in mJ) by all nodes that participated in
encoding provenance of a path from a particular
source to the base station.

• Decoding error: The percentage of node IDs that
cannot be decoded due to link changes or false pos-
itive rates (if any).

9.2. Simulation Setup
All experiments are performed using a transmission

rate of 250 kbps, the default transmission rate of the
micaz mote, where every data-generating sensor sends
data towards the base station every 2 s. The probability
for embedding a node ID is p = 1

25 . Before starting
data transmission, the following initialization steps are
performed:

• Every node is assigned a node ID from the appro-
priate set QP,s∗ (discussed in section 7).

• Every node computes and stores the lookup table
necessary to compute Rabin fingerprints.

• The sender node sends 500 dummy packets to-
wards the base station to ensure convergence of the
routing protocol CTP. These packets are discarded
at the base station and thus not used in the prove-
nance construction process.

All results are averaged over 1000 runs, and we find
the standard deviation to be extremely small. Unless
otherwise stated, we use the above default values in our
simulations.

9.3. Random Topology
We start with a randomly deployed 500-node network

where the position of the source node is varied to simu-
late paths of different hops (from 5 to 31). The channel
and radio parameters for this topology are listed in Ta-
ble 6. The nodes have an average noise floor of -106
dBm, a standard deviation of 4.0 dB for the white Gaus-
sian noise, and a low level of asymmetry. The network
has very low rate of link changes. We place the same
constraint on usable bits (32 bits) for provenance em-
bedding per packet on all schemes.

Fig. 8(a) shows the number of packets required to
construct provenance for increasing numbers of hops
from a single source to the base station. The results

14

 0

 5

 10

 15

 20

 25

 30

 35

 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 p

ac
ke

ts

Dimension of grid

PPF-Rank
PPF-Prime

PPF-Fingerprint

(a) Provenance construction with 64-bit bud-
get

 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 0 1 2 3 4 5 6 7

%
 o

f
pa

ck
et

s

Number of changes in hop

(b) CDF of changes in hop count for a 10×
10 grid network.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500 600 700 800

%
 o

f
ch

an
ge

s
in

 h
op

 c
ou

nt

Number of packets

(c) CDF of number of packets between two
group of changes in hop count for a 10 × 10
grid network.

Figure 10: Convergence of provenance construction and distribution of topological changes in highly asymmetric grid networks.

reveal that all three schemes of PPF have identical per-
formance in this case, since they can embed only 3 node
IDs (on average) per packet using 32 bits. However,
they require at least 33% fewer packets than both PPM
variants. The original PPM scheme requires a large
number of packets since it embeds a single node ID per
packet. In contrast, PPM+NC uses 16 bits (out of 32)
for the linear combination, 8 bits for the distance field,
6 bits for storing coefficients, and the remaining 2 bits
to count the coefficients used. Thus it embeds a linear
combination of 3 node IDs in a packet. However, in
order to construct a forwarding path of length d hops,
PPM+NC converges upon reception of d unique linear
combinations of node IDs, whereas PPF requires d dif-
ferent node IDs.

Fig. 8(b) compares the aggregate energy consump-
tion for the two PPM variants and PPF-Prime (the PPF
method that requires the lowest number of packets for
a 32-bit budget). PPF with a 32-bit budget consumes at
least 30% less energy than the PPM variants.

We perform the same experiment in a 5000-node net-
work with a 64-bit budget. We skip PPM since it em-
beds only one node ID per packet and requires the same
number of packets. Since TOSSIM does not scale to
5000 nodes, we randomly assign node IDs from a set of
5000 numbers and take the average over experimental
results of several TOSSIM runs. Fig. 8(c) shows that
the prime method requires fewer packets than the rank
method, while the fingerprint method outperforms both
in this case. The reason is that with a 64-bit budget,
the fingerprint method (r = 2) embeds 7 node IDs per
packet with a low false positive rate (< 0.001), whereas
the prime and rank methods embed 5 and 4 node IDs
on average, respectively. Though PPM+NC can em-
bed a linear combination of up to 17 node IDs (16 bits
for linear combination field, 8 bits for distance field,
34 bits for the coefficients and 5 bits for the counter

field), it still requires more packets than the efficient
PPF schemes. Specifically, PPF-Fingerprint requires at
least 45% fewer packets than PPM+NC.

Fig. 9 compares the aggregate energy consumption
for PPM+NC and PPF methods with a 64-bit budget in
a 25-hop network. We find that PPM+NC consumes
less energy with respect to PPF-Rank and the percent-
age of energy gain is only 17 in this case. The best PPF
scheme (PPF-Fingerprint in this case) reduces energy
consumption by 46% with respect to PPM+NC. Further,
PPF with a 64-bit budget reduces energy consumption
by more than 60%, compared to its 32-bit counterpart.

9.4. Grid Network Topology

We use highly asymmetric grid topologies to demon-
strate the effect of topological changes on our proposed
schemes. The radio and channel parameters used for
these topologies are shown in Table 6. The grid dimen-
sions are varied from 2×2 to 10×10, while node den-
sity is kept constant with nodes spaced 2.0 meters apart.
The source node is positioned at coordinate (0,0) and
the base station is located at the upper rightmost corner
of the grid. The average hop count is observed to range
from 2 to 19 for grid dimensions of 2 to 10. The bit
budget considered here is 64 bits.

We combine PPF with the topological changes han-
dling scheme discussed in Section 4.4, and compare
the number of packets required by PPF-Rank, PPF-
Fingerprint, and PPF-Prime. We do not consider PPM
variants in this simulation since they do not handle topo-
logical changes. Fig 10(a) depicts the simulation re-
sults. PPF-Fingerprint outperforms other methods as
the grid dimensions (and hence the hop count) increase.
It is interesting to note that PPF methods combined with
topological change handling perform similar to the ba-
sic PPF methods (without the topological change han-
dling) in a network with negligible link changes.

15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Pe
rc

en
ta

ge
 o

f
er

ro
r

Failure rate

r=1, m=9
r=2, m=7
r=3, m=7

(a) Decoding error

 0

 20

 40

 60

 80

 100

 120

 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

N
um

be
r

of
 p

ac
ke

ts

Failure rate

r=1, m=9
r=2, m=7
r=3, m=7

(b) Number of packets required

Figure 11: Provenance construction with varying rate of link changes.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 5 10 15 20 25 30 35 40 45 50

T
ru

st
 s

co
re

Number of iterations

Traditional Trust Framework
Trust Framework with PPF

Figure 12: Trust scores of data items

1 2 3 4 5 6 7

1

2

3

4

5

6

7

X−Distance (1 unit = 2 m)

Y
−

D
is

ta
n

c
e

 (
1
 u

n
it
 =

 2
 m

)

(a) Nodes in provenance (thetx = 10)

1 2 3 4 5 6 7

1

2

3

4

5

6

7

X−Distance (1 unit = 2 m)

Y
−

D
is

ta
n

c
e

 (
1
 u

n
it
 =

 2
 m

)

(b) Nodes in provenance (thetx = 30)

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 5 10 15 20 25 30 35 40 45 50

T
ru

st
 s

co
re

Number of iterations

ETX th = 30
ETX th = 10

(c) Evolution of trust scores

Figure 13: Nodes in provenance and effect on trust score evolution

To understand the simulation results, we consider
a 10 × 10 grid network. The source node transmits
20,000 packets towards the base station. Fig. 10(b)
shows the distribution of the number of changes in hop
count for successive packets received at the base station
(after discarding out-of-order packets). About 98% of
the packets that experienced topological changes have
exactly a 1-hop difference with respect to the path fol-
lowed by the preceding packet. Fig. 10(c) shows the dis-
tribution of the number of packets received at the base
station between two consecutive groups of topological
changes. The number of packets between two topolog-
ical changes significantly varies. In the 80% case, at
least 50 packets are being received at the base station
between two changes. Thus, we find that once there is
a topological change, it affects a small number of hops
on the path from the source to the base station. After
that, the path remains stable for large number of packets.
This is why PPF with topological change handling in-
curs negligible overhead without affecting convergence
rate.

9.5. Varying Link Change Rates

We have observed that incorporating the topological
change handling scheme into PPF helps track changing

paths. In such scenarios, the fingerprint method pro-
vides additional resistance to decoding error over other
encoding methods, since it transmits a large provenance
subgraph with smaller partitions as discussed in Sec-
tion 4.3.2.

To observe the effect of partitioning fingerprints, we
study the decoding error of the fingerprint method with
respect to the rate of link changes. Here, decoding error
denotes the percentage of node IDs that cannot be de-
coded due to link changes or false positive rates, where
rate of link changes indicates the average number of link
changes per unit time. We artificially introduce link fail-
ures and associated path changes that are randomly dis-
tributed over a time window of 200 s along a 30-hop
path.

Fig. 11(a) shows that as link changes increase, the
fingerprint method with two partitions (r = 2) has a
decoding error lower than the non-partitioned case be-
cause of its low sensitivity to topological changes. How-
ever, the fingerprint method with r = 3 suffers from
a false positive rate of about 0.16 with a 64-bit bud-
get in this particular experiment, and performs worse
than the r = 2 case in the presence of low rate of link
changes (when decoding error due to link changes is
small). With a high rate of link changes, the case of
r = 3 shows a small improvement over the r = 2 case,

16

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

D
is

si
m

il
ar

it
y

sc
or

e

ETX Threshold

Controlled Routing
Standard Routing

(a) Provenance dissimilarity score

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30
N

um
be

r
of

 tr
an

sm
is

si
on

s
ETX Threshold

Controlled Routing
Standard Routing

(b) Transmission overhead

Figure 14: Trade-off between provenance dissimilarity and transmis-
sion overhead

but a relatively higher false positive rate in a dense net-
work will nullifies that improvement (as indicated in Ta-
ble 5). Fig. 11(b) shows the effect of the decoding er-
ror in constructing provenance. The fingerprint method
with r = 2 converges with a fewer number of packets
even in the presence of a high rate of link changes. The
false positive rate is negligible.

9.6. Trust Framework and Provenance Similarity
We integrate PPF with a provenance-based trust

framework [9] to iteratively compute trust scores. To
evaluate the performance of the trust framework inte-
grated with PPF, we use a 7 × 7 grid with the same
channel and radio parameters as the grid topology (see
Table 6). Five nodes (2, 3, 4, 5, and 6) generate data
items every 1 s and the rest of the nodes act as for-
warders. Each of the data generator nodes send 2000
data items. The top right most node (49) in the grid
works as the base station which computes trust score
over each collection of data items that have same se-
quence number but are generated from different origina-
tors. Fig. 12 shows that the trust score calculated using
PPF evolves correctly as soon as the entire provenance
is constructed at the base station. PPF accuracy in trust
score calculation is similar to the traditional approach
that includes every node ID on the forwarding path in
the provenance.

We use the same 7 × 7 grid network with varying
ETX threshold (thetx) to investigate the effectiveness of
our controlled routing scheme proposed in Section 6.2.
We keep the data values reported from the originator
nodes fixed over different packets to solely focus on the
role of provenance similarity.

Fig. 13(a) and Fig. 13(b) show the provenance of
the data items generated from node 2, 3, and 4 for
thetx = 10 and thetx = 30 respectively. It is seen
that data items have shared provenance with lower thetx
and different provenance with higher thetx. Fig. 13(c)
shows the resulting effect of provenance dissimilarity on
the trustworthiness of data items: higher dissimilarity in

provenance increase the trustworthiness of data items.
Finally, Fig. 14 shows the trade-off between provenance
dissimilarity and transmission overhead. As the ETX
threshold, thetx, increases, dissimilarity among prove-
nance, ρd, increases at the expense of increased trans-
mission overhead. This allows decision makers to select
an appropriate thetx value based on the security require-
ments and network conditions of the system.

10. Testbed Experiments

We ported the implementation of PPF to the TelosB
platform. Our motes have an 8 MHz TI MSP430 micro-
controller, 2.4 GHz radio, 10 kB RAM, and 1 MB flash
for data logging. We also ported the implementation of
PPM and PPM with Network Coding to this platform.
We consider the same performance metrics as in 9.1 to
compare with PPF.

10.1. Experimental Setup
We placed battery-powered TelosB motes in an in-

door environment. When necessary, we controlled the
transmission power of the motes to ensure multihop
communication in the network. We assign node IDs
from the set QP,s∗. All nodes are started and stopped
at the same time. The source node sends out packets
every 500 ms. The probability of embedding a node
ID is set to 1

25 . Before actual data transmission starts,
every node computes and stores the lookup table neces-
sary to compute Rabin fingerprints and the source node
sends 500 dummy packets to ensure convergence of the
routing protocol CTP. All results are averaged over 500
runs.

10.2. Multihop Linear Topology

 0

 20

 40

 60

 80

 100

 120

 5 8 11 14

N
u
m

b
er

 o
f

p
ac

k
et

s

Number of hops

PPM
PPM+NC

PPF

Figure 16: Provenance construction in a linear testbed

We construct a 3.5 m × 1.5 m topology consisting
of 15 TelosB sensors deployed linearly in an apartment
room. We used the lowest transmission power level to

17

(a) Partial view of testbed

0 50 100 150 200 250 300 350

0

50

100

150

 115 3 4 5

 6

 7

 8
 9 10 11 12 13 14 2

X−Distance (in cm)

Y
−

D
is

ta
n

c
e

 (
in

 c
m

)

(b) Coordinates of nodes

Figure 15: Placement of nodes in an apartment room in a multihop linear topology.

ensure multihop communication. Fig. 15 shows the co-
ordinates of the nodes in the testbed, where nodes are
labeled 1 to 15. We used node 1 as base station and
connected it to a laptop through a USB cable. A Java
application running on the laptop received the pack-
ets and performed the real-time decoding process. We
conducted different sets of experiments by varying hop
counts from 5 to 15. The bit budget considered here is
32 bits.

We compare PPF-prime (the best scheme for the 32-
bit budget as seen from our simulation results) with
PPM and PPM with network coding. Fig. 16 plots the
number of packets required to construct provenance. As
the hop count increases, PPF outperforms both PPM
variants and reduces the number of required packets by
more than 33%. This result validates the gain that we
achieved in TOSSIM simulations.

10.3. Multihop Random Topology

We construct a 9.5 m× 1.6 m topology consisting of
20 TelosB sensors deployed randomly in a Purdue Uni-
versity classroom. We used transmission power level 1
to create relatively weak wireless links. Fig. 17 shows
the coordinates of the nodes in the testbed, where nodes
are labeled 1 to 20. Node 2 is selected as the source
and node 1 (connected to a laptop) is chosen as the base
station. The hop count from the source to the base sta-
tion was observed to be between 9 and 11. Since PPF
schemes with a 32-bit budget exhibit almost identical
performance for such a small hop count, we consider a
64-bit budget for this experiment.

We compare PPF-Rank, PPF-Prime and PPF-
Fingerprint in the presence of topological changes.
Fig. 18 depicts the average number of packets required
to construct provenance for all three schemes. It is
observed that PPF-Prime and PPF-Fingerprint perform
better than PPF-Rank. Their performance is similar to

basic PPF schemes in a network of 9-11 hops with neg-
ligible rate of link changes.

0

2

4

6

8

10

N
u
m

b
e
r

o
f
p
a
c
k
e
ts

PPF−R
an

k

PPF−P
rim

e

PPF−F
in
ge

rp
rin

t

Figure 18: Number of packets required to construct provenance in the
random topology testbed experiment.

11. Conclusions

We have presented an energy-efficient provenance
transmission and construction approach for large-scale
multi-hop wireless sensor networks, based on the idea
of probabilistic incorporation of node identities. We
adapt the probabilistic packet marking (PPM) approach
for IP traceback, and propose three provenance encod-
ing methods with a space constraint on the size of prove-
nance data in each packet. We analyze the suitability of
the methods based on the network size and bit budget
via mathematical approximations and numerical meth-
ods. In contrast to PPM, our proposed approach re-
quires fewer packets to construct network-wide prove-
nance, and significantly reduces the aggregate energy
consumption of the network, as demonstrated via both
simulations and testbed experiments. We also incorpo-
rate a simple but robust scheme into PPF to handle topo-
logical changes. PPM variants do not consider such

18

(a) Partial view of testbed

0 100 200 300 400 500 600 700 800 900 1000

0

20

40

60

80

100

120

140

160

 2

20

 3
 4

 5

 6
 7

 8

 9

1011

12
13

14

15

16

17

18

19

 1

X−Distance (in cm)

Y
−

D
is

ta
n

c
e

 (
in

 c
m

)

(b) Coordinates of nodes

Figure 17: Placement of nodes in a Purdue University classroom in a multihop random topology.

changes. We demonstrate the effectiveness of PPF in
highly dynamic and asymmetric networks using simu-
lation and testbed experiments. PPF integration with
a provenance-based trust framework reveals no degra-
dation in accuracy of trust scores. We also explore
the trade-off between trustworthiness or provenance dis-
similarity of data items and transmission overhead. In
this regard, we propose a solution to provide decision
makers with a tunable parameter to control the extent
of provenance dissimilarity and transmission overhead.
In our future work, we will study how well a complete
trust framework can detect and react to different attacks
and failure scenarios.

References

[1] D. Butler, 2020 computing: Everything, everywhere, Nature
440 (2006) 402–405.

[2] M. Zuniga, B. Krishnamachari, Integrating future large-scale
wireless sensor networks with the Internet, Tech. rep., USC
Computer Science, cS 03-792 (2003).

[3] K. Fehrenbacher, A global sensor network launches to fight
climate change, http://www.reuters.com/article/
idUS359029730820110112 (January 2011).

[4] Shell to use CeNSE for clearer picture of oil and gas reservoirs,
http://www.hpl.hp.com/news/2009/oct-dec/
cense.html (2009).

[5] A. Doboli, et al., Cities of the future: Employing wireless sen-
sor networks for efficient decision making in complex environ-
ments, Tech. rep., SUNYSB, cEAS Technical Report Nr 831
(April 2008).

[6] Sensor Andrew at Pennsylvania Smart Infrastructure
Incubator, http://www.ices.cmu.edu/psii/
sensor-andrew.html.

[7] J. Ledlie, C. Ng, D. A. Holland, K. kumar Muniswamy-reddy,
U. Braun, M. Seltzer, Provenance-aware sensor data storage, in:
Proc. of Workshop on Networking Meets Databases, 2005.

[8] X. Wang, K. Govindan, P. Mohapatra, Provenance based in-
formation trustworthiness evaluation in multi-hop networks, in:
Proc. of IEEE GLOBECOM, 2010.

[9] H.-S. Lim, Y.-S. Moon, E. Bertino, Provenance-based trustwor-
thiness assessment in sensor networks, in: Proc. of International
Workshop on Data Management for Sensor Networks, 2010.

[10] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser,

M. Turon, Health monitoring of civil infrastructures using wire-
less sensor networks, in: Proc. of IPSN, 2007, pp. 254–263.

[11] A. Arora et al., ExScal: Elements of an extreme scale wireless
sensor network, in: Proc. of IEEE International Conference on
Real-Time Computing Systems and Applications, 2005.

[12] K. Iwanicki, M. van Steen, On hierarchical routing in wireless
sensor networks, in: Proc. of IPSN, 2009.

[13] S. Savage, D. Wetherall, A. Karlin, T. Anderson, Practical net-
work support for IP traceback, in: Proc. of ACM SIGCOMM,
2000.

[14] D. X. Song, A. Perrig, Advanced and authenticated marking
schemes for IP traceback, in: Proc. of IEEE INFOCOM, 2001.

[15] V. Thing, H. Lee, IP traceback for wireless ad-hoc networks, in:
Proc. of IEEE Vehicular Technology Conference, 2004.

[16] S. M. I. Alam, S. Fahmy, An energy-efficient approach for
provenance transmission in wireless sensor networks, in: Proc.
of IEEE SECON, 2012.

[17] S. M. I. Alam, S. Fahmy, Energy-efficient provenance transmis-
sion in large-scale wireless sensor networks, in: Proc. of IEEE
International Workshop on D-SPAN, 2011.

[18] A. Belenky, N. Ansari, On IP traceback, Communications Mag-
azine, IEEE 41 (7) (2003) 142 – 153.

[19] H. Burch, Tracing anonymous packets to their approximate
source, in: Proc. of USENIX conference on system adminis-
tration, 2000.

[20] A. C. Snoeren, Hash-based IP traceback, in: Proc. of ACM SIG-
COMM, 2001.

[21] ICMP traceback messages, http://tools.ietf.org/
html/draft-ietf-itrace-04.

[22] Y. an Huang, W. Lee, Hotspot-based traceback for mobile ad
hoc networks, in: Proc. of ACM Workshop on Wireless Security,
2005.

[23] H. Hsu, S. Zhu, A. Hurson, A hotspot-based protocol for attack
traceback in mobile ad hoc networks, in: Proc. of ACM Sympo-
sium on Information, Computer and Communication Security,
2010.

[24] P. Sattari, M. Gjoka, A. Markopoulou, A network coding ap-
proach to IP traceback, in: Proc. of IEEE International Sympo-
sium on Network Coding, 2010.

[25] D. Dean, M. Franklin, A. Stubblefield, An algebraic approach to
IP traceback, ACM Trans. Inf. Syst. Secur. 5 (2002) 119–137.

[26] B.-C. Cheng, H. Chen, Y.-J. Li, R.-Y. Tseng, A packet mark-
ing with fair probability distribution function for minimizing the
convergence time in wireless sensor networks, Computer Com-
munication 31 (2008) 4352–4359.

[27] M. Keller, J. Beutel, L. Thiele, How was your journey? uncov-
ering routing dynamics in deployed sensor networks with multi-
hop network tomography, in: Proc. of ACM Sensys, 2012.

[28] S. Sultana, G. Ghinita, E. Bertino, M. Shehab, A lightweight se-

19

cure provenance scheme for wireless sensor networks, in: Proc.
of IEEE Parallel and Distributed Systems (ICPADS), 2012.

[29] M. O. Rabin, Fingerprinting by random polynomials, Tech. Rep.
TR-CSE-03-01, Center for Research in Computing Technology,
Harvard University (1981).

[30] A. Z. Broder, Some applications of rabin’s fingerprinting
method, Sequences II: Methods in Communications, Security,
and Computer Science 5 (4) (1993) 143–152.

[31] D. Ganesan, R. Govindan, S. Shenker, D. Estrin, Highly-
resilient, energy-efficient multipath routing in wireless sensor
networks, SIGMOBILE Mob. Comput. Commun. Rev. 5 (4)
(2001) 11–25.

[32] B. Yu, B. Xiao, Detecting selective forwarding attacks in wire-
less sensor networks, in: Proc. of Parallel and Distributed Pro-
cessing Symposium, 2006.

[33] S. Zhu, S. Setia, S. Jajodia, P. Ning, An interleaved hop-by-
hop authentication scheme for filtering of injected false data in
sensor networks, in: Proc. of IEEE Symposium on Security and
Privacy, 2004.

[34] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, P. Levis, Col-
lection tree protocol, in: Proc. of ACM Sensys, 2009.

[35] H. S. Kim, T. F. Abdelzaher, W. H. Kwon, Minimum-energy
asynchronous dissemination to mobile sinks in wireless sensor
networks, in: Proc. of ACM Sensys, 2003, pp. 193–204.

[36] P. Levis, N. Lee, M. Welsh, D. Culler, TOSSIM: Accurate and
scalable simulation of entire TinyOS applications, in: Proc. of
ACM Sensys, 2003.

[37] E. Perla, A. Catháin, S. Carbajo, M. Huggard, C. McGoldrick,
PowerTOSSIM z: realistic energy modelling for wireless sensor
network environments, in: Proc. of ACM workshop on Perfor-
mance monitoring and measurement of heterogeneous wireless
and wired networks, 2008.

A. Implementation of Fingerprint Calculation

Assume thatM denotes the irreducible polynomial of
degree z required to calculate the fingerprint. We show
how the fingerprint of the string [b1 · · · bt] can be calcu-
lated by extending it one bit at a time. For an arbitrary
length l, we can write,

RF ([b1 · · · bl]) = (b1αl−1 + b2α
l−2 + · · · bl) mod M

= r1α
z−1 + r2α

z−2 + · · · rz

Now if we extend [b1 · · · bl] by one bit bl+1, we have,

RF ([b1 · · · bl]||bl+1) = RF ([b1 · · · bl+1])
= (RF (b1 · · · bl)α+ bl+1) mod M

= (RF (b1 · · · bl)α+ bl+1) mod M

= ((r1αz−1 + · · · rz)α+ bl+1) mod M

= r2α
z−1 + · · · rzα+ bl+1 + (r1αz) mod M

Observe that αk mod M = αk −M = M − αk.
So αk mod M is equivalent to M with the leading co-
efficient removed. Computing the fingerprint of A ex-
tended by bl+1 consists of one shift left operation with
bl+1 as the input bit and r1 as the output bit, and then,

conditioned upon r1 = 1, a bit-wise XOR operation,
the second operand being M with the leading coeffi-
cient removed. In this way, we can extend the bit string
up to length t to calculate the desired fingerprint. Since
each bit extension requires only a constant number of
shift and XOR operations, the time complexity of cal-
culating the fingerprint is linear in number of bits of the
input string.

We further show that time complexity of fingerprint
calculation can be improved by extending a byte at a
time and using a lookup table. If we extend [b1 · · · bl]
by one byte [bl+1, bl+2, · · · bl+7, bl+8], we have

RF ([b1 · · · bl]||[bl+1, bl+2, · · · bl+7, bl+8])
= RF ([b1 · · · bl+8])

= (RF (b1 · · · bl)α8 + bl+1α
7 + · · ·+ bl+8) mod M

= ((r1αz−1 + r2α
z−2 + · · · rz)α8+

bl+1α
7 + · · · bl+7α+ bl+8) mod M

= (r9αz−1 + r10α
z−2 + · · · rzα8 + bl+1α

7 + · · · bl+8)

+ (r1αz+7 + · · · r7αz+1 + r8α
z) mod M

Observe that the first part of the above equation
can be determined by shifting the previous fingerprint,
RF ([b1 · · · bl]) to left by 8 bits with the leading 8 bits
removed and then XORing the output with the input
byte: ([r1 · · · rz] << 8) ⊕ ([r1 · · · r8] << z) ⊕
([bl+1 · · · bl+8]). The second part is determined by a
modulo operation where the dividend is the leading 8
bits of the fingerprint,RF ([b1 · · · bl]) shifted to left by z
bits and the divisor is M : ([r1 · · · r8] << z) mod M .
By combining the two parts, fingerprint can be deter-
mined as,

RF ([b1 · · · bl+8])
= ([r1 · · · rz] << 8)⊕ ([r1 · · · r8] << z)⊕
([bl+1 · · · bl+8])⊕ (([r1 · · · r8] << z) mod M)
= ([r1 · · · rz] << 8)⊕ ([bl+1 · · · bl+8])︸ ︷︷ ︸

part 1

⊕

(([r1 · · · r8] << z)⊕ (([r1 · · · r8] << z) mod M))︸ ︷︷ ︸
part 2

.

Since M and z are known beforehand, part 2 of
the above equation can be looked up from a pre-
computed table (of size < 4 KB) which contains
the values of the expression (([r1 · · · r8] << z) ⊕
(([r1 · · · r8] << z) mod M)) for all possible values of
the bits [r1 · · · r8]. Thus the fingerprint of a bit string ex-
tended by one byte can be calculated using only 1 shift
and 2 XOR operations.

20

