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Abstract—The increasing popularity of video streaming and
conferencing services have altered the nature of Internet traffic.
In this paper, we take a first step toward quantifying the impact
of this changing nature of traffic on the Quality of Experience
(QoE) of popular video streaming and conferencing applications.
We first analyze the traffic characteristics of these applications
and of backbone links, and show how simple multipath routing
may adversely impact application QoE. To mitigate this problem,
we propose a new routing path selection approach, inspired by the
TCP timeout computation algorithm, that uses both the average
and variation of path load. Preliminary results show that this
approach improves application QoE by on average 14% and
packet latency by 11% for video streaming and conferencing
applications, respectively.1

I. INTRODUCTION

Internet Service Providers (ISPs) have traditionally lever-
aged intra-domain routing protocol weights or MultiProtocol
Label Switching (MPLS) for traffic engineering [1]. Traffic
engineering operations between the ingress and egress points
of an ISP are typically performed over relatively long time
scales. Equal Cost MultiPath (ECMP) routing has been an
important component of shorter time-scale traffic engineering
and load balancing in both the wide-area [2], [3] and data
center [4], [5], [6], [7] contexts. ECMP is attractive due to its
simple implementation. The ultimate goal of this work is to
augment ECMP for better traffic engineering and application
QoE in the wide area.

An important development that impacts traffic engineering
is that video streaming and conferencing applications now
constitute a majority of traffic [8], [9]. The traffic charac-
teristics and Quality of Experience (QoE) requirements of
these applications should therefore play a major role in traffic
engineering. This is because application QoE is an important
indicator of customer satisfaction. For instance, the Video
Multi-Method Assessment Fusion (VMAF) metric [10], pro-
posed by Netflix, assesses perceptual video quality. In addition
to traditional metrics such as link utilization, packet loss,
end-to-end delay and jitter, an ISP needs to ensure that its
customers have high QoE for the most popular applications.

Motivated by this observation, we strive to understand the
factors that impact the QoE of video streaming and confer-
encing applications. In addition to the load on the links on the
path that the traffic traverses, we posit that the burstiness of
the background traffic on these links must also play a key role
in traffic engineering.

1This work has been supported in part by a gift from Juniper Networks.
The authors would like to thank George Cybenko (Dartmouth College) and
Kieran Milne (Juniper Networks) for discussions of this work.

Significant research has been conducted on evaluating traffic
burstiness [11], [12], [13], [14], [15]. “Self-similarity” of
traffic at different time scales and at different levels of flow
aggregation has been the subject of major debate in the
1990s [16], [17] and into the 21st century [18], [19]. Based
on the importance of these burstiness measures, we design a
path selection approach that considers both average load and
background traffic variation on a network path when selecting
among multiple, equal-cost, paths for routing traffic of video
streaming or conferencing applications.

This paper makes the following contributions: (1) We ex-
amine the traffic characteristics of popular applications (Sec-
tions II) and backbone links (Section III). (2) We describe
two path selection approaches, one solely based on average
load and another that incorporates both the average and
variation of the load (Section IV). (3) We conduct a series
of experiments to compare these two approaches with basic
ECMP routing (Sections V and VI), focusing on the impact of
path selection and background traffic burstiness on application
QoE. Section VII summarizes related work, and Section VIII
discusses directions for future work.

II. STREAMING AND CONFERENCING TRAFFIC

To understand the traffic characteristics of increasingly-
popular conferencing and streaming, we measure seven confer-
encing services (Zoom, Cisco WebEx, Slack, Microsoft Teams,
Skype, Discord, and Google Meet), and five video streaming
services (Disney+, HBO Max, Hulu, Peacock, and Prime).

Our data collection process involves two users in West
Lafayette, IN, USA: user-1 connects via a cellular network on
T-Mobile with iPhone XS, whereas user-2 connects to a Wi-
Fi network on Comcast-Xfinity using a Windows-10 desktop.
The packets travel through different autonomous systems and
different access networks. We analyze both control and data
plane messages, and experiment with combinations of audio,
video, and screen share feeds for conferencing services. We
attempt to keep the audio, video, and screen share content
largely similar across our experiments (of duration 15 minutes
each), which we conducted in March–April 2022.

We find that conferencing services create at least three
bidirectional UDP flows, regardless of enabled feeds. This
ensures that if a user enables a new feed during a session, the
service can start data transfer right away. Teams and WebEx
always create four bidirectional flows instead of three. Google
with screen sharing creates four bidirectional flows.

Analysis of streaming traffic reveals that applications, once
authorized and have obtained the URL for the media, create a



TABLE I: Characteristics of conferencing traffic

Service Mbps Loss % Disp. Kurtosis Skewness Prom.
Discord 1.9 0.041 31.44 1288 -1.22 268
Google 1.64 0.002 11.54 2113 -3.14 117
Skype 3.36 0.09 31.21 57071 -0.68 360
Slack 1.7 - 7.69 1193 -3.29 256
Teams 4.3 0.018 40.19 5171 -2.12 458
WebEx 0.79 0.018 5.43 49 -1.09 104
Zoom 1.73 - 16.92 15076 -3.5 177

TABLE II: Characteristics of streaming traffic

Service Mbps Dispersion Kurtosis Skewness Prominence
Disney 4.66 7000 4584 2.71 3876
HBO 8.56 3902 4610 1.39 3943
Hulu 3.02 3611 10031 2.41 1228

Peacock 8.44 9370 25375 1.79 2449
Prime 2.52 655 420 4.28 2381

single TCP flow at a time to download the video in “chunks.”
Differences in throughput values between Tables I and II imply
that a routing path would be more highly utilized by a single
large streaming flow, compared to the small media flows of
conferencing applications.

Our findings confirm that application sessions comprise
“mice” flows (audio and control signaling) and “elephant”
flows (video). These flows vary not only in total bytes
transferred and number of packets sent, but also in the time
between successive packets. Therefore, we take each 5-tuple-
based unidirectional flow and study the time series of the inter-
packet times and the packets sent per second. Flow pictures
(FlowPics) [20] such as those depicted in Fig. 1 show the
packet-size distribution over time. Characteristics of such flow
time series data have been studied in previous work, which
computes the dispersion [11] and kurtosis [13] for the inter-
packet times, and the skewness [12], [14] and prominence [15]
for the packets-per-second time series.

We observe that conferencing services send UDP real-
time traffic, yielding lower dispersion in their inter-packet
times (Table I) than TCP-based streaming (Table II). Kurtosis
measures the outliers in the inter-packet times [13]. Table I
reveals that Skype traffic and Zoom traffic have the highest
number of outliers among conferencing services; other traffic
appears to have been paced or shaped. Conferencing services
have negative skew, whereas streaming services have positive
skew, since they send significant traffic at the start of a session.
Prominence values denote the maximum number of packets
sent in a burst. TCP behavior in streaming services results in
higher prominence than conferencing services, which deliver
data at approximately constant bit rate.

We posit that an ISP that considers such time series charac-
teristics can ensure that a service can be accommodated with
high QoE on a given path. For example, sending video stream-
ing flows via a path with already multiple high-prominence
flows, and hence high burstiness, can adversely impact QoE.
We validate this hypothesis in Section VI.
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Fig. 1: Zoom (left) and Disney+ (right) flow pictures [20]
show the smoothness of conferencing traffic compared to the

bursty nature of streaming traffic.

III. BACKBONE TRAFFIC

We now study the traffic characteristics of backbone links
which include aggregates of conferencing and streaming traf-
fic, as well as other applications. We find that many (but not
all) of our results are consistent with earlier findings [16],
[17], [18], [19]. We begin by visualizing the traffic traces and
autocorrelation functions across different time scales. Next,
we calculate the Hurst parameter to understand the intensity
of long-range dependence (LRD). Finally, we show the im-
portance of selecting an appropriate time scale by computing
the same characteristics as in Section II.

We use seven publicly available traffic traces, each lasting
15 minutes. These traces are obtained from the WIDE back-
bone [21] and represent a day of network activity for each day
of the week between March 6 and March 12, 2023.

Similar to previous research [16], [19], we explore two
possible metrics for aggregating time series data: the number
of bytes or the number of packets per time unit. We find
that both metrics yield comparable results. Therefore, for
the remainder of this section, we focus on aggregating the
number of packets transferred over a designated time interval.
Specifically, we count the number of packets every millisecond
in the original time series.

Fig. 2 displays the number of packets sent at various time
scales for the trace SF09, with each plot comprising 1500
data points. We find that traffic is not smooth even at large
time scales, and exhibits burstiness across all time scales.
The autocorrelation coefficients (ACFs) for the entire trace are
depicted in Fig. 3 (left). The autocorrelation is non-summable.
If the time series is wide sense stationary, the process becomes
LRD.

We employ rescaled range (R/S) analysis and variance-time
methods to calculate the Hurst parameter as a measure of long-
term memory in time series [16]. Our results indicate strong
LRD across all traces, with the Hurst parameter H > 0.85 at
both small and large time scales. Notably, we do not observe
obvious change points within the millisecond to second range,
which differs from findings reported in previous studies [18],
[19]. This is expected due to the increase in long-lived sessions
such as video streaming and conferencing (Section II), as a
percentage of overall backbone traffic, over the past decade.
This finding also augments the evidence that the burstiness of
the traffic is scale-invariant.



TABLE III: Characteristics of backbone link traffic

Trace
Period
(JST)

Packets
(M)

Avg
Rate

(Mbps)

Link
Utilization

(%)
Dispersion Kurtosis Skewness Prominence

SF06 Mar 6, 23 108.73 871.77 87.18 3.38 5.11 0.46 72736
SF07 Mar 7, 23 105.41 900.06 90.01 3.27 5.85 0.05 89979
SF08 Mar 8, 23 104.59 788.01 78.80 3.50 7.87 0.59 97163
SF09 Mar 9, 23 115.02 839.18 83.92 3.56 7.22 0.47 85781
SF10 Mar 10, 23 116.78 895.41 89.54 3.55 7.29 0.32 111914
SF11 Mar 11, 23 53.60 324.19 32.42 2.99 12.63 1.11 64091
SF12 Mar 12, 23 52.88 309.43 30.94 3.25 13.82 1.03 63752
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Fig. 3: Autocorrection coefficients (left) and skewness and
prominence (right) computed over different time aggregation

levels m (in ms) for trace SF09

Table III summarizes traffic characteristics of the seven
traces we studied, calculated using the same methods and 1 s
interval, as a comparison to Section II. Unsurprisingly, a much
larger number of flows implies lower dispersion and kurtosis
and higher prominence, compared to the single flow results in
Tables I and II. We also analyze skewness and prominence,
which are calculated based on packets per millisecond across
different time aggregation levels in Fig. 3 (right). We find
that both skewness and prominence values vary with time
scale. This finding underscores the importance of selecting
an appropriate time scale in routing path selection algorithms.

IV. PATH SELECTION APPROACHES

Motivated by our observations above, we compare two
simple approaches for balancing the load across multiple,
equal-cost (ECMP) routing paths.

First, we experiment with the most straightforward policy:
selecting the least loaded outgoing path for a new incoming
long-lived application, such as a streaming or conferencing
session. The simplest definition of least loaded uses a single
load metric. We use path load, computed every time interval
∆. Load can be replaced by another metric, such as end-
to-end path latency or packet loss. The algorithm can also
randomize its choice among paths with “similar” loads. In our
experiments, we use the following values for the time interval
over which to compute load: ∆ = {0.05, 0.5, 1, 2, 5} seconds.

Second, we again experiment with a least loaded policy,
but we now use a slightly more complex load metric, based
on a combination of the mean and variation of path load.
Combining measures of mean and variation is a popular
strategy that is used in the TCP protocol for retransmission
timeout (RTO) computation [22]. Similar strategies are also
used for estimating burst sizes for CPU scheduling.

TCP computes its RTO as the sum of a smoothed round-
trip time (RTT) value and a factor (typically four) times a
smoothed value of the deviation of the latest RTT sample
from the smoothed RTT value [22]. Smoothed values are
computed using exponentially weighted moving averages. We
use a similar idea in Algorithm 1 to periodically update an
estimate of the load value, Load, that we use in our least
loaded policy. In our experiments, we set α = 1

8 , β = 1
4 ,

K = 4, and vary ∆ as discussed above. Note that the load
value must be normalized if capacities are different.

Algorithm 1 Compute Load, given CurrBytes, the number of
bytes transmitted during the past interval ∆.
Initialization: SBW← CurrBytes/∆;
DevBW← SBW/2; PrevBytes← 0

1: DiffBytes← CurrBytes− PrevBytes
2: CurrBW← DiffBytes/∆
3: NewSBW← (1− α)× SBW + α× CurrBW
4: NewDevBW = (1− β)× DevBW + β × |SBW− CurrBW|
5: SBW← NewSBW
6: DevBW← NewDevBW
7: PrevBytes← CurrBytes
8: Load← SBW +K × DevBW

The inputs to the two algorithms, e.g., counts of bytes sent
per time period, are not difficult to obtain in practice. For
instance, in Juniper Session Smart Routing [23], significant
changes in path qualities can be conveyed to routers that make
session routing decisions.

V. EXPERIMENTAL SETUP

We conduct experiments using Mininet on a CloudLab [24]
server of type rs630, which has an Intel Xeon E5-2660
processor with x86 64 architecture consisting of 40 CPUs
with maximum speed of 2.6 GHz. The server runs 5.15.0-
67-generic kernel with Ubuntu 22.04 and Mininet v2.3.1b1.

A. Topology

We use the simplest possible multipath topology: a topology
with two parallel paths. Switch S1 acts as an ingress switch
that can reach S4 through either intermediate switch S2 or
intermediate switch S3. For unidirectional data traffic from
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Fig. 4: Simple two-path topology

switch S1 to S4, paths S1-S2-S4 and S1-S3-S4 represent two
equal-cost paths. Switch S1 executes the multipath routing
algorithm. The bandwidth of links between hosts and switches
is set to 100 Mbps with delay of 5 ms. The delay of inter-
switch links is 20 ms and we vary the bandwidth below.

B. Applications

We consider the two types of applications we studied in
Section II. An adaptive video streaming service involves
a server (H3) that transmits a 200-second video using four-
second video “chunks” to a client (H4) over TCP. The qual-
ity of each chunk is determined based on the buffer-based
rate adaptation algorithm. We extend the DASH streaming
client [25] to compute the QoE as given in [26] (Section V-D).2

A video conferencing service leverages the WebRTC [27]
framework between hosts H3 and H4. Both users send a pre-
recorded video of a talking head containing audio and video
for a duration of 210 seconds. We extend the implementation
in [28] to save the streamed video on H3 and the received
video on H4 in order to compute QoE (Section V-D). Since
Mininet creates different network namespaces and isolates the
networks, STUN/TURN capabilities are restricted. Therefore,
an independent TURN server is also configured on H3 so that
media packets can be directly exchanged between H3 and H4.3

C. Background Traffic

From Sections II and III, we must experiment with different
background traffic patterns. Host H1 acts as a sender and
H2 acts as a receiver for UDP-based background traffic. We
use ITG [29] to generate on/off traffic. The “on” period (ton)
represents the time during which traffic is sent with specified
inter-departure times. No traffic is sent during “off” periods
(toff ).

We compute the number of packets per second (pps) to

send during an “on” period as pps = ⌊ tput× (ton + toff )

(psize× 8× ton)
⌋.

We use an average throughput, tput, of 2 Mbps and a packet
size, psize, of 1024 bytes in our experiments. Table IV lists
the values of ton and toff in seconds (and the corresponding
prominence values) for the sample background traffic patterns
we use in the next section.

D. Evaluation Metrics

We consider both the perspective of the customer, who
ultimately cares about application QoE, and the perspective

2Our changes to the python-based DASH player are available at https:
//github.com/UmakantKulkarni/dash-client.

3Our changes to the WebRTC framework are available at https://github.
com/UmakantKulkarni/WebRTC-App.

TABLE IV: Background traffic patterns

Streaming Conferencing
Pattern ton toff Prominence ton toff Prominence

1 2 0.5 512 3 4 1361
2 2 2 1165 2 4.4 1677
3 2 6 2012 0.8 4.8 2413

of the ISP. We repeat each experiment five times and show
the 95% confidence intervals for our results.

a) QoE Metrics: Streaming QoE: We use the QoE
metric described in [26] which considers the video quality of
a chunk, variation in chunk quality w.r.t. the previous chunk,
rebuffering time, and startup delay. QoE is computed for each
video chunk and normalized against the best possible QoE
value. We average the normalized QoE for all chunks to obtain
the QoE for a given session.

Conferencing QoE: We obtain sender and receiver videos
of the WebRTC session in webm format. Frame numbers are
extracted from both sender and receiver videos, and used for
synchronization. We feed the raw videos to the libvmaf module
of FFmpeg [30] to compare the sender and receiver videos,
frame by frame, and compute the VMAF [10], PSNR, and
SSIM [31] metrics, as was done in [32].

b) ISP Metrics: We examine link utilization, packet loss,
packet end-to-end latency and jitter, since they impact the
service-level agreements that the ISP can support, and the cost
to the ISP. We also note router CPU and memory utilization,
to ensure that path selection algorithms can be implemented
on today’s switches and routers.

VI. EXPERIMENTAL RESULTS

Our goals are to quantify the impact of background traffic
on the QoE of video streaming and conferencing applications,
and to gain a preliminary insight into the benefits of leveraging
this information for multipath routing.

A. Impact of Background Traffic on Application QoE

In our experiments, the video streaming application band-
width varies from 0.5 to 4.6 Mbps whereas the maximum
bandwidth for the conferencing service is 9.5 Mbps. We sys-
tematically increase the link bandwidth between the switches
S1-S2, S1-S3, S2-S4 and S3-S4, and observe application QoE.

We route two background traffic flows, f1 and f2, with
average bandwidths of 2 Mbps on links S1-S2 and S1-S3,
respectively. Flow f1 is an on/off flow as given in Table IV,
whereas flow f2 has constant packet inter-departure times.

The average bandwidth required to stream video at the
highest quality while accommodating the background flow
without any packet loss is 4.6 + 2 = 6.6 Mbps. Therefore,
link bandwidth on the x-axis in Fig. 5 includes cases when
the link is undersubscribed (< 6.6 Mbps) or oversubscribed
(> 6.6 Mbps). Application QoE decreases as burstiness in-
creases in Fig. 5. This behavior is observed even when the
capacity exceeds the sum of average throughput values of the
video streaming flow and background flow. For example, when
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TABLE V: Background traffic
vs. QoE (conferencing)

Pattern D K S QoE
1 1047 1606 0.31 0.89
2 1351 1430 0.82 0.85
3 1693 1153 1.59 0.69

D = Dispersion, K = Kurtosis,
S = Skewness

the bandwidth is 7, 7.5 or 8 Mbps, the QoE still degrades as
burstiness increases.

The reason for the reduction in QoE lies behind how ECMP
selects a path for each flow. ECMP hashes the 5-tuple of each
incoming flow and uses round robin across equal-cost egress
links. Therefore, background flows f1 and f2 use paths S1-
S2 and S1-S3, respectively. The video streaming flow then
uses S1-S2 which has the on/off background traffic. The TCP-
based video streaming flow reduces its congestion window size
during the “on” periods, reducing the QoE.

We also observe a difference in QoE in case of real-
time video conferencing, as shown in Fig. 6. The real-time
traffic uses RTP/UDP with the Google Congestion Control
(GCC) algorithm [33], which adjusts the media sending rate
when congestion is detected. The on/off background UDP
flow causes the conferencing application to reduce its video
resolution from the default 1920× 1080.

B. Comparison of Path Selection Approaches

Fig. 7 and 8 depict the QoE of the streaming and confer-
encing applications with baseline ECMP, least-loaded based
on a simple average, and least-loaded with Algorithm 1. We
use background traffic pattern 3 and ∆ = 0.05 s in these
experiments. For undersubscribed cases, the use of deviation in
Algorithm 1 shows a clear benefit, especially for video stream-
ing applications which are more bursty in nature (Table II and
Fig. 1, right). Fig. 10 confirms that indeed more traffic can
egress S1 in this case, reducing the cost to the ISP, which can
now better utilize its links.

Fig. 9 examines the impact of the value of ∆ on the
two algorithms for the case when inter-switch link bandwidth
is 7 Mbps. As expected, using a simple average is highly
sensitive to the value of ∆ since it does not consider traffic
burstiness, which is observed in Internet traffic at multiple time

scales as discussed in Section III. In contrast, Algorithm 1
yields a high streaming QoE for different values of ∆.

With Algorithm 1, the streaming and conferencing applica-
tions experience lower data-rate variation, thus sending their
traffic at relatively high and stable bitrates. This reduces
packet end-to-end latency and jitter (Fig. 11) and increases
network utilization for undersubscribed cases (Fig. 10). This
is desirable from the ISP perspective.

VII. RELATED WORK

With the increasing deployment of Software-Defined Net-
works (SDNs), as well as Multi-Path TCP (MPTCP) and QUIC
that enable applications to exploit multiple concurrent paths,
there has been a resurgence of interest in traffic engineer-
ing and load balancing across multiple paths. For example,
Hedera [5] is a centralized load balancing algorithm for
data centers. CONGA [4] balances flowlets (bursts of packets
followed by a relatively long period of inactivity) in data
center networks based on collected congestion information.
Weighted-ECMP (W-ECMP) [34] uses weights assigned based
on active probing of links to determine the routing probability
for each path in P4 switches. WCMP [6] is another weighted
ECMP algorithm for tolerance to failures and changing topolo-
gies in data center networks.

Solutions such as CONGA [4] and W-ECMP [34] add
methods to actively collect congestion information from a data
center network. We only use passive measurements without
active probing, and we do not restrict our work to data center
networks. Additionally, most existing solutions [5], [34], [6]
require SDN support. In contrast, our approach can be used
with or without SDN, through integrating it with any switch or
router, and any telemetry or measurement service. Our work
also considers video streaming and conferencing QoE and
traffic burstiness, on which prior work had not focused.



VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we analyze traffic burstiness of popular
applications and backbone traffic at different time scales.
Motivated by this analysis, we propose a routing path selection
approach that uses both the average and variation of path load.
We compare this approach to ECMP and simple average-
based approaches in a variety of scenarios, and find that it
shows promise in increasing application QoE and ISP resource
utilization. We believe that this work serves as a first but
important step in understanding the impact of background
traffic characteristics and routing path selection on application
QoE and resource usage.

We are currently experimenting with background traffic with
different distributions of inter-packet times. Our preliminary
results (Table V) show that certain characteristics of the
background traffic time series can be proportional or inversely
proportional to video conferencing QoE. As future work, we
plan to explore machine learning models for predicting the
path yielding the best QoE for a given application type.
Additionally, we plan to conduct extensive experiments with
real ISP topologies and settings.
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