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Shortest Path Planning

I A polygonal robot translates amidst polygonal obstacles.

I Task: compute a shortest path between start and goal points.

I Work in configuration space.



Roadmap
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The shortest path is rarely in the roadmap even if pstart and pgoal
are roadmap vertices.



Shortest Path Intuition
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I Connect pstart and pgoal with a string.

I Tighten the string as much as possible.

I This path is polygonal.

I Do this for every way of navigating the obstacles.

I One way yields the shortest path.



Polygonal Path
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Claim The shortest path is polygonal.
Proof If the path is curved at a point p in free space, it intersects
a circle c centered at p in a curved segment s (1). The path can
be shortened by replacing s by a line segment.

Claim The inner vertices are obstacle vertices.
Proof A vertex cannot be in free space as above (2). It cannot be
on an obstacle edge by a similar argument using a semicircle (3).



Visibility Graph

pstart

pgoal

shortest path

I The vertices are the obstacle vertices, pstart, and pgoal.

I If vertices v and w are mutually visible, vw is an edge.

I In particular, the obstacle edges are in the visibility graph.

I Shortest path algorithm: construct the visibility graph and
invoke Dijkstra’s algorithm.



Visibility Graph Construction

Algorithm VisibilityGraph(S)
Input: A set S of disjoint polygonal obstacles and vertices.
Output: The visibility graph G = (V ,E ) of S .
1. Set V to the vertices of S ; set E = ∅.
2. for all vertices p ∈ V

2.1 Set W ← VisibleVertices(p,S)
2.2 For every vertex q ∈W , add the arc (p, q) to E .

3. return G .



Visibility Test
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If p and w bound the same obstacle, w is visible from p if pw is
disjoint from the interior of the obstacle.

Otherwise, w is visible from p if it is closer to p than the first edge
that intersects the ray ρ from p to w .



Strategy
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I Process each vertex w in clockwise order.

I Maintain a list of edges that intersect ρ in distance order.

I Check if w is visible using the first edge in the list.

I Remove the edges wu with u counterclockwise from w .

I Insert the edges wv with v clockwise from w .

I Example: remove e2 and add e7.



Degenerate Cases
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Three collinear vertices create degenerate cases.



Path Planning Summary

work space configuration space visibility graph



Computational Complexity

I The time complexity of VisibleVertices is O(n log n).

I The time complexity of VisibilityGraph is O(n2 log n).

I This dominates the time complexity of Djikstra’s algorithm.

I The visibility graph bound is close to optimal.

I The optimal shortest path algorithm is O(n log n).

I We will look at the strategy; the details are complicated.



Shortest Path Map Algorithm
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A shortest path map (SPM) for a point s and disjoint polygonal
obstacles O is a planar subdivision where all the points in a face
have the same sequence of O vertices on their shortest paths to s.

The SPM is constructed by propagating a unit-velocity wavefront
from v through the free space.



Wavelets
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Fig. 3.1. SPM (s) and a wavefront sweeping it.

and shortest path maps.

Lemma 3.1. The set of points in the plane with multiple predecessors has measure
zero.

Proof. A point p with two obstacle vertices u and v as predecessors lies on the
bisector of u and v, which is the hyperbola determined by the equation

|pu| + d(u, s) = |pv| + d(v, s).

There are at most O(n2) such hyperbolas, and each has measure zero.
There are two types of edges in the subdivision SPM (s): (portions of) obstacle

edges and arcs of hyperbolas determined by pairs of weighted vertices. The hyperbolic
arcs may degenerate to straight lines—this happens when the weights of two vertices
are equal, or differ by precisely the distance between the vertices; in the latter case
the vertex with smaller weight is a predecessor of the other vertex. The vertices of
SPM (s) are of three types: the obstacle vertices, the intersections of obstacle edges
with (bisector) hyperbolic arcs, and the intersections of two or more bisectors; each
of the last variety of vertices has three or more predecessors. The following lemma
proves a linear upper bound on the total size of a shortest path map.

Lemma 3.2. The shortest path map SPM (s) has O(n) vertices, edges, and faces.
Each edge is a segment of a line or a hyperbola.

Proof. We first observe that each face of SPM (s) is star-shaped, with the unique
predecessor vertex for the face in its kernel—this follows from Lemma 3.1, which
shows that interior points of a face have a unique predecessor.

The key step in the proof is to show that each obstacle vertex is the predecessor
vertex for at most one face in SPM (s). Consider a vertex u that is the predecessor
of a face F , and let pred(u) be the set of predecessors of u; observe that d(u, s) =
|uv| + d(v, s) for any v ∈ pred(u).

By the triangle inequality, if a point p is visible from a vertex v ∈ pred(u), with
v, u, p not collinear, then p cannot have u as its predecessor. Consider the subset of
the free space that is visible from u but not visible from v ∈ pred(u). Let R(u, v)
denote the component of this subset that is incident to u. Then R(u, v) lies in an

I The wavefront consists of circular arcs called wavelets.

I The initial wavelet is centered at s.

I When the wavefront hits an obstacle vertex o, a wavelet
centered at o is born.

I A wavelet dies when it hits an O edge or when it collapses.



SPM Edges
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Fig. 3.1. SPM (s) and a wavefront sweeping it.

and shortest path maps.

Lemma 3.1. The set of points in the plane with multiple predecessors has measure
zero.

Proof. A point p with two obstacle vertices u and v as predecessors lies on the
bisector of u and v, which is the hyperbola determined by the equation

|pu| + d(u, s) = |pv| + d(v, s).

There are at most O(n2) such hyperbolas, and each has measure zero.
There are two types of edges in the subdivision SPM (s): (portions of) obstacle

edges and arcs of hyperbolas determined by pairs of weighted vertices. The hyperbolic
arcs may degenerate to straight lines—this happens when the weights of two vertices
are equal, or differ by precisely the distance between the vertices; in the latter case
the vertex with smaller weight is a predecessor of the other vertex. The vertices of
SPM (s) are of three types: the obstacle vertices, the intersections of obstacle edges
with (bisector) hyperbolic arcs, and the intersections of two or more bisectors; each
of the last variety of vertices has three or more predecessors. The following lemma
proves a linear upper bound on the total size of a shortest path map.

Lemma 3.2. The shortest path map SPM (s) has O(n) vertices, edges, and faces.
Each edge is a segment of a line or a hyperbola.

Proof. We first observe that each face of SPM (s) is star-shaped, with the unique
predecessor vertex for the face in its kernel—this follows from Lemma 3.1, which
shows that interior points of a face have a unique predecessor.

The key step in the proof is to show that each obstacle vertex is the predecessor
vertex for at most one face in SPM (s). Consider a vertex u that is the predecessor
of a face F , and let pred(u) be the set of predecessors of u; observe that d(u, s) =
|uv| + d(v, s) for any v ∈ pred(u).

By the triangle inequality, if a point p is visible from a vertex v ∈ pred(u), with
v, u, p not collinear, then p cannot have u as its predecessor. Consider the subset of
the free space that is visible from u but not visible from v ∈ pred(u). Let R(u, v)
denote the component of this subset that is incident to u. Then R(u, v) lies in an

I The endpoints of the incident wavelets trace the SPM edges.

I SPM edges from mutually visible O vertices are straight.

I The other SPM edges are hyperbolic.

I Three SPM edges meet at an SPM vertex.



SPM Algorithm

I There are O(n) wavefront events for n vertices in O.

I Naive event handling is O(n).

I Hershberger and Suri achieve O(log n) with two ideas.

I They decompose the plane into O(n) simple cells and
propagate the wavefront between cells.

I They propagate an approximate wavefront that accurately
detects the wavelet collisions then compute the exact collision
points with a Voronoi technique.



What about 3D?

I Internal vertices of the shortest path can be on obstacle edges.

I Path planning is NP-hard.

I There is an exponential time algorithm.

I There are polynomial time approximate algorithms.

I Shortest path planning with rotation is even harder.


