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Robustness

Robustness: accurate output for all input.
Numerical error (rounding and truncation) is negligible per se.
But numerical error can induce structural error.

Controlling structural error is challenging.
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The problem is ubiquitous in computational geometry.



Structural Error
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» Numerical error in line intersection causes structural error in
the polygon intersection query (no instead of yes).

» Backward error metric: distance from input to alternate input
for which computed result is the true result.
» Norm in scientific computing.
» Models numerical and structural error.
» Distance from point a to line uv in our example.



Inconsistency

An output is inconsistent if it is not true for any input, so the error
is infinite and the output is nonsense.

» Polygon P is inside (outside) polygon Q if their edges do not
intersect and any vertex a of P is inside (outside) Q.

» Numerical error: v is above uw.

» Structural error: B is outside A.

» Inconsistency: C is inside A and B.
u




Convex Hull

(a) (b) (c)
A naive convex hull algorithm tests if every pair of points forms a

hull edge. A pair forms an edge if every other point is to its left.

(a) The points p, g, and r are almost collinear, so LT (p,q,r) <0,
LT(p,r,q) <0, and LT(q, r,p) < 0 due to rounding error.

(b) This inconsistency causes a structural error: a gap in the hull.

(c) The textbook algorithm is robust: an incorrect LT predicate
creates a small dent in the hull.



Robustness Problem 1: Large Errors
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CG algorithms branch on predicates: signs of expressions.
A tiny numerical error can cause a sign error.

The sign error can cause a control flow error.

The control flow error can cause a structural error.

The structural error can be arbitrarily large.

The LeftTurn (LT) predicate caused the example
inconsistency.



Robustness Problem 2: Degeneracy

> A predicate is degenerate if its value is zero.

» LeftTurn is degenerate for collinear points.
» PointInCircle is degenerate when the point is on the circle.
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Degeneracy arises from relations among geometric objects.

» Degeneracy is common in applications due to design
constraints and symmetry.

» Degeneracy adds many special cases to algorithms.

v

Challenges: efficient detection and correct handling.



Robustness Strategy 1: Workarounds

Commercial software contains robustness workarounds.
Each new problem requires lengthy analysis.

New workarounds often invalidate old ones.

Multi-step computations risk garbage-in-garbage-out.

Robustness must be algorithmic.
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| learned the hard way.



Robustness Strategy 2: Inconsistency Sensitivity

» Evaluate predicates with floating point arithmetic.
» Extend algorithms to handle errors efficiently and accurately.
» No special treatment required for degeneracy.

» Milenkovic and | compute arrangements of algebraic plane
curves with small errors [1].

» We could not extend the paradigm to 3D triangles!

[1] V. Milenkovic and E. Sacks, An approximate arrangement
algorithm for semi-algebraic curves, International Journal of
Computational Geometry and Applications 17(2), 175-198, 2007.



Robustness Strategy 3: Exact Computational Geometry

Prevent structural error by computing predicates exactly [1].
Handle easy cases with interval arithmetic.

Handle hard cases with rational arithmetic.

CGAL and LEDA libraries implement this approach.
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Adaptive precision evaluation is a fast alternative for
polynomials in the input [2].
» Degeneracies must still be handled.

[1] C. Yap, Robust geometric computation, In Handbook of
discrete and computational geometry, Second Edition, 2004.

[2] J. Shewchuk, Adaptive precision floating-point arithmetic and
fast robust geometric predicates, Discrete and Computational
Geometry 18, 305-363, 1997.



Interval Arithmetic

v
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Interval arithmetic takes an expression e and computes a
floating point interval [e, €] that contains its true value.

If the interval excludes zero, the sign of e is determined.
The interval of an input p is [p, p].

The arithmetic operators are extended to intervals.

The output intervals are rounded outward.

Interval arithmetic is about 50% slower than floating point.



Interval Arithmetic Operators

e e e
a number p p p
a+b at+b|a+b
a—b a—bla—-b
axb axb|axb fora>0b>0
axblaxb fora>0,b<0
axb|laxb fora>0,b<0<b
axblaxb fora<0,b<0
a/b a/b | a/b fora>0,b>0
a/b 5/5 fora<0,b>0
a/b | a/b fora<0<3ab>0

» e is rounded down and € is rounded up.

» One can set the rounding mode to up and down.

» It is much faster to round up and compute e = —(—e).



Integer Arithmetic

Integers are in base b with b a large integer, typically b = 2%4.
Example: (3,2,4) represents 3 + 2b + 4b°.

Grade school addition and subtraction are O(n) for n digits.
Grade school multiplication is O(n?).

State of the art is O(nlogn).

The GNU MP library is an excellent open source.



Rational Arithmetic

> Numbers are ratios of integers.

» Operators are grade school algebra.

a c ad + bc
b d = bd
a ¢ _ ac
b d bd
a.c _ ad
b d  bc

» The denominators grow rapidly.

» The growth is slowed by removing common factors.



Robustness Strategy 4: Controlled Perturbation

» Compute predicates exactly for a perturbed input [1].

v

Compute predicates in floating point with a safety check.

v

Determine an input perturbation size § that makes predicates
safe with high probability.

Apply a d-perturbation and execute the algorithm.

If any check fails, restart with a different §-perturbation.
Alternately, start with a small § and double it at each restart.
The backward error equals the final §.

Fast: small overhead over pure double-float evaluation.
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No special treatment is required for degeneracy.
» Problem: rare bad cases force large 9.

[1] D. Halperin, Controlled Perturbation for Certified Geometric
Computing with Fixed-Precision Arithmetic, ICMS, 92-95, 2010.



Adaptive Controlled Perturbation (ACP)

» User-specified error bound & (typically 1078).
» Replace restarts with extended precision predicate evaluation.

» Initial evaluation in floating point interval arithmetic.

» Rare bad cases handled by repeatedly doubling the precision.
» Extended precision arithmetic uses MPFR library.

» Object hierarchies control memory cost.

» 10%-20% slower than floating point predicate evaluation.
[1] E. Sacks and V. Milenkovic, Robust cascading of operations on
polyhedra, Computer-Aided Design 46, pp. 216-220, 2014.

[2] V. Milenkovic, E. Sacks, and S. Trac, Robust Free Space
Computation for Curved Planar Bodies, /EEE Transactions on
Automation Science and Engineering 10:4, pp. 875-883, 2013.

[3] M.H Kyung, E. Sacks, and V. Milenkovic, Robust polyhedral
Minkowski sums with GPU implementation, Computer-Aided
Design 67-—68, pp. 48-57, 2015.



Identities

> An identity is a predicate that is degenerate due to relations
among its antecedents.
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Example: let segments ab and cd intersect at p. The
predicate LeftTurn(a, b, p) is an identity.

> lIdentities persist under input perturbation.

> They must be detected and handled.

» Manual detection is practical for simple cases only.

» We have developed an efficient identity detection algorithm.

[4] V. Milenkovic and E. Sacks, Efficient predicate evaluation using
probabilistic degeneracy detection, International Journal of
Computational Geometry and Applications, 32:39-54, 2022.



