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Robustness

I Robustness: accurate output for all input.

I Numerical error (rounding and truncation) is negligible per se.

I But numerical error can induce structural error.

I Controlling structural error is challenging.

I The problem is ubiquitous in computational geometry.



Structural Error
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I Numerical error in line intersection causes structural error in
the polygon intersection query (no instead of yes).

I Backward error metric: distance from input to alternate input
for which computed result is the true result.
I Norm in scientific computing.
I Models numerical and structural error.
I Distance from point a to line uv in our example.



Inconsistency

An output is inconsistent if it is not true for any input, so the error
is infinite and the output is nonsense.

I Polygon P is inside (outside) polygon Q if their edges do not
intersect and any vertex a of P is inside (outside) Q.

I Numerical error: v is above uw .

I Structural error: B is outside A.

I Inconsistency: C is inside A and B.
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Convex Hull
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A naive convex hull algorithm tests if every pair of points forms a
hull edge. A pair forms an edge if every other point is to its left.

(a) The points p, q, and r are almost collinear, so LT (p, q, r) < 0,
LT (p, r , q) < 0, and LT (q, r , p) < 0 due to rounding error.

(b) This inconsistency causes a structural error: a gap in the hull.

(c) The textbook algorithm is robust: an incorrect LT predicate
creates a small dent in the hull.



Robustness Problem 1: Large Errors

I CG algorithms branch on predicates: signs of expressions.

I A tiny numerical error can cause a sign error.

I The sign error can cause a control flow error.

I The control flow error can cause a structural error.

I The structural error can be arbitrarily large.

I The LeftTurn (LT) predicate caused the example
inconsistency.



Robustness Problem 2: Degeneracy

I A predicate is degenerate if its value is zero.
I LeftTurn is degenerate for collinear points.
I PointInCircle is degenerate when the point is on the circle.

I Degeneracy arises from relations among geometric objects.

I Degeneracy is common in applications due to design
constraints and symmetry.

I Degeneracy adds many special cases to algorithms.

I Challenges: efficient detection and correct handling.



Robustness Strategy 1: Workarounds

I Commercial software contains robustness workarounds.

I Each new problem requires lengthy analysis.

I New workarounds often invalidate old ones.

I Multi-step computations risk garbage-in-garbage-out.

I Robustness must be algorithmic.

I I learned the hard way.



Robustness Strategy 2: Inconsistency Sensitivity

I Evaluate predicates with floating point arithmetic.

I Extend algorithms to handle errors efficiently and accurately.

I No special treatment required for degeneracy.

I Milenkovic and I compute arrangements of algebraic plane
curves with small errors [1].

I We could not extend the paradigm to 3D triangles!

[1] V. Milenkovic and E. Sacks, An approximate arrangement
algorithm for semi-algebraic curves, International Journal of
Computational Geometry and Applications 17(2), 175–198, 2007.



Robustness Strategy 3: Exact Computational Geometry

I Prevent structural error by computing predicates exactly [1].

I Handle easy cases with interval arithmetic.

I Handle hard cases with rational arithmetic.

I CGAL and LEDA libraries implement this approach.

I Adaptive precision evaluation is a fast alternative for
polynomials in the input [2].

I Degeneracies must still be handled.

[1] C. Yap, Robust geometric computation, In Handbook of
discrete and computational geometry, Second Edition, 2004.

[2] J. Shewchuk, Adaptive precision floating-point arithmetic and
fast robust geometric predicates, Discrete and Computational
Geometry 18, 305-363, 1997.



Interval Arithmetic

I Interval arithmetic takes an expression e and computes a
floating point interval [e, e] that contains its true value.

I If the interval excludes zero, the sign of e is determined.

I The interval of an input p is [p, p].

I The arithmetic operators are extended to intervals.

I The output intervals are rounded outward.

I Interval arithmetic is about 50% slower than floating point.



Interval Arithmetic Operators

e e e

a number p p p

a + b a + b a + b

a− b a− b a− b

a× b a× b a× b for a ≥ 0, b ≥ 0

a× b a× b for a ≥ 0, b < 0

a× b a× b for a ≥ 0, b < 0 < b

a× b a× b for a ≤ 0, b ≤ 0

a/b a/b a/b for a ≥ 0, b > 0

a/b a/b for a ≤ 0, b > 0
a/b a/b for a < 0 < a, b > 0

I e is rounded down and e is rounded up.

I One can set the rounding mode to up and down.

I It is much faster to round up and compute e = −(−e).



Integer Arithmetic

I Integers are in base b with b a large integer, typically b = 264.

I Example: (3, 2, 4) represents 3 + 2b + 4b2.

I Grade school addition and subtraction are O(n) for n digits.

I Grade school multiplication is O(n2).

I State of the art is O(n log n).

I The GNU MP library is an excellent open source.



Rational Arithmetic

I Numbers are ratios of integers.

I Operators are grade school algebra.
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I The denominators grow rapidly.

I The growth is slowed by removing common factors.



Robustness Strategy 4: Controlled Perturbation

I Compute predicates exactly for a perturbed input [1].

I Compute predicates in floating point with a safety check.

I Determine an input perturbation size δ that makes predicates
safe with high probability.

I Apply a δ-perturbation and execute the algorithm.

I If any check fails, restart with a different δ-perturbation.

I Alternately, start with a small δ and double it at each restart.

I The backward error equals the final δ.

I Fast: small overhead over pure double-float evaluation.

I No special treatment is required for degeneracy.

I Problem: rare bad cases force large δ.

[1] D. Halperin, Controlled Perturbation for Certified Geometric
Computing with Fixed-Precision Arithmetic, ICMS, 92–95, 2010.



Adaptive Controlled Perturbation (ACP)

I User-specified error bound δ (typically 10−8).
I Replace restarts with extended precision predicate evaluation.

I Initial evaluation in floating point interval arithmetic.
I Rare bad cases handled by repeatedly doubling the precision.
I Extended precision arithmetic uses MPFR library.
I Object hierarchies control memory cost.

I 10%-20% slower than floating point predicate evaluation.

[1] E. Sacks and V. Milenkovic, Robust cascading of operations on
polyhedra, Computer-Aided Design 46, pp. 216–220, 2014.

[2] V. Milenkovic, E. Sacks, and S. Trac, Robust Free Space
Computation for Curved Planar Bodies, IEEE Transactions on
Automation Science and Engineering 10:4, pp. 875–883, 2013.

[3] M.H Kyung, E. Sacks, and V. Milenkovic, Robust polyhedral
Minkowski sums with GPU implementation, Computer-Aided
Design 67-–68, pp. 48–57, 2015.



Identities

I An identity is a predicate that is degenerate due to relations
among its antecedents.

I Example: let segments ab and cd intersect at p. The
predicate LeftTurn(a, b, p) is an identity.

I Identities persist under input perturbation.

I They must be detected and handled.

I Manual detection is practical for simple cases only.

I We have developed an efficient identity detection algorithm.

[4] V. Milenkovic and E. Sacks, Efficient predicate evaluation using
probabilistic degeneracy detection, International Journal of
Computational Geometry and Applications, 32:39-54, 2022.


