Linear Programming (chapter 4)

Elisha Sacks



Casting

f
T4 —— VA
\ o WE

» Pour hot material into a mold.
» The material cools and hardens to form a part.

» Remove the part from the mold.



Castable

P Task: find a direction for extracting a part from a cast.

v

The top facet of the part has outward normal (0,0, 1).

» The part is castable if it can be removed from the cast by
pulling the top facet.

» The motion is linear with direction d such that d, > 0.

v

The algorithm tries each facet as the top facet.

> It reports a facet with its direction or reports failure.



Casting Constraints

» A part facet f with normal n defines a cast facet f with

~

normal n(f) = —n.
> The facet f blocks motion in the 7 half plane.
» The constraint is d - n < 0.



Problem Formulation

» The motion direction d satisfies d, > 0.

» We normalize it as d = (dx, d,, 1).

» The constraint for a facet is dynx + dyn, + 7, < 0.
> We seek a d that satisfies all the facet constraints.



Feasible Region

feasible region

oL

Ulution

» Each constraint restricts d to a half space in the xy plane.
> The intersection of the half spaces is the feasible region.

» The book computes the feasible region in O(nlog n) time with
a sweep line algorithm.

» We will find a feasible point in expected O(n) time.



Linear Programming Formulation

feasible region

o

Ulution

Find a feasible p that maximizes ¢ - p with C arbitary, or report
that none exists.

» It is convenient to enclose (dy, d,) in a bounding box.
» This is reasonable because tiny casting angles are impractical.

P> The textbook shows how to solve unbounded linear programs.



Linear Programming

Maximize a linear objective subject to linear inequality constraints.

>

vVvVvyVvVvVvVvyyy

Widely used in computational science.

Simplex algorithm and interior point methods are efficient.
Running time is polynomial in input size, but super-linear.
Most application involve many variables and constraints.
Casting involves two variables and many constraints.

This case has a fast algorithm with expected linear time.
The approach applies to three or more variables.

The constant factor grows rapidly with dimension.



Incremental 2D Linear Programming Algorithm

@® hs I () pg s M

ol

4="Vs Vo
n hy hy V5 Iy

» The initial feasible region is the bounding box Cp and the
initial solution is a corner vy that maximizes f(p) = ¢ p.
» Each constraint h; is added and v; € C; is computed.
(i) If vi—1 is in the h; half space, v; = v;_1.
(ii) Else v; is the maximum of f on the feasible interval of h;.
If the feasible interval is empty, report failure.

» Case (ii) is a 1D linear program.



Solving the 1D Linear Program

Let the h; line have normal n; and let h; have tangent t.

h; intersects the h; line in a half line bounded by a point p;.
Let a maximize p; - t among the h; with n; -t > 0.

Let b minimize p; - t among the h; with n; - t < 0.

If (b—a)-t <0, the feasible region is empty.

vVvvyVvVvyypy

Else the feasible region is [a, b] and the solution is a or b.



Correctness

Vi-1

Lemma 4.5 If v;_1 & h;, either C; is empty or v; is on the h; line.
Proof Assume C; is not empty and v; is not on the h; line.

» v;isin C;_1 because C;_; is a subset of C;.

The line segment v;v;_1 is in C;_1 by convexity.

vivi_1 intersects the h; line because v;_1 ¢ h; and v; € h;.
The intersection point g is in C;.

f increases along vjv;_1 because v;_1 is its maximum in C;_j.
f(q) > f(v;) which contradicts the definition of v;.

vVvYyyvyy



Computational Complexity

Computing v; takes O(i) time.

The algorithm is O(n?) because this can happen at every .
The running time depends on the order of the h;.

The output is independent of the order.

In the example, reversing the order leads to O(n) time.

vVvYVvyVvVvyVvyy

Inserting the h; in random order gives O(n) on average.



Expected Running Time

Lemma 4.8 A 2D bounded linear program with n constraints is
solved in O(n) randomized expected time.

Proof
» The sample space is the n! orderings of hy, ..., h,.
» The distribution is uniform.
> Let X equal 1if v;_1 ¢ h; and 0 otherwise.
» The running time for the steps with X; = 0 is O(n).
> We bound the expected value of the steps with X; = 1.

E=E[>_ 0(i)X]=>_ 0()E[X]
i=1 i=1

We will prove that E[X;] < 2/i.
Hence O(/)E[Xi] = O(1) and E = O(n).



Backward Analysis

« O

&

half-planes
defining v,

E[Xh] is the probability that v, is created when hj, is added.

This is the probability that v, vanishes when h,, is removed.

The probability is 2/n because the order is random.

>
>
» v, vanishes if h, is one of its two defining lines.
>
> Likewise E[X;] = 2/i.



Computing a Random Permutation

unsigned int % randomPermutation (unsigned int n)

{ unsigned int *p = new unsigned int [n];
for (unsigned int i = Ou; i < n; ++i)
pli]l = 1;
for (unsigned int i = n — lu; i > 0u; —i) {
unsigned int j = rand()%(i+1);
swap(p[i], p[i]):
return p;



Minimal Disk

» The incremental strategy applies to other tasks.

» Example: find the smallest disk that contains n points.



Minimal Disk Constraint

» Let C; and D; be the minimal circle and disk of p1, ..., p;.
> If piy1 € Dj, Div1 = D;.

» Otherwise, pi+1 € Cit1.

» Likewise if the circles must contain one or two points.



Algorithm

Circle x minDisk (const Points &pts)
{
unsigned int n = pts.size (),
xp = randomPermutation(n);
PTR<Circle> ¢ = new Circle2pts(pts|

ptS[
for (unsigned int i = 2u; i < n;
Point xr = pts[p[i]];
if (PointlnCircle(r, ¢c) = -1)
¢ = minDiskWithPoint(pts, p, i,
}

delete []| p;
return c;

p[O]],
p[1]]);
++i) {

r);



Algorithm

Circle * minDiskWithPoint
(const Points &pts, unsigned int xp,
unsigned int n, Point xq)

PTR<Circle> ¢ = new Circle2pts(pts[p[0]], q);

for (unsigned int i = 1; i < n; ++i) {
Point xr = pts[p[i]];
if (PointInCircle(r, c) = —1)
¢ = minDiskWithTwoPoints(pts, p, i

}

return c;

r);



Algorithm

Circle * minDiskWithTwoPoints
(const Points &pts, unsigned int xp,
unsigned int n, Point xql, Point %q2)

{
PTR<Circle> ¢ = new Circle2pts(ql, q2);
for (unsigned int i = 0u; i < n; ++i) {
Point *r = pts[p[i]];
if (PointInCircle(r, c) = —1)
c = new Circle3pts(ql, q2, r);
}
return c;



Expected Running Time

Theorem 4.15 The smallest enclosing disk of a set of n points is
computed in O(n) randomized expected time.
Proof

>

vVvYvyVvVvyVvyy

minDiskWithTwoPoints is O(n).

minDiskWithPoint is O(n) excluding minDiskWithTwoPoints.
pi costs O(i) if it calls minDiskWithTwoPoints.

This occurs if p; is one of the three points on D;.

The probability is 2/i because g is one of the three.

Running time is O(n) + > _; %O(i) = O(n).

Likewise minDisk with 1// instead of 2/i.



