
Linear Programming (chapter 4)

Elisha Sacks



Casting

I Pour hot material into a mold.

I The material cools and hardens to form a part.

I Remove the part from the mold.



Castable

I Task: find a direction for extracting a part from a cast.

I The top facet of the part has outward normal (0, 0, 1).

I The part is castable if it can be removed from the cast by
pulling the top facet.

I The motion is linear with direction d such that dz > 0.

I The algorithm tries each facet as the top facet.

I It reports a facet with its direction or reports failure.



Casting Constraints

p

P

�η( f̂ )

�d

f

I A part facet f with normal η defines a cast facet f̂ with
normal η(f̂ ) = −η.

I The facet f̂ blocks motion in the η half plane.

I The constraint is d · η ≤ 0.



Problem Formulation

z

x

y

z = 1

I The motion direction d satisfies dz > 0.

I We normalize it as d = (dx , dy , 1).

I The constraint for a facet is dxηx + dyηy + ηz ≤ 0.

I We seek a d that satisfies all the facet constraints.



Feasible Region

feasible region

�c

solution

I Each constraint restricts d to a half space in the xy plane.

I The intersection of the half spaces is the feasible region.

I The book computes the feasible region in O(n log n) time with
a sweep line algorithm.

I We will find a feasible point in expected O(n) time.



Linear Programming Formulation

feasible region

�c

solution

Find a feasible p that maximizes ~c · p with ~c arbitary, or report
that none exists.

I It is convenient to enclose (dx , dy ) in a bounding box.

I This is reasonable because tiny casting angles are impractical.

I The textbook shows how to solve unbounded linear programs.



Linear Programming

Maximize a linear objective subject to linear inequality constraints.

I Widely used in computational science.

I Simplex algorithm and interior point methods are efficient.

I Running time is polynomial in input size, but super-linear.

I Most application involve many variables and constraints.

I Casting involves two variables and many constraints.

I This case has a fast algorithm with expected linear time.

I The approach applies to three or more variables.

I The constant factor grows rapidly with dimension.



Incremental 2D Linear Programming Algorithm

(i) (ii)

�c

v4 = v5

h1 h2

h3

h4

h5

v6

v5

h6
h5 h3

h4

h2h1

I The initial feasible region is the bounding box C0 and the
initial solution is a corner v0 that maximizes f (p) = ~c · p.

I Each constraint hi is added and vi ∈ Ci is computed.

(i) If vi−1 is in the hi half space, vi = vi−1.
(ii) Else vi is the maximum of f on the feasible interval of hi .

If the feasible interval is empty, report failure.

I Case (ii) is a 1D linear program.



Solving the 1D Linear Program

p
1

p
4

a=p
2

b=p
3n

1

n
2

n
4

n
3

t

hi

I Let the hj line have normal nj and let hi have tangent t.

I hj intersects the hi line in a half line bounded by a point pj .

I Let a maximize pj · t among the hj with nj · t > 0.

I Let b minimize pj · t among the hj with nj · t < 0.

I If (b − a) · t < 0, the feasible region is empty.

I Else the feasible region is [a, b] and the solution is a or b.



Correctness

vi

vi−1

q

Ci−1

Lemma 4.5 If vi−1 6∈ hi , either Ci is empty or vi is on the hi line.
Proof Assume Ci is not empty and vi is not on the hi line.

I vi is in Ci−1 because Ci−1 is a subset of Ci .

I The line segment vivi−1 is in Ci−1 by convexity.

I vivi−1 intersects the hi line because vi−1 6∈ hi and vi ∈ hi .

I The intersection point q is in Ci .

I f increases along vivi−1 because vi−1 is its maximum in Ci−1.

I f (q) ≥ f (vi ) which contradicts the definition of vi .



Computational Complexity

h1

h2

h3

h4

h5

hn

v2

vn

v5

v4

v3

�c

I Computing vi takes O(i) time.

I The algorithm is O(n2) because this can happen at every i .

I The running time depends on the order of the hi .

I The output is independent of the order.

I In the example, reversing the order leads to O(n) time.

I Inserting the hi in random order gives O(n) on average.



Expected Running Time

Lemma 4.8 A 2D bounded linear program with n constraints is
solved in O(n) randomized expected time.
Proof

I The sample space is the n! orderings of h1, . . . , hn.

I The distribution is uniform.

I Let Xi equal 1 if vi−1 6∈ hi and 0 otherwise.

I The running time for the steps with Xi = 0 is O(n).

I We bound the expected value of the steps with Xi = 1.

E = E [
n∑

i=1

O(i)Xi ] =
n∑

i=1

O(i)E [Xi ]

I We will prove that E [Xi ] ≤ 2/i .

I Hence O(i)E [Xi ] = O(1) and E = O(n).



Backward Analysis

�c

vn

half-planes

defining vn

I E [Xn] is the probability that vn is created when hn is added.

I This is the probability that vn vanishes when hn is removed.

I vn vanishes if hn is one of its two defining lines.

I The probability is 2/n because the order is random.

I Likewise E [Xi ] = 2/i .



Computing a Random Permutation

unsigned i n t ∗ randomPermutat ion ( unsigned i n t n )
{

unsigned i n t ∗p = new unsigned i n t [ n ] ;
f o r ( unsigned i n t i = 0u ; i < n ; ++i )

p [ i ] = i ;
f o r ( unsigned i n t i = n − 1u ; i > 0u ; −− i ) {

unsigned i n t j = rand ()%( i +1);
swap ( p [ i ] , p [ j ] ) ;

}
return p ;

}



Minimal Disk

I The incremental strategy applies to other tasks.

I Example: find the smallest disk that contains n points.



Minimal Disk Constraint

pi+1

pi

Di−1 = Di

Di+1

I Let Ci and Di be the minimal circle and disk of p1, . . . , pi .

I If pi+1 ∈ Di , Di+1 = Di .

I Otherwise, pi+1 ∈ Ci+1.

I Likewise if the circles must contain one or two points.



Algorithm

C i r c l e ∗ minDisk ( const P o i n t s &p t s )
{

unsigned i n t n = p t s . s i z e ( ) ,
∗p = randomPermutat ion ( n ) ;

PTR<C i r c l e > c = new C i r c l e 2 p t s ( p t s [ p [ 0 ] ] ,
p t s [ p [ 1 ] ] ) ;

f o r ( unsigned i n t i = 2u ; i < n ; ++i ) {
P o i n t ∗ r = p t s [ p [ i ] ] ;
i f ( P o i n t I n C i r c l e ( r , c ) == −1)

c = minDiskWithPoint ( pts , p , i , r ) ;
}
de lete [ ] p ;
return c ;

}



Algorithm

C i r c l e ∗ minDiskWithPoint
( const P o i n t s &pts , unsigned i n t ∗p ,
unsigned i n t n , P o i n t ∗q )

{
PTR<C i r c l e > c = new C i r c l e 2 p t s ( p t s [ p [ 0 ] ] , q ) ;
f o r ( unsigned i n t i = 1 ; i < n ; ++i ) {

P o i n t ∗ r = p t s [ p [ i ] ] ;
i f ( P o i n t I n C i r c l e ( r , c ) == −1)

c = minDiskWithTwoPoints ( pts , p , i , q , r ) ;
}
return c ;

}



Algorithm

C i r c l e ∗ minDiskWithTwoPoints
( const P o i n t s &pts , unsigned i n t ∗p ,
unsigned i n t n , P o i n t ∗q1 , P o i n t ∗q2 )

{
PTR<C i r c l e > c = new C i r c l e 2 p t s ( q1 , q2 ) ;
f o r ( unsigned i n t i = 0u ; i < n ; ++i ) {

P o i n t ∗ r = p t s [ p [ i ] ] ;
i f ( P o i n t I n C i r c l e ( r , c ) == −1)

c = new C i r c l e 3 p t s ( q1 , q2 , r ) ;
}
return c ;

}



Expected Running Time

q

Theorem 4.15 The smallest enclosing disk of a set of n points is
computed in O(n) randomized expected time.
Proof

I minDiskWithTwoPoints is O(n).

I minDiskWithPoint is O(n) excluding minDiskWithTwoPoints.

I pi costs O(i) if it calls minDiskWithTwoPoints.

I This occurs if pi is one of the three points on Di .

I The probability is 2/i because q is one of the three.

I Running time is O(n) +
∑

i
2
i O(i) = O(n).

I Likewise minDisk with 1/i instead of 2/i .


