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Convex Hull of 3D Points

I Smallest convex set that contains the points

I Convex polyhedron

I Used in shape approximation and collision detection

I 2D Voronoi diagram and Delaunay triangulation (next class)



Boundary Representation
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I A vertex has coordinates and incident edges.

I An edge has a tail, a twin, a next edge, and a facet.

I Edge loops bound facets.

I A facet has one edge per boundary loop.

I A convex polyhedron is a convex set bounded by convex
facets such that every edge is incident on one facet.



Space Complexity

Theorem 11.1 A convex polyhedron with n vertices has at most
3n − 6 edges and at most 2n − 4 facets.
Proof Euler’s formula for a genus zero polyhedron with e edges
and f facets is n − e + f = 2. Every facet has at least three edges
and every edge is incident on two facets, so 2e ≥ 3f .
n + f − 2 = e implies n + f − 2 ≥ 3f /2 hence f ≤ 2n − 4.
e = n + f − 2 implies e ≤ n + 2n − 4− 2 = 3n − 6.



Incremental 2D Algorithm
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1. Randomize the points to p1, . . . , pn.
2. Initialize the hull to H = p1p2p3 in counterclockwise order.
3. For r = 4 to n:

If pr is outside of H
Remove the visible edges a1a2, . . . , ak−1ak .
Create edges a1pr and prak .



Incremental 3D Algorithm
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I The same idea works in 3D.

I A facet is visible if pr is in its positive half-space.

I The visible facets form a surface.

I The boundary of this surface is the horizon curve.



Incremental 3D Algorithm
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1. Randomize the points to p1, . . . , pn.
2. Initialize the hull to CH(P4) = p1p2p3p4.
3. For r = 5 to n:

If pr is outside of CH(Pr−1)
Remove the visible facets.
Create facets that link pr to the horizon edges.

Note: need to list horizon edges counterclockwise around pr .



Conflict Graph
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I Each uninserted point is linked to its visible facets.

I Each facet is linked to its visible uninserted points.

I The graph is initialized with the facets of CH(P4) and the
uninserted points p5, . . . , pn.

I It is updated during point insertion.

I The Delaunay triangulation algorithm uses the same idea.



Conflict Graph Update
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1. Remove the pr node and its edges.

2. For each new horizon edge e with new facet f :

2.1 Let S be the points that conflict with the old e facets f1 and f2.
2.2 Remove the facet nodes and their edges.
2.3 Create the f node.
2.4 Add edges from the f node to its visible points in S .

Correctness proof: If a point can see f in CH(Pr ), it can see e in
CH(Pr ), so it can see e in CH(Pr−1) ⊂ CH(Pr ), so it can see a
facet incident on e in CH(Pr−1).



Degenerate Cases
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Degeneracy: A point pr is coplanar with a facet f .
If f does not contain pr , it is visible.
The new facet is not a triangle.
The new facet has the same conflicts as the old one.

Degeneracy: The points p1, p2, p3, p4 are coplanar.
Prevented by randomization. Or pick four other points.

Degeneracy: The points are coplanar.
use a 2D algorithm.

Degeneracy: The points are collinear.
Return a line segment.



Complexity

I We prove that the expected number of facets created is O(n).

I Let s be the total number of points in the S sets in step 2.1.

I The expected time complexity is O(n + s).

I The book proves that s is O(n log n).

I The proof is a complicated variant of earlier proofs.



Number of Facets

Lemma 11.3 The expected number of facets created is at most
6n − 20.

Proof
CH(P4) has four facets.
The number of facets created by pr is the number of edges
incident on pr in CH(Pr ).
There are at most 3r − 6 edges each incident on two vertices.
The expected number of pr facets is (6r − 12)/r < 6.
The sum over the n points is at most 4 + 6(n − 4) = 6n − 20.


