Geometry of Curves and Surfaces
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Planar Vector Geometry

Vectors represent positions and directions.
Vector u has Cartesian coordinates u = (uy, uy).
Inner product: u-v = uxvx + uyvy.

Projection of u onto v: (u-v/v-v)v.

Vector length: ||u]| = /u - u.

Unit vector: u/||ull.

Cross product: u X v = uyvy, — uy, vy

Let « be the angle between u and v.

u-v=|lul]-]|v]| - cos .
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uxv=|lul]-]|v]|-sina.



Spatial Vector Geometry
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Vectors represent positions and directions.
Vector u has coordinates u = (uy, uy, u;).

Inner product: u-v = uxvx + uyvy, + UzVv;.
Projection of u onto v: (u-v/v-v)v.

Vector length: ||u|| = +/u - wu.

Unit vector u/||ul|.

Cross product:

uxv=_(uyVy; — UzVy, UsVx — UxVyz, UxVy — UyVy)
Let o be the angle between u and v.
u-v=I|lul|]|v]| - cosc.

uxv=_(|lu]]-||v|] - sine) n with n a unit vector
perpendicular to v and v.



Plane Curves

> Explicit: y = f(x)
» Implicit: f(x,y) =0
» Parametric: y(w) = (x(w), y(w))
» Example: circle with center o and radius r
> explicit: y = o, £ 1/r?> — 02
> implicit: (x — ox)> 4+ (y — 0,)? = r?
» parametric: y(w) = (ox + rcosw, o, + rsin w).



Space Curves
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» Parameteric: v(w) = ((x(w), y(w), z(w)).
» Most results apply to plane curves after dropping z.
» Implicit are rarely useful: f(x,y,z) =0,g(x,y,z) =0.



Tangent Vectors
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» The velocity vector at w is y(w).

» The tangent line is v(w) + §(w)Aw.

» The speed is v = [|¥]|.

» The length of the curve is the integral of v.



Length Parameterization

Let s(w) = [”, v denote the length of the curve v on [0, w].
The Iength parameterization of v is (s).

The curve 7(s) has unit speed, so its length on [0, z] is z.
Rewriting y(w) as v(s) is impractical.

Changing variables at a point is easy using the chain rule.
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We use the notation v/ =

vV vV vvVvYyYvVvyy

~'is a unit vector.
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» The unit tangent is denoted t = +/

Proof: 4 =



Curvature

The curvature of a curve « at a point p measures its deviation
from the tangent line at p.
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The curvature is k = ||t/|].

The principal normal is n = t'/k.

n is orthogonal to t: t-t =1 implies (t-t) =2t-t' =0.
A circle of radius r has constant curvature 1/r.

Two curves have second-order contact at a common point
when they have the same unit tangent and curvature.

Every curve has second-order contact at p with a circle of
radius r = 1/|k| whose center is 0 = p + rn.



Curvature Computation

The curvature of y(w) is computed as follows.
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> 5= 8—(vt) = vt+vi=vt+v(t'v) = vt+ vt = vt+kv3n
w
> 4 x 5= (vt) x (vt + rkvZn) = kv3t x n

> (17 x 4l = mv3lt x n|| = kv
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Torsion

» The binormal vector is b=t x n.
» b’ is orthogonal to t and to b.

» b-t=0implies(b-t) =b-t+b-t' =0, so

b -t=—-b-kn=0.

> b-b=1implies (b-b) =2b"-b=0.
Define b’ = —7n with 7 called the torsion.
T measures the deviation of the curve from the tn plane.
A curve is planar if and only if 7 is identically zero.
n = (bxt) =bxt+bxt =(—1n)xt+bx(kn)=71b—kt.
The torsion formula is similar to the curvature formula, but
contains the third derivative of .
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Frenet Frame

\ (1) ’

» Frame: tangent t, principal normal n, and binormal b.

» They satisfy the ordinary differential equations

t' = kn
n = —kt+71b
b = —7n

» For given functions «(s) and 7(s), the Frenet equations
determine the curve up to a translation and a rotation.



Generalized Frenet Equations

The Frenet equations for a general curve v(w) have an extra factor
of v =lll.

t = vkn
n = —vkt+vrh
b = —vrn

The first equation and the chain rule yield a useful formula for 4.

.0, 0 . . 2
'y—a—w('y)—a—w(vt)—vt—kvt—vt—{—nvn

The tangential acceleration vt is due to the change in speed. The
normal acceleration xv2n is due to the change in tangent direction.



Surfaces

> Representation
> explicit: z = f(x,y)
> implicit: f(x,y,z) =0
» parametric: f(u,v) = (x(u,v), y(u,v), z(u, v))
» Explicit surfaces are a special case of parametric surfaces.
» Implicit surfaces are more general, but often less convenient.
» An implicit or parameteric surface has an explicit
representation in the neighborhood of a regular point.



Cylinder

x(u,v) = rcosv
y(u,v) = rsinv
z(u,v) = u

2

Implicit representation: x> + y2 = r



Cone

x(u,v) = usinycosv
y(u,v) = wusinysinv
z(u,v) = wucosy

Implicit representation: x2 + y? = (ztan~)2.




Sphere
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x(u,v) = rcosucosv
y(u,v) = rcosusinv
z(u,v) = rsinu

Implicit representation: x2 + y? + z% = r.



Ellipsoid

x(u,v) = acosucosv

y(u,v) = bcosusinv

z(u,v) = csinu
- A .
mplicit representation: 3—2 + ﬁ + ? =1.
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Parametric Surface

M

» The function f maps the parameter space M to the surface.

» The differential df maps a tangent vector X at (u,v) € M to
a tangent vector df (X) of the surface at f(u, v) € f(M).

» The surface is regular at points where df has full rank.

> We assume regularity from here on.



Tangent Plane
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» The coordinate form of the differential is df (u,v) = f,u+ f,v
with 7, = gf/ and f, = g":

» The tangent vectors form a plane that is spanned by f, and f,.

» The tangent plane equation is f(u,v) + f,Au+ f,Av.

» The unit normal is U = f, x f,/||f, x f,]|.

» A parameter space curve (u(w), v(w)) defines a spatial curve

g(w) = f(u(w),v(w)) on f(u, v) with tangent g = f,0+ f, V.



Angles and Area
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» The angle between two curves with tangents g1 and g2 is
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» The iso-parametric curves at (u, v) are (u+ w,v) and
(u, v + w) with tangent vectors f, and f,.

u

given by cosf =

» The iso-parametric box with corners (u, v) and
(u+ Au,v + Av) bounds an area of about ||f, x f,||AuAv.

» The differential of area is ||f, x f,|].



Shape Operator

v

The shape operator of a surface M at a point p measures the
deviation from the tangent plane in a direction w.

The deviation equals the covariant derivative of the unit
normal U in the w direction, denoted V,, U.

The shape operator is Sp(w) = -V, U.
The minus sign simplifies some formulas.

Sp(w) is written as S(w) in contexts where p is obvious.



Shape Operator Properties

Claim S, is a symmetric linear operator on the tangent space at p.
1. Linearity is a standard property of the covariant derivative.

2. To show that S(w) is orthogonal to U, differentiate U- U =1
to obtain 0 = w[U - U] =2U -V, U = —-2U - S(w).

3. Symmetry means that S(a) - b = S(b) - a for all tangent vectors
a and b. It suffices to prove S(f,) - f, = S(f,) - f, by linearity.

We have S(f,) = =V U = —U, and 5(f,) = -V U = —U,.
Differentiating U - f, = 0 yields

e(U-fu) = Uy fut U fuy = =S(f,) - fy+ U~ fu, =0
and so S(f,) - f, = U - fu.

leFerent|at|ng U - f, =0 yields

au(U f)y=U,-f,+U- fuv——S(fu)-fv+U-fUV:0

and so S(f,)-f, = U - fu



Shape Operator Matrix

We compute the matrix A = [aj;] of S in the {f,, f,} basis. The
columns of A are 5(f,) and S(f,)

allfu+a21fv = S(fu):_Uu
312fu+a22fv = 5(f:v):_Uv

Taking dot products with f, and f, yields four equations.

aify - fu+axf, - 1y —Uy -1y
aify-fy+anf,-f, = —U,-f,
awfy - fy+axnf,-f,, = U, -1
axpfy - fy +axnf,-f, = —U,-f,

The matrix form of these equations is

fu'fu fu'fv > a11  d12 _ _Uu'fu _Uv'fu
fu'fv fv'fv dz1 a2 N _Uu'fv _Uv'fv



Shape Operator (continued)

Define E=1f,-f,, F=1,-f,, and G = f, - f,. Diffentiate
U-f,=0and U-f, =0 with respect to u and v to obtain.

L = U-fuu=-U, f,
M =
N =

Substitute into the above matrix equation.

E F % di1  ai2 . L M
F G ajz1 dap2 o M N

Solve

A_[E F17 [t M 1 MF — LG NF — MG
“|F G M N LF — ME MF — NE

" EG - P2

|



Normal Curvature
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(a) A curve v in M satisfies - U =7 - 5(7).

Proof: 4 - U =0 implies - U= —%-U=+-5(%).

Every curve with velocity 4 has the same normal acceleration.
The curves with unit velocity t provide a canonical formula.
The normal curvature is defined as k(t) = S(t) - t.

(b) Let v have velocity t, curvature k, and normal n.

k(t) is the projection of xn onto U.

k(t) = kn- U = Kk cos ¢ with ¢ the angle between U and n.



Normal Curvature Computation

The shape operator in the direction x = f,u+ f,v is
S(fyu+ f,v) = uS(fy) + vS(f,) = =Uyu — U,v
Using L, M, and N from above,

S(x)-x = —(Uyu+ Uyv) - (fyu+f,v)
= U, fui> —(Uy-f,+ U, - f)uv — U, - f,v?
Lu? + 2Muv 4+ Nv?

The normal curvature in the direction x is
o X x \ _ S(x)-x  Lu*+2Muv + Nv?
||| [ x|  x-x  Eu2+42Fuv+ Gv2

using E, F, and G from above.




Normal Section

v

The normal section in direction t is the intersection curve vy of
M with the plane through p and tangent to t and to U.

The curve normal n is collinear with the surface normal U.
The normal curvature is k(t) = £k.

The curve v provides a good visualization of k(t). It curves
away from U when k(t) < 0 and toward U when k(t) > 0.



Principal Directions and Curvatures

» The shape operator has real eigen values k; and k> with eigen
vectors X1 and X, because it is symmetric.

» If ki > ko, the normal curvature has a maximum of ky in
direction X7 and a minimum of k> in direction X>.

> These are called the principal directions and curvatures.



Umbilicals

N

monkey saddle

A point with k; = ko is called an umbilical.

The normal curvature is equal in all directions.

>

>

» Every point on a plane is an umbilical with kK = 0.

» Every point on an r-sphere is an umbilical with k =1/r.
>

The monkey saddle has an isolated umbilical p with k =0
where three zero-curvature curves meet.



Gaussian and Mean Curvature

» The Gaussian curvature is K = ki ko.

v

It is the determinant of the shape operator
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The sign of K determines the local shape.

L M| _ LN—M?
M N || EF-G?2

Surfaces with K = 0 are generated by sweeping a line.
The mean curvature is H = (k1 + k2)/2.

Surfaces with H = 0 minimize surface area.



Elliptic Point

sphere ellipsoid

» The Gaussian curvature is positive.
» The principal curvatures have the same sign.

» The surface lies on one side of the tangent plane.
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Parabolic Point

cylinder

cone
» The Gaussian curvature is zero.

» One principal curvature is zero.

» The surface intersects the tangent plane in a line




Hyperbolic Point

hyperbolic paraboloid

torus

» The Gaussian curvature is negative.

» The principal curvatures have opposite signs.

» The surface intersects the tangent plane in two curves




Gauss Map

f(M)

» The Gauss map N : M — S2 maps a point (u,v) in the
parameter space M of a surface to the unit normal at f(u, v).

» The area of the image of N equals the integral of the
Gaussian curvature over M.

» This quantity is called the total Gaussian curvature.
[} = =




Euler Characteristic

v=4e=6f=4 v=2e=4F=4 v=4e=8f=4
» The Euler characteristic of a polyhedron A with v vertices, e
edges, and f facets is x(A) = v — e+ f.

Likewise for a smooth or piecewise smooth surface.

x = 2 for a sphere and x = 0 for a torus.

The Euler characteristic is a topological invariant.
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A compact, oriented, boundaryless surface is homeomorphic
to a sphere with k > 0 handles and has y =2 — 2k.
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Tangential Curvature

A curve 7 on a surface S has Frenet frame t, n, and b.
We have studied the normal curvature k, = n-~".
We will now study the geodesic curvature kg = b-+".

kg is the complement of k, because t-~" =t-t' =0.
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kg measures the acceleration tangent to S.



Gauss-Bonnet Theorem
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A surface M with boundary §M satisfies

/ KdA—i—/ kgds = 2mx (M)
M M



Geodesics

sphere ellipsoid

A curve y on [a, b] is a geodesic if kg(p) =0 for all p € [a, b]. It is
a straightest curve in S.

Equivalently, v is a critical point of the length functional L with
respect to tangential variations. For ¢ a tangent vector field along
v with ¢(a) = 0 and ¢(b) =0, ZL(y + €¢) = 0.

v is a locally shortest curve: every point on v has a neighborhood
in which ~ is the shortest curve between every pair of its points.



Geodesic Completeness

sphere ellipsoid

There is a unique geodesic through every point p of a surface in
every tangent direction t.

The geodesic is the solution of the ODE ~” = 0 with initial
conditions (0) = p and 7/(0) = t.

A surface is complete if every geodesic can be extended
indefinitely: it is periodic or converges to a boundary point.



Hopf-Rinow Theorem

The intrinsic distance between two points on a surface is the
infimum of the lengths of the surface curves that connect them.

Hopf-Rinow Theorem Every pair of points on a geodesically
complete surface is connected by a geodesic whose length equals
the intrinsic distance between them.



Discrete Differential Geometry

» Discrete differential geometry generalizes differential geometry
to topological manifolds.

» The primary case is polyhedral surfaces.

> We will study their Gaussian curvature and geodesics.

Discrete Differential Geometry: An Applied Introduction, Keenan
Crane, online.

Straightest Geodesics on Polyhedral Surfaces, Polthier and
Schmies, Siggraph 2006.



Curvature in the Plane

n(b)

curve Gauss map

> A plane curve 7 : [a, b] — R? parameterized by arc length
with normal angle 6 and curvature k satisfies 6/ = k.

» The curvature is the rate of change of the normal angle.
» The total curvature of v is fab k = 6(b) — 0(a).
» This equals the length of the image of the Gauss map of ~.



Discrete Curvature in the Plane

X
vertex curvature total curvature

» Discrete differential geometry defines curvature on poly-lines.
» The curvature of a vertex is its change in normal angle: the

outgoing angle minus the incoming angle, e.g. k(v) = 6> — 0.
» The curvature is zero elsewhere.

» The total curvature of a poly-line equals the length of the
image of its Gauss map, as in the case of a smooth curve.



Gauss Map of a 3D Triangle Mesh
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surface Gauss map

» Discrete differential geometry defines Gauss maps and
Gaussian curvature for 3D triangle meshes.

> A face maps to its normal as before.
P an edge maps to the great circle arc bounded by the normals
of the incident faces.

P> A vertex maps to the spherical polygon bounded by the arcs
of the incident edges.



Gaussian Curvature of a 3D Triangle Mesh

Spherical Vertex Euclidean Vertex Hyperbolic Vertex
2r-36,>0 2r-38,=0 2n-308,<0
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» The Gaussian curvature of a point in a 3D triangle mesh is
defined as the area of its image in the Gauss map of the mesh.

v

The Gaussian curvature is zero on edges and faces.

» The Gaussian curvature of a vertex whose incident faces have
interior angles 6;,...,0, is 2m — > 1, 0;.

P> The total Gaussian curvature equals the area of the image of

the Gauss map by construction.



Geodesics on Triangle Meshes
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» Geodesics on triangle meshes are piecewise linear with
breakpoints at vertices and on edges.

i

> The geodesics can be shortest curves or straightest curves.

» There is a fast algorithm for computing a shortest geodesic
between two points.

» There is no shortest geodesic through a spherical vertex.

» There are a continuum through a hyperbolic vertex.



Straightest Geodesics

> Let p be a point on a piecewise linear curve in a triangle mesh.
» The angle of p is 8 = 27 — ¢ with ¢ the curvature of p.
» The curve has left and right angles 6, and 8, with 8, +6, = 6.
> The curve is a straightest geodesic if §; = 0, at every p.



Straightest Geodesics (continued)

» There is a unique straightest geodesic through every point in
every direction.

» There can be no straightest geodesic between two points.

» Shortest and straightest geodesics differ solely at vertices.



Straightest Geodesic Curvature
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» A point p with angle 6 lies on a curve 7.

v

The straightest geodesic at p with direction 7/ is 4.

v

The straightest geodesic curvature of v is the normalized

angle between v and 0: kg = 27”(% — B) with 5 =10,.

Setting 3 = 0, reverses the sign of k.
A curve is a straightest geodesic iff kg = 0 at every point.
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Parallel Translation

v

Integration rules combine tangent vectors at multiple points.
This operation is trivial in Euclidean spaces.

Tangent vectors on a smooth surface can be combined in the
ambient Euclidean space.

The integration rules must be modified to stay on the surface.

Vectors on polyhedral surfaces are transferred to a common
base point via parallel translation.

The resulting integration rules stay on the surface.



Parallel Translation

et

8
B / Tl e
9
5., L 5 L
¥or2(2 ) T
= 4,

general curve

geodesic curve

A tangential vector field v is parallel along a straightest geodesic
if the normalized angle between v(s) and 7/(s) is constant.

A tangent vector vy with normalized angle ag on a general curve ~y
defines a unique parallel vector field a(s) = ag + [ kg-



