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Planar Vector Geometry

I Vectors represent positions and directions.

I Vector u has Cartesian coordinates u = (ux , uy ).

I Inner product: u · v = uxvx + uyvy .

I Projection of u onto v : (u · v/v · v)v .

I Vector length: ||u|| =
√
u · u.

I Unit vector: u/||u||.
I Cross product: u × v = uxvy − uyvx
I Let α be the angle between u and v .

I u · v = ||u|| · ||v || · cosα.

I u × v = ||u|| · ||v || · sinα.



Spatial Vector Geometry

I Vectors represent positions and directions.

I Vector u has coordinates u = (ux , uy , uz).

I Inner product: u · v = uxvx + uyvy + uzvz .

I Projection of u onto v : (u · v/v · v)v .

I Vector length: ||u|| =
√
u · u.

I Unit vector u/||u||.
I Cross product:

u × v = (uyvz − uzvy , uzvx − uxvz , uxvy − uyvx)

I Let α be the angle between u and v .

I u · v = ||u|| · ||v || · cosα.

I u × v = (||u|| · ||v || · sinα) n with n a unit vector
perpendicular to u and v .



Plane Curves

I Explicit: y = f (x)

I Implicit: f (x , y) = 0

I Parametric: γ(w) = (x(w), y(w))
I Example: circle with center o and radius r

I explicit: y = oy ±
√
r2 − o2

x
I implicit: (x − ox)2 + (y − oy )2 = r2

I parametric: γ(w) = (ox + r cosw , oy + r sinw).



Space Curves

=(a w, acos sinw, bw)(w)γ

I Parameteric: γ(w) = ((x(w), y(w), z(w)).

I Most results apply to plane curves after dropping z .

I Implicit are rarely useful: f (x , y , z) = 0, g(x , y , z) = 0.



Tangent Vectors
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I The velocity vector at w is γ̇(w).

I The tangent line is γ(w) + γ̇(w)∆w .

I The speed is v = ||γ̇||.
I The length of the curve is the integral of v .



Length Parameterization

I Let s(w) =
∫ w
u=0 v denote the length of the curve γ on [0,w ].

I The length parameterization of γ is γ(s).

I The curve γ(s) has unit speed, so its length on [0, z ] is z .

I Rewriting γ(w) as γ(s) is impractical.

I Changing variables at a point is easy using the chain rule.

I We use the notation γ′ =
∂γ

∂s
.

I γ′ is a unit vector.

Proof: γ̇ =
∂γ

∂s

∂s

∂w
= γ′ṡ = γ′v , so γ′ =

γ̇

v
=

γ̇

||γ̇||
I The unit tangent is denoted t = γ′.



Curvature
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The curvature of a curve γ at a point p measures its deviation
from the tangent line at p.

I The curvature is κ = ||t ′||.
I The principal normal is n = t ′/κ.

I n is orthogonal to t: t · t = 1 implies (t · t)′ = 2t · t ′ = 0.

I A circle of radius r has constant curvature 1/r .

I Two curves have second-order contact at a common point
when they have the same unit tangent and curvature.

I Every curve has second-order contact at p with a circle of
radius r = 1/|κ| whose center is o = p + rn.



Curvature Computation

The curvature of γ(w) is computed as follows.

I γ̇ = vt

I ṫ =
∂t

∂s

∂s

∂w
= t ′v

I γ̈ =
∂

∂w
(vt) = v̇ t +v ṫ = v̇ t +v(t ′v) = v̇ t +v2t ′ = v̇ t +κv2n

I γ̇ × γ̈ = (vt)× (v̇ t + κv2n) = κv3t × n

I ||γ̇ × γ̈|| = κv3||t × n|| = κv3

I κ =
||γ̇ × γ̈||

v3
=
||γ̇ × γ̈||
||γ̇||3



Torsion

I The binormal vector is b = t × n.
I b′ is orthogonal to t and to b.

I b · t = 0 implies (b · t)′ = b′ · t + b · t ′ = 0, so
b′ · t = −b · κn = 0.

I b · b = 1 implies (b · b)′ = 2b′ · b = 0.

I Define b′ = −τn with τ called the torsion.

I τ measures the deviation of the curve from the tn plane.

I A curve is planar if and only if τ is identically zero.

I n′ = (b×t)′ = b′×t+b×t ′ = (−τn)×t+b×(κn) = τb−κt.

I The torsion formula is similar to the curvature formula, but
contains the third derivative of γ.



Frenet Frame
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2.3. The Geometry of Curves

I
X

dγ(X)

γ
γ(I)

The picture we looked at for surfaces is actually a nice way of thinking about shapes of any
dimension. For instance, we can think of a one-dimensional curve as a map γ : I → R3 from an
interval I = [0, T] ⊂ R of the real line to R3. Again the differential dγ tells us how tangent vectors
get stretched out by γ, and again the induced length of a tangent vector X is given by

|dγ(X)| =
�

dγ(X) · dγ(X).

Working with curves is often easier if γ preserves length, i.e., if for every tangent vector X we have

|dγ(X)| = |X|.
There are various names for such a parameterization (“unit speed”, “arc-length”, “isometric”) but the
idea is simply that the curve doesn’t get stretched out when we go from R to R3—think of γ as a
completely relaxed rubber band. This unit-speed view is also often the right one for the discrete
setting where we have no notion of a base domain I—from the very beginning, the curve is given
to us as a subset of R3 and all we can do is assume that it sits there in a relaxed state.

2.3.1. The Curvature of a Curve.

N
T

B
γ(I)

Suppose we have a unit-speed curve γ and a positively-oriented unit vector X on the interval I.
Then

T = dγ(X)

is a unit vector in R3 tangent to the curve. Carrying this idea one step further, we can look at the
change in tangent direction as we move along γ. Since T may change at any rate (or not at all!) we

I Frame: tangent t, principal normal n, and binormal b.

I They satisfy the ordinary differential equations

t ′ = κn

n′ = −κt + τb

b′ = −τn

I For given functions κ(s) and τ(s), the Frenet equations
determine the curve up to a translation and a rotation.



Generalized Frenet Equations

The Frenet equations for a general curve γ(w) have an extra factor
of v = ||γ̇||.

ṫ = vκn

ṅ = −vκt + vτb

ḃ = −vτn

The first equation and the chain rule yield a useful formula for γ̈.

γ̈ =
∂

∂w
(γ̇) =

∂

∂w
(vt) = v̇ t + v ṫ = v̇ t + κv2n

The tangential acceleration v̇ t is due to the change in speed. The
normal acceleration κv2n is due to the change in tangent direction.



Surfaces

I Representation
I explicit: z = f (x , y)
I implicit: f (x , y , z) = 0
I parametric: f (u, v) = (x(u, v), y(u, v), z(u, v))

I Explicit surfaces are a special case of parametric surfaces.

I Implicit surfaces are more general, but often less convenient.

I An implicit or parameteric surface has an explicit
representation in the neighborhood of a regular point.



Cylinder

x

v

y

z

p

r

u

x(u, v) = r cos v

y(u, v) = r sin v

z(u, v) = u

Implicit representation: x2 + y2 = r2.



Cone

v

p

α

u

x

z

y

x(u, v) = u sin γ cos v

y(u, v) = u sin γ sin v

z(u, v) = u cos γ

Implicit representation: x2 + y2 = (z tan γ)2.



Sphere

x

p

v

r
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x(u, v) = r cos u cos v

y(u, v) = r cos u sin v

z(u, v) = r sin u

Implicit representation: x2 + y2 + z2 = r2.



Ellipsoid

x(u, v) = a cos u cos v

y(u, v) = b cos u sin v

z(u, v) = c sin u

Implicit representation:
x2

a2
+

y2

b2
+

z2

c2
= 1.



Parametric Surface

CHAPTER 2

A Quick and Dirty Introduction to Differential Geometry

2.1. The Geometry of Surfaces

There are many ways to think about the geometry of a surface (using charts, for instance) but
here’s a picture that is well-suited to the way we work with surfaces in the discrete setting. Consider
a little patch of material floating in space, as depicted below. Its geometry can be described via a
map f : M → R3 from a region M in the Euclidean plane R2 to a subset f (M) of R3:

f

X

f (M)

M

df(X)

N

The differential of such a map, denoted by df , tells us how to map a vector X in the plane to the
corresponding vector df(X) on the surface. Loosely speaking, imagine that M is a rubber sheet and
X is a little black line segment drawn on M. As we stretch and deform M into f (M), the segment
X also gets stretched and deformed into a different segment, which we call df(X). Later on we can
talk about how to explicitly express df(X) in coordinates and so on, but it’s important to realize that
fundamentally there’s nothing deeper to know about the differential than the picture you see here—the
differential simply tells you how to stretch out or “push forward” vectors as you go from one space
to another. For example, the length of a tangent vector X pushed forward by f can be expressed as

�
df(X) · df(X),

where · is the standard inner product (a.k.a. dot product or scalar product) on R3. Note that this
length is typically different than the length of the vector we started with! To keep things clear, we’ll
use angle brackets to denote the inner product in the plane, e.g., the length of the original vector
would be

�
�X, X�. More generally, we can measure the inner product between any two tangent

vectors df(X) and df(Y):
g(X, Y) = df(X) · df(Y).

The map g is called the metric of the surface, or to be more pedantic, the metric induced by f . Note
that throughout we will use df(X) interchangeably to denote both the pushforward of a single

7

I The function f maps the parameter space M to the surface.

I The differential df maps a tangent vector X at (u, v) ∈ M to
a tangent vector df (X ) of the surface at f (u, v) ∈ f (M).

I The surface is regular at points where df has full rank.

I We assume regularity from here on.



Tangent Plane
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I The coordinate form of the differential is df (u, v) = fuu + fvv

with fu =
∂f

∂u
and fv =

∂f

∂v
.

I The tangent vectors form a plane that is spanned by fu and fv .

I The tangent plane equation is f (u, v) + fu∆u + fv∆v .

I The unit normal is U = fu × fv/||fu × fv ||.
I A parameter space curve (u(w), v(w)) defines a spatial curve

g(w) = f (u(w), v(w)) on f (u, v) with tangent ġ = fuu̇ + fv v̇ .



Angles and Area
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� 1 = dx1 ∧ dx2 ∧ dx3

� dx1 = dx2 ∧ dx3

� dx2 = dx3 ∧ dx1

� dx3 = dx1 ∧ dx2

�(dx1 ∧ dx2) = dx3

�(dx2 ∧ dx3) = dx1

�(dx3 ∧ dx1) = dx2

�(dx1 ∧ dx2 ∧ dx3) = 1

The map � (pronounced “star”) is called the Hodge star and captures this idea that planes can be
identified with their normals and so forth. More generally, on any flat space we have

�(dxi1 ∧ dxi2 ∧ · · · ∧ dxik) = dxik+1 ∧ dxik+2 ∧ · · · ∧ dxin ,

where (i1, i2, . . . , in) is any even permutation of (1, 2, . . . , n).

3.5.2. The Volume Form.

u
v

f

df (u)

df (v)

So far we’ve been talking about measuring volumes in flat spaces like Rn. But how do we take
measurements in a curved space? Let’s think about our usual example of a surface f : R2 ⊃ M →
R3. If we consider a region of our surface spanned by a pair of orthogonal unit vectors u, v ∈ R2,
it’s clear that we don’t want the area dx1 ∧ dx2(u, v) = 1 since that just gives us the area in the
plane. What we really want is the area of this region after it’s been “stretched-out” by the map f . In
other words, we want the size of the corresponding parallelogram in R3, spanned by the vectors
df (u) and df (v).

EXERCISE 1. Letting u, v ∈ R2 be orthonormal (as above), show that

|df (u) × df (v)| =
�

det(g),

i.e., show that the “stretching factor” as we go from the plane to the surface is given by the square
root of the determinant of the metric

det(g) := g(u, u)g(v, v) − g(u, v)2.

Hint: remember that the induced metric is just the usual Euclidean dot product of the embedded vectors:
g(u, v) := df (u) · df (v).

Therefore, we can measure the area of any little region on our surface by simply scaling the
volume in the plane by the determinant of the metric, i.e., by applying the 2-form

�
det(g)dx1 ∧ dx2

I The angle between two curves with tangents ġ1 and ġ2 is

given by cos θ =
ġ1
||ġ1||

· ġ2
||ġ2||

.

I The iso-parametric curves at (u, v) are (u + w , v) and
(u, v + w) with tangent vectors fu and fv .

I The iso-parametric box with corners (u, v) and
(u + ∆u, v + ∆v) bounds an area of about ||fu × fv ||∆u∆v .

I The differential of area is ||fu × fv ||.



Shape Operator
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I The shape operator of a surface M at a point p measures the
deviation from the tangent plane in a direction w .

I The deviation equals the covariant derivative of the unit
normal U in the w direction, denoted ∇wU.

I The shape operator is Sp(w) = −∇wU.

I The minus sign simplifies some formulas.

I Sp(w) is written as S(w) in contexts where p is obvious.



Shape Operator Properties

Claim Sp is a symmetric linear operator on the tangent space at p.

1. Linearity is a standard property of the covariant derivative.

2. To show that S(w) is orthogonal to U, differentiate U · U = 1
to obtain 0 = w [U · U] = 2U · ∇wU = −2U · S(w).

3. Symmetry means that S(a) · b = S(b) · a for all tangent vectors
a and b. It suffices to prove S(fu) · fv = S(fv ) · fu by linearity.

We have S(fu) = −∇fuU = −Uu and S(fv ) = −∇fvU = −Uv .

Differentiating U · fu = 0 yields
∂
∂v (U · fu) = Uv · fu + U · fuv = −S(fv ) · fu + U · fuv = 0
and so S(fv ) · fu = U · fuv .

Differentiating U · fv = 0 yields
∂
∂u (U · fv ) = Uu · fv + U · fuv = −S(fu) · fv + U · fuv = 0
and so S(fu) · fv = U · fuv .



Shape Operator Matrix
We compute the matrix A = [aij ] of S in the {fu, fv} basis. The
columns of A are S(fu) and S(fv )

a11fu + a21fv = S(fu) = −Uu

a12fu + a22fv = S(fv ) = −Uv

Taking dot products with fu and fv yields four equations.

a11fu · fu + a21fv · fu = −Uu · fu
a11fu · fv + a21fv · fv = −Uu · fv
a12fu · fu + a22fv · fu = −Uv · fu
a22fu · fv + a22fv · fv = −Uv · fv

The matrix form of these equations is

[
fu · fu fu · fv
fu · fv fv · fv

]
×
[
a11 a12
a21 a22

]
=

[
−Uu · fu −Uv · fu
−Uu · fv −Uv · fv

]



Shape Operator (continued)

Define E = fu · fu, F = fv · fv , and G = fv · fv . Diffentiate
U · fv = 0 and U · fu = 0 with respect to u and v to obtain.

L = U · fuu = −Uu · fu
M = U · fuv = −Uv · fu = −Uu · fv
N = U · fvv = −Uv · fv

Substitute into the above matrix equation.

[
E F
F G

]
×
[
a11 a12
a21 a22

]
=

[
L M
M N

]

Solve

A =

[
E F
F G

]−1
×
[

L M
M N

]
=

1

EG − F 2

[
MF − LG NF −MG
LF −ME MF − NE

]



Normal Curvature
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I (a) A curve γ in M satisfies γ̈ · U = γ̇ · S(γ̇).
Proof: γ̇ · U = 0 implies γ̈ · U = −γ̇ · U̇ = γ̇ · S(γ̇).

I Every curve with velocity γ̇ has the same normal acceleration.

I The curves with unit velocity t provide a canonical formula.

I The normal curvature is defined as k(t) = S(t) · t.

I (b) Let γ have velocity t, curvature κ, and normal n.

I k(t) is the projection of κn onto U.

I k(t) = κn · U = κ cosφ with φ the angle between U and n.



Normal Curvature Computation

The shape operator in the direction x = fuu + fvv is

S(fuu + fvv) = uS(fu) + vS(fv ) = −Uuu − Uvv

Using L, M, and N from above,

S(x) · x = −(Uuu + Uvv) · (fuu + fvv)

= −Uu · fuu2 − (Uu · fv + Uv · fu)uv − Uv · fvv2
= Lu2 + 2Muv + Nv2

The normal curvature in the direction x is

S

(
x

||x ||

)
·
(

x

||x ||

)
=

S(x) · x
x · x =

Lu2 + 2Muv + Nv2

Eu2 + 2Fuv + Gv2

using E , F , and G from above.



Normal Section
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I The normal section in direction t is the intersection curve γ of
M with the plane through p and tangent to t and to U.

I The curve normal n is collinear with the surface normal U.

I The normal curvature is k(t) = ±κ.

I The curve γ provides a good visualization of k(t). It curves
away from U when k(t) < 0 and toward U when k(t) > 0.



Principal Directions and Curvatures
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The factor |df(X)|2 in the denominator simply normalizes any “stretching out” that occurs as we go
from the domain M into R3. Note that normal curvature is signed, meaning the surface can bend
toward the normal or away from it.

2.4.1. Principal, Mean, and Gaussian Curvature.

N

N

N

X2
X1

X1

X21/κ2

1/κ1

At any given point we can ask: along which directions does the surface bend the most? The
unit vectors X1 and X2 along which we find the maximum and minimum normal curvatures κ1 and
κ2 are called the principal directions; the curvatures κi are called the principal curvatures. For instance,
the beer bottle above might have principal curvatures κ1 = 1, κ2 = 0 at the marked point.

We can also talk about principal curvature in terms of the shape operator, which is the unique
map S : TM → TM satisfying

df (SX) = dN(X)

for all tangent vectors X. The shape operator S and the Weingarten map dN essentially represent
the same idea: they both tell us how the normal changes as we travel along a direction X. The only
difference is that S specifies this change in terms of a tangent vector on M, whereas dN gives us the
change as a tangent vector in R3. It’s worth noting that many authors do not make this distinction,
and simply assume an isometric identification of tangent vectors on M and the corresponding
tangent vectors in R3. However, we choose to be more careful so that we can explicitly account for
the dependence of various quantities on the immersion f —this dependence becomes particularly
important if you actually want to compute something! (By the way, why can we always express the
change in N in terms of a tangent vector? It’s because N is the unit normal, hence it cannot grow or
shrink in the normal direction.)

One important fact about the principal directions and principal curvatures is that they corre-
spond to eigenvectors and eigenvalues (respectively) of the shape operator:

SXi = κiXi.

Moreover, the principal directions are orthogonal with respect to the induced metric: g(X1, X2) =
df (X1) · df (X2) = 0. The principal curvatures therefore tell us everything there is to know about
normal curvature at a point, since we can express any tangent vector Y as a linear combination of
the principal directions X1 and X2. In particular, if Y is a unit vector offset from X1 by an angle θ,

I The shape operator has real eigen values k1 and k2 with eigen
vectors X1 and X2 because it is symmetric.

I If k1 > k2, the normal curvature has a maximum of k1 in
direction X1 and a minimum of k2 in direction X2.

I These are called the principal directions and curvatures.



Umbilicals

monkey saddle

I A point with k1 = k2 is called an umbilical.

I The normal curvature is equal in all directions.

I Every point on a plane is an umbilical with k = 0.

I Every point on an r -sphere is an umbilical with k = 1/r .

I The monkey saddle has an isolated umbilical p with k = 0
where three zero-curvature curves meet.



Gaussian and Mean Curvature

I The Gaussian curvature is K = k1k2.

I It is the determinant of the shape operator

|A| =

∣∣∣∣∣

[
E F
F G

]−1∣∣∣∣∣×
∣∣∣∣
[

L M
M N

]∣∣∣∣ =
LN −M2

EF − G 2

I The sign of K determines the local shape.

I Surfaces with K = 0 are generated by sweeping a line.

I The mean curvature is H = (k1 + k2)/2.

I Surfaces with H = 0 minimize surface area.



Elliptic Point

sphere ellipsoid

I The Gaussian curvature is positive.

I The principal curvatures have the same sign.

I The surface lies on one side of the tangent plane.



Parabolic Point

cylinder cone

I The Gaussian curvature is zero.

I One principal curvature is zero.

I The surface intersects the tangent plane in a line.



Hyperbolic Point

hyperbolic paraboloid torus

I The Gaussian curvature is negative.

I The principal curvatures have opposite signs.

I The surface intersects the tangent plane in two curves.



Gauss Map
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vector or an entire vector field, i.e., a vector at every point of M. In most of the expressions we’ll
consider this distinction won’t make a big difference, but it’s worth being aware of. Throughout
we’ll use TM to denote the tangent bundle of M, i.e., the set of all tangent vectors.

So far we’ve been talking about tangent vectors, i.e., vectors that lay flat along the surface. We’re
also interested in vectors that are orthogonal to the surface. In particular, we say that a vector
u ∈ R3 is normal to the surface at a point p if

df(X) · u = 0

for all tangent vectors X at p. For convenience, we often single out a particular normal vector N
called the unit normal, which has length one. Of course, at any given point there are two distinct
unit normal vectors: +N and −N. Which one should we use? If we can pick a consistent direction
for N then we say that M is orientable. For instance, the circular band on the left is orientable, but
the Möbius band on the right is not:

For orientable surfaces, we can actually think of N as a continuous map N : M → S2 (called the
Gauss map) which associates each point with its unit normal, viewed as a point on the unit sphere
S2. In fact, if we think of S2 as a subset of R3 (consisting of all the points unit distance from the
origin), then we can do all the same things with N that we did with our map f . In particular, the
differential dN (called the Weingarten map) tells us about the change in the normal direction as
we move from one point to the other. For instance, we can look at the change in normal along a
particular tangent direction X by evaluating dN(X)—this interpretation will become useful when
we talk about the curvature of surfaces. Overall we end up with the following picture, which
captures the most fundamental ideas about the geometry of surfaces:

N

S2

f (M)

f

M

I The Gauss map N : M → S2 maps a point (u, v) in the
parameter space M of a surface to the unit normal at f (u, v).

I The area of the image of N equals the integral of the
Gaussian curvature over M.

I This quantity is called the total Gaussian curvature.



Euler Characteristic

v = 4, e = 6, f = 4 v = 2, e = 4, f = 4 v = 4, e = 8, f = 4

I The Euler characteristic of a polyhedron A with v vertices, e
edges, and f facets is χ(A) = v − e + f .

I Likewise for a smooth or piecewise smooth surface.

I χ = 2 for a sphere and χ = 0 for a torus.

I The Euler characteristic is a topological invariant.

I A compact, oriented, boundaryless surface is homeomorphic
to a sphere with k ≥ 0 handles and has χ = 2− 2k .



Tangential Curvature

I A curve γ on a surface S has Frenet frame t, n, and b.

I We have studied the normal curvature kn = n · γ′′.
I We will now study the geodesic curvature kg = b · γ′′.
I kg is the complement of kn because t · γ′′ = t · t ′ = 0.

I kg measures the acceleration tangent to S .



Gauss-Bonnet Theorem

A surface M with boundary δM satisfies

∫

M
KdA +

∫

δM
kgds = 2πχ(M)



Geodesics

sphere ellipsoid

A curve γ on [a, b] is a geodesic if kg (p) = 0 for all p ∈ [a, b]. It is
a straightest curve in S .

Equivalently, γ is a critical point of the length functional L with
respect to tangential variations. For φ a tangent vector field along
γ with φ(a) = 0 and φ(b) = 0, ∂

∂εL(γ + εφ) = 0.

γ is a locally shortest curve: every point on γ has a neighborhood
in which γ is the shortest curve between every pair of its points.



Geodesic Completeness

sphere ellipsoid

There is a unique geodesic through every point p of a surface in
every tangent direction t.

The geodesic is the solution of the ODE γ′′ = 0 with initial
conditions γ(0) = p and γ′(0) = t.

A surface is complete if every geodesic can be extended
indefinitely: it is periodic or converges to a boundary point.



Hopf-Rinow Theorem

The intrinsic distance between two points on a surface is the
infimum of the lengths of the surface curves that connect them.

Hopf-Rinow Theorem Every pair of points on a geodesically
complete surface is connected by a geodesic whose length equals
the intrinsic distance between them.



Discrete Differential Geometry

I Discrete differential geometry generalizes differential geometry
to topological manifolds.

I The primary case is polyhedral surfaces.

I We will study their Gaussian curvature and geodesics.

Discrete Differential Geometry: An Applied Introduction, Keenan
Crane, online.

Straightest Geodesics on Polyhedral Surfaces, Polthier and
Schmies, Siggraph 2006.



Curvature in the Plane
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curve Gauss map

I A plane curve γ : [a, b]→ <2 parameterized by arc length
with normal angle θ and curvature k satisfies θ′ = k.

I The curvature is the rate of change of the normal angle.

I The total curvature of γ is
∫ b
a k = θ(b)− θ(a).

I This equals the length of the image of the Gauss map of γ.



Discrete Curvature in the Plane
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I Discrete differential geometry defines curvature on poly-lines.

I The curvature of a vertex is its change in normal angle: the
outgoing angle minus the incoming angle, e.g. k(v) = θ2− θ1.

I The curvature is zero elsewhere.

I The total curvature of a poly-line equals the length of the
image of its Gauss map, as in the case of a smooth curve.



Gauss Map of a 3D Triangle Mesh
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surface Gauss map

I Discrete differential geometry defines Gauss maps and
Gaussian curvature for 3D triangle meshes.

I A face maps to its normal as before.

I an edge maps to the great circle arc bounded by the normals
of the incident faces.

I A vertex maps to the spherical polygon bounded by the arcs
of the incident edges.



Gaussian Curvature of a 3D Triangle Mesh

I The Gaussian curvature of a point in a 3D triangle mesh is
defined as the area of its image in the Gauss map of the mesh.

I The Gaussian curvature is zero on edges and faces.

I The Gaussian curvature of a vertex whose incident faces have
interior angles θi , . . . , θn is 2π −∑n

i=1 θi .

I The total Gaussian curvature equals the area of the image of
the Gauss map by construction.



Geodesics on Triangle Meshes

I Geodesics on triangle meshes are piecewise linear with
breakpoints at vertices and on edges.

I The geodesics can be shortest curves or straightest curves.

I There is a fast algorithm for computing a shortest geodesic
between two points.

I There is no shortest geodesic through a spherical vertex.

I There are a continuum through a hyperbolic vertex.



Straightest Geodesics

I Let p be a point on a piecewise linear curve in a triangle mesh.

I The angle of p is θ = 2π − c with c the curvature of p.

I The curve has left and right angles θl and θr with θl + θr = θ.

I The curve is a straightest geodesic if θl = θr at every p.



Straightest Geodesics (continued)

I There is a unique straightest geodesic through every point in
every direction.

I There can be no straightest geodesic between two points.

I Shortest and straightest geodesics differ solely at vertices.



Straightest Geodesic Curvature

I A point p with angle θ lies on a curve γ.

I The straightest geodesic at p with direction γ′ is δ.

I The straightest geodesic curvature of γ is the normalized
angle between γ and δ: kg = 2π

θ ( θ2 − β) with β = θl .

I Setting β = θr reverses the sign of kg .

I A curve is a straightest geodesic iff kg = 0 at every point.



Parallel Translation

I Integration rules combine tangent vectors at multiple points.

I This operation is trivial in Euclidean spaces.

I Tangent vectors on a smooth surface can be combined in the
ambient Euclidean space.

I The integration rules must be modified to stay on the surface.

I Vectors on polyhedral surfaces are transferred to a common
base point via parallel translation.

I The resulting integration rules stay on the surface.



Parallel Translation

geodesic curve general curve

A tangential vector field v is parallel along a straightest geodesic γ
if the normalized angle between v(s) and γ′(s) is constant.

A tangent vector v0 with normalized angle α0 on a general curve γ
defines a unique parallel vector field α(s) = α0 +

∫ s
0 kg .


