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Terrain Approximation

I Altitudes are measured at scattered points.

I The terrain is approximated with a triangle mesh.

I We will discuss smooth approximation in a later class.



Domain Triangulation

I Triangulate the projections of the points onto the xy plane.

I The corresponding 3D triangles comprise the mesh.



Triangulation Quality
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I Triangles with large angles poorly interpolate the gradient.

I Small angles cause numerical problems, e.g in finite elements.

I The Delaunay triangulation maximizes the smallest angle.

I Delaunay refinement algorithms remove large angles and other
bad shapes by adding vertices to Delaunay triangulations.



Gradient Interpolation Error
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6 Delaunay Mesh Generation

Figure 1.3: An illustration of how large angles, but not small angles, can ruin the interpo-
lated gradients. Each triangulation uses 200 triangles to render a paraboloid.

known. For example, a surveyor may know the altitude of the land at each point in a large
sample and use interpolation over a triangulation tog approximate the altitude at points
where readings were not taken. There are two kinds of interpolation error that matter for
most applications: the difference between the interpolating function and the true function,
and the difference between the gradient of the interpolating function and the gradient of
the true function. Element shape is largely irrelevant for the rst kind�—the way to reduce
interpolation error is to use smaller elements.

However, the error in the gradient depends on both the shapes and the sizes of the
elements: it can grow arbitrarily large as an element�’s largest angle approaches 180◦. In
Figure 1.3, three triangulations, each having 200 triangles, are used to render a paraboloid.
The mesh of long thin triangles at right has no angle greater than 90◦, and visually per-
forms only slightly worse than the high-quality triangulation at left. The slightly worse
performance is because of the longer edge lengths. However, the middle paraboloid looks
like a washboard, because the triangles with large angles have very inaccurate gradients.

Figure 1.4 shows why this problem occurs. Let f be a function�—perhaps some physical
quantity like temperature�—linearly interpolated on the illustrated triangle. The values of f
at the vertices of the bottom edge are 35 and 65, so the linearly interpolated value of f at
the center of the edge is 50. This value is independent of the value associated with the top
vertex. As the angle at the upper vertex approaches 180◦, the interpolated point with value
50 becomes arbitrarily close to the upper vertex with value 40. Hence, the interpolated
gradient ∇ f can become arbitrarily large and is clearly specious as an approximation of the



Point Set Triangulation

convex hull boundary

I A triangulation of a point set is a subdivision whose vertices
are the points and that has a maximal number of edges.

I The bounded faces are triangles because polygonal faces can
be triangulated.

I The unbounded face is the complement of the convex hull of
the points. A hull edge that contains points corresponds to
multiple subdivision edges.



Complexity

convex hull boundary

Theorem 9.1 A triangulation of n points of which k are on the
convex hull has t = 2n− k − 2 triangles and e = 3n− k − 3 edges.

Proof e = (3t + k)/2 because a triangle has 3 edges, the
unbounded face has k edges, and an edge is incident on 2 faces.

The number of faces is t + 1, so t = e−n+ 1 by the Euler formula.

Substitute e = (3t + k)/2 to obtain t = 2n − k − 2.

Substitute t into e = (3t + k)/2 to obtain e = 3n − k − 3.



Angle Optimal Triangulation

I The angle sequence of a triangulation is a list of the angles of
its triangles in increasing order.

I Angle sequences are ordered lexicographically.

I A triangulation is angle optimal if no triangulation has a
larger angle sequence.

I The smallest angle in the mesh is maximized.



Edge Flips
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edge flip

I Consider a triangulation with triangles pjpipk and pipjpl .

I The edge pipj is illegal if the polygon pipkpjpl is convex and
minαi < minα′i .

I An edge flip replaces pipj with pkpl , which increases the angle
sequence.

I A triangulation is legal when it has no illegal edges.

I Flipping all the illegal edges yields a legal triangulation.

I An angle optimal triangulation is legal.



Illegal Edge Test
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p j
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pl

illegal

Lemma 9.4 An edge pipj is illegal iff pl is in C (pi , pj , pk);
equivalently, pk is in C (pi , pj , pl).

I We will prove this using Thale’s theorem.

I We saw the point-in-circle predicate in an earlier lecture.

I If the four points lie on a circle, neither edge is illegal.



Thale’s Theorem
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Theorem 9.2 Let ` be a line through points a and b on a circle C .
Let p, q, r , s be points on the same side of ` with p and q on C , r
inside C , and s outside C .

∠arb > ∠apb = ∠aqb > ∠asb



Proof of Lemma 9.4
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edge flip

I Let pl be in C (pi , pj , pk).

I pipkpjpl is convex, so pipj can be flipped.
I Every angle α′i is larger than some angle αj .

I α′
1 > α1 because α′

1 = α1 + α4.
I α′

2 > α5 because pl is in C (pi , pj , pk) and pj is on it.
I The other angles are analogous.

I Hence, minα′i > minαi and pipj is illegal.

I For pl outside C (pi , pj , pk) and pipkpjpl convex, a similar
proof shows that minα′i < minαi and pipj is not illegal.



Delaunay Triangulation

I Legal triangulations are closely tied to Voronoi diagrams.

I The dual graph of a Voronoi diagram is planar.

I A planar embedding yields the legal triangulations.

I These triangulations are called Delaunay triangulations.



Dual Graph

Vor(P)

G

I Consider the dual graph G of a Voronoi diagram Vor(P).

I The vertices of G are the Voronoi cells.

I The edges of G connect the cells that share an edge.

I The duals of the edges incident on a vertex form a loop.



Delaunay Subdivision

vf

I The Delaunay subdivision is the straight-line embedding
whose vertices are the sites.

I The edge loops are convex polygons.



Empty Circle Conditions

Three sites are vertices of a face iff their circumcircle is empty.
Proof This is the condition for a Voronoi vertex.

Two sites form an edge iff they are on an empty circle.
Proof This is the condition for the dual edge to be Voronoi.



Planarity

Ci j
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contained in V(p j)

Theorem 9.5 The Delaunay subdivision is a plane graph.

Proof

I An edge pipj is in the Delaunay subdivision iff there exists an
empty circle Cij with pi and pj on its boundary.

I Let tij = pipjoij with oij the center of Cij .

I The triangle tij is empty, oij is on the pipj Voronoi edge,
pioij ⊂ V(pi ), and pjoij ⊂ V(pj).



Planarity Proof (continued)
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I Suppose pipj intersects pkpl with Ckl , tkl , and okl .

I Since pk and pl are outside tij , pkpl also intersects an edge
incident on oij (here oijpj).

I Likewise, pipj intersects an edge incident on okl (here oklpk).

I The two triangles intersect at four points.

I An edge incident on oij intersects an edge incident on okl
(here oijpj and oklpk).

I Contradiction: these edges are in different cells, hence disjoint.



Delaunay Triangulation

I A Delaunay triangulation is a triangulation of the faces of the
Delaunay subdivision.

I The sites are in general position when no four lie on an circle
whose interior is empty of sites.

I The Delaunay triangulation is unique because the faces of the
Delaunay subdivision are already triangles.

I A triangulation of the sites is legal iff it is Delaunay.

I Sites in general position have a unique legal triangulation.

I Degenerate sites has multiple legal triangulations with the
same minimum angle.

I Every legal triangulation is angle optimal.



Delaunay Lemma

Theorem 9.8 A triangulation is legal iff it is Delaunay.

Proof A Delaunay triangulation is trivially legal.

I Consider an edge pipj incident on triangles pipjpk and pjpipl .

I The circumcircle of pipjpk is empty.

I The edge is legal because pl is not in the circumcircle.

We will prove the converse differently than the textbook.



Legal Implies Delaunay
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τ

τ2

e1

e2

e3
τ3

e4
τ4

v = w4

τ1

w1

w2
w3

v

τ

e1

w1

τ1

(a) (b)

Figure 2.7: (a) Because τ�s open circumdisk contains v, some edge between v and τ is not

locally Delaunay. (b) Because v lies above e1 and in τ�s open circumdisk, and because w1
lies outside τ�s open circumdisk, v must lie in τ1�s open circumdisk.

of e, e is Delaunay. Therefore, Property (i) implies Property (ii). If an edge is Delaunay, it is

clearly locally Delaunay too, so Property (ii) implies Property (iii). The proof is complete

if Property (iii) implies Property (i). Of course, this is the hard part.

Suppose that every edge in T is locally Delaunay. Suppose for the sake of contradiction

that Property (i) does not hold. Then some triangle τ ∈ T is not Delaunay, and some vertex

v ∈ S is inside τ�s open circumdisk. Let e1 be the edge of τ that separates v from the interior

of τ, as illustrated in Figure 2.7(a). Without loss of generality, assume that e1 is oriented

horizontally, with τ below e1.

Draw a line segment � from the midpoint of e1 to v�see the dashed line in Figure 2.7(a).

If the line segment intersects some vertex other than v, replace vwith the lowest such vertex

and shorten � accordingly. Let e1, e2, e3, . . ., em be the sequence of triangulation edges (from

bottom to top) whose relative interiors intersect �. Because T is a triangulation of S , every

point on the line segment lies either in a single triangle or on an edge. Let wi be the vertex

above ei that forms a triangle τi in conjunction with ei. Observe that wm = v.

By assumption, e1 is locally Delaunay, so w1 lies outside the open circumdisk of τ. As

Figure 2.7(b) shows, it follows that the open circumdisk of τ1 includes the portion of τ�s

open circumdisk above e1 and, hence, contains v. Repeating this argument inductively, we

�nd that the open circumdisks of τ2, . . . , τm contain v. But wm = v is a vertex of τm, which

contradicts the claim that v is in the open circumdisk of τm. �

2.5 The �ip algorithm

The �ip algorithm has at least three uses: it is a simple algorithm for computing a Delaunay

triangulation, it is the core of a constructive proof that every �nite set of points in the plane

has a Delaunay triangulation, and it is the core of a proof that the Delaunay triangulation

optimizes several geometric criteria when compared with all other triangulations of the

same point set.

Cheng, S., Dey, T. K., & Shewchuk, J. (2012). Delaunay mesh generation : Algorithms and mathematical analysis. CRC Press LLC.
Created from purdue on 2023-01-17 16:30:35.
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We will derive a contradiction from the assumption that a legal
triangulation has a vertex v in the circumcircle of a triangle τ .

I Let e1 be the edge of τ that separates its interior from v .

I Pick a coordinate system with e1 horizontal and v above it.

I Let l be a vertex-free line segment from v to a point on e1.

I Let e1, . . . , em be the edges that intersect l in vertical order.

I Let wi be the vertex above ei that forms a triangle τi with it.
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Figure 2.7: (a) Because τ�s open circumdisk contains v, some edge between v and τ is not

locally Delaunay. (b) Because v lies above e1 and in τ�s open circumdisk, and because w1
lies outside τ�s open circumdisk, v must lie in τ1�s open circumdisk.

of e, e is Delaunay. Therefore, Property (i) implies Property (ii). If an edge is Delaunay, it is

clearly locally Delaunay too, so Property (ii) implies Property (iii). The proof is complete

if Property (iii) implies Property (i). Of course, this is the hard part.

Suppose that every edge in T is locally Delaunay. Suppose for the sake of contradiction

that Property (i) does not hold. Then some triangle τ ∈ T is not Delaunay, and some vertex

v ∈ S is inside τ�s open circumdisk. Let e1 be the edge of τ that separates v from the interior

of τ, as illustrated in Figure 2.7(a). Without loss of generality, assume that e1 is oriented

horizontally, with τ below e1.

Draw a line segment � from the midpoint of e1 to v�see the dashed line in Figure 2.7(a).

If the line segment intersects some vertex other than v, replace vwith the lowest such vertex

and shorten � accordingly. Let e1, e2, e3, . . ., em be the sequence of triangulation edges (from

bottom to top) whose relative interiors intersect �. Because T is a triangulation of S , every

point on the line segment lies either in a single triangle or on an edge. Let wi be the vertex

above ei that forms a triangle τi in conjunction with ei. Observe that wm = v.

By assumption, e1 is locally Delaunay, so w1 lies outside the open circumdisk of τ. As

Figure 2.7(b) shows, it follows that the open circumdisk of τ1 includes the portion of τ�s

open circumdisk above e1 and, hence, contains v. Repeating this argument inductively, we

�nd that the open circumdisks of τ2, . . . , τm contain v. But wm = v is a vertex of τm, which

contradicts the claim that v is in the open circumdisk of τm. �

2.5 The �ip algorithm

The �ip algorithm has at least three uses: it is a simple algorithm for computing a Delaunay

triangulation, it is the core of a constructive proof that every �nite set of points in the plane

has a Delaunay triangulation, and it is the core of a proof that the Delaunay triangulation

optimizes several geometric criteria when compared with all other triangulations of the

same point set.

Cheng, S., Dey, T. K., & Shewchuk, J. (2012). Delaunay mesh generation : Algorithms and mathematical analysis. CRC Press LLC.
Created from purdue on 2023-01-17 16:30:35.
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I Observe that v = wm.

I w1 is not in the circumcircle of τ by legality.

I The circumcircle of τ1 contains the portion of the circumcircle
of τ above e1, so it contains v (right figure). Why?

I The circumcircle of τm contains v by induction.

I Contradiction: v = wm is a vertex of τm.



Delaunay Triangulation Algorithm
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pr lies in the interior of a triangle pr falls on an edge

1. Construct p−2p−1p0 and a point location graph.

2. Insert p1, . . . , pn−1 in random order.

2.1 Use the graph to find the triangle pipjpk that contains pr .
2.2 Split it into prpipj , prpjpk , and prpkpi .
2.3 Call legalize(pr , pipj), legalize(pr , pjpk), and legalize(pr , pkpi ).
2.4 Update the graph.

3. Remove the triangles incident on p−2 and p−1.



Bounding Triangle

p
−1

p0

p
−2

I The input points are p0, . . . , pn−1 with p0 the highest.

I Dummy point p−1 is below and to the right of the input.

I Dummy point p−2 is above and to the left of the input.

I The points p1, . . . , pn−1 are in the triangle p−2p−1p0.

I p−2 and p−1 are outside the circumcircles of the input points.

I Predicates involving p−2 and p−1 are computed symbolically.



Removing Illegal Edges

pr pi

p j pk

legalize(pr , pipj)
If pipj is illegal:

Let pjpipk be opposite pipjpr .
Flip pipj to prpk .
legalize(pr , pipk)
legalize(pr , pkpj).



Correctness

=⇒

pr

I Lemma 9.10 The new edges are Delaunay.

I Legalize terminates because flips increase the angle sequence.

I Conclusion: legalize restores the Delaunay property.



Proof of Lemma 9.10
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Initial new edges are Delaunay.

I The circumcircle C of pipjpk is empty before pr is inserted.

I Let C ′ ⊂ C be the circle with diameter prpi .

I This circle is empty, so prpi is Delaunay.

I Likewise prpj and prpk .



Proof of Lemma 9.10 (continued)
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Legalize creates Delaunay edges.

I Let legalize flip the edge pipj to prpl .

I The circumcircle C of pipjpl contains pr and no other point.

I Let C ′ ⊂ C be the circle with diameter prpl .

I This circle is empty, so prpl is Delaunay.



Search Graph

I Nodes contain triangles.

I The leaf nodes comprise the current triangulation.

I The internal nodes are from prior triangulations.

I An internal node has two or three children.

I Its triangle is a subset of the union of their triangles.

I Triangle splits and edge flips create internal nodes.



Search Graph Update 1
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Search Graph Update 2
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Search Graph Update 3
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Time Complexity

64 Delaunay Mesh Generation

Figure 3.7: Enclosing the vertices in a large triangular bounding box. In practice, the box

would be much, much larger.

Figure 3.8: Each vertex insertion can delete Θ(n) triangles and create Θ(n) others.

vertices weights of negative in�nity. These three in�nite weights must be incomparable�

say, ∞, 2∞, and 22
∞

�so that Orient3D tests involving two of the bounding box vertices

operate consistently. This approach seems to run more slowly (perhaps by 10%) than the

ghost triangle implementation. Another solution is to use the segment insertion algorithm

described in Section 3.10 to �ll the divots.

3.5 The running time of vertex insertion

How expensive is vertex insertion, leaving out the cost of point location? This section con-

siders two cases: the worst case and the expected case when vertices are inserted in random

order. The latter case is a part of an incremental insertion algorithm that computes the De-

launay triangulation of n vertices in expected O(n log n) time, and it also introduces an

elegant algorithm analysis technique called backward analysis.

Figure 3.8 illustrates the worst case. A single vertex insertion can delete Θ(n) trian-

gles and create Θ(n) others, taking Θ(n) time. Moreover, this dismal performance can be

repeated for Θ(n) successive vertex insertions. Therefore, the incremental insertion algo-

rithm for constructing a Delaunay triangulation takes Θ(n2) time if the vertices and their

insertion order are chosen badly. The grid arrangement and vertex ordering in the �gure are

common in practice.

Fortunately, there are better ways to order the vertex insertion operations. The ran-

domized incremental insertion algorithm inserts the vertices in random order, with each

Cheng, S., Dey, T. K., & Shewchuk, J. (2012). Delaunay mesh generation : Algorithms and mathematical analysis. CRC Press LLC.
Created from purdue on 2023-01-17 16:31:43.
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I The worst case time complexity for n points is O(n2).

I The expected complexity is O(n log n).

I We will prove this for a variant of the textbook algorithm.

I The variant is simpler, faster, and easier to analyze.

I The textbook gives a proof for its algorithm in Section 9.4.



Remeshing

=⇒

pr

Alternative to splitting triangles and flipping edges

I If a point is in the circumcircle of a triangle, they conflict.

I The triangles that conflict with pr form a star-shaped region.

I Locate one triangle then find the rest by graph traversal.

I Remove them all.

I Connect pr to each edge of the star-shaped region.



Conflict SetsAlgorithms for constructing Delaunay triangulations 67

Figure 3.9: Redistributing uninserted vertices to new con�ict triangles by shooting rays

away from the newly inserted vertex.

Figure 3.10: Partition the plane outside the triangulation into unbounded, three-sided ghost

�triangles.� Redistribute uninserted vertices to new con�ict triangles, which may be ghost

triangles or solid triangles.

con�ict graph after those triangles are deleted and new ones are created. Every uninserted

vertex that has chosen a deleted triangle as its con�ict must be redistributed to a new con-

�ict triangle. Because each triangle records a list of vertices that choose it, the con�ict

graph quickly identi�es the vertices that must be redistributed. However, the obvious redis-

tribution method, testing each vertex for a con�ict with every newly created triangle, is not

fast enough. The redistribution algorithm we present here requires that for each uninserted

vertex w, the con�ict graph records a con�ict (w, τ) such that w ∈ τ. If two triangles contain

w, a solid triangle is preferred over a ghost.

Consider the operation that inserts vi into Ti−1 to construct Ti. Let w ∈ S be a vertex

not present in Ti. Let τ ∈ Ti−1 be the triangle recorded in the con�ict graph as w�s con�ict,

so w ∈ τ. If τ survives in Ti, the con�ict (w, τ) remains in the graph. If τ is deleted, �nd the

edge of the cavity struck by the ray
−→

viw, as illustrated in Figure 3.9, and let σ be the new

triangle adjoining that cavity edge; clearly w ∈ σ. Replace the con�ict (w, τ) with (w,σ) in

the con�ict graph. Finding the edge entails tracing the ray through a sequence of deleted

triangles.

To extend this point location method to uninserted vertices that lie outside the triangula-

tion, treat the ghost edges as rays that point directly away from a central point in the interior

of the triangulation, as illustrated in Figure 3.10. The ghost edges partition the portion of

the plane outside the triangulation into unbounded, convex ghost �triangles,� each having

one solid edge and two diverging rays in its boundary. Each uninserted vertex outside the

triangulation chooses as its con�ict the unbounded ghost triangle that contains it.

Cheng, S., Dey, T. K., & Shewchuk, J. (2012). Delaunay mesh generation : Algorithms and mathematical analysis. CRC Press LLC.
Created from purdue on 2023-01-17 16:31:43.
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Alternative to search graph for point location

I Each uninserted point stores the triangle that contains it.

I Each triangle stores the points that it contains.

I The initial triangle contains all the uninserted points.
I This data is updated when each point pr is inserted.

1. Let the triangle t contain the point q.
2. Find the edge ab of t where the ray prq exits.
3. Let s be the triangle incident on ba.
4. If s conflicts with pr , replace t by s and go to step 2.
5. Assign q to the triangle prab and vice versa.



Ghost Triangles
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Figure 3.5: Inserting a vertex outside the triangulation. The black dot is the ghost vertex.

The white dot is a new vertex to be inserted. The circular arrow indicates two ghost edges

that are really the same edge. Three ghost triangles and three solid triangles (shaded) are

deleted and replaced with two new ghost triangles and six new solid triangles.

u

v
g

v v
g u

g

u

Figure 3.6: The ghost triangle uvg is deleted if a new vertex is inserted in the shaded open

halfplane (as at center) or on uv (as at right). The union of the open halfplane and uv is the

outer halfplane of uvg.

The ghost triangles are explicitly stored in the triangulation data structure. They are

not merely cosmetic; they make it possible for the Bowyer�Watson algorithm to efficiently

traverse the triangulation boundary, and thus they are essential to obtaining an incremental

insertion algorithm with optimal running time.

Consider an edge uv on the boundary of a triangulation, directed clockwise around the

boundary. De�ne a positively oriented ghost triangle uvg, where g is the ghost vertex. Like

any other triangle, uvg has a circumdisk�albeit a degenerate one�and must be deleted

if a new vertex is inserted in it. The de�nition of circumdisk is a bit tricky, though. The

circumcircle degenerates to the line aff uv, which divides the plane into two halfplanes.

There are two cases in which the ghost triangle uvg must be deleted (i.e. uv is no longer

a boundary edge of the triangulation), both illustrated in Figure 3.6: if a vertex is inserted

in the open halfplane on the other side of aff uv from the triangulation, or if a vertex is

inserted on the open edge uv. Call the union of these two regions the outer halfplane of uv.

It is neither an open nor a closed halfplane, but something in between. It is the set of points

in the open circumdisk of uvg in the limit as g moves away from the triangulation.

For weighted Delaunay triangulations, the rules are slightly more complicated. A ghost

triangle is deleted if a vertex is inserted in its outer halfplane, except perhaps if the vertex

lies on the solid edge of the ghost triangle, in which case the ghost triangle is deleted if the

new vertex is not submerged.

Ghost triangles have an intuitive interpretation in terms of the lifting map. Imagine that

in R3, the solid triangles are lifted to the paraboloid, and the ghost triangles and ghost edges

are vertical�parallel to the z-axis. By magic, the ghost vertex is interpreted as being di-

rectly above every other vertex at an in�nite height. The faces of the convex hull of this
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Alternative to a bounding triangle with symbolic predicates

I Define a ghost vertex g at infinity (black circle).

I Each convex hull edge ab generates a ghost triangle bag .

I Remeshing works with ghost triangles.

I Example: 3 ghost triangles and 3 triangles (shaded) are
replaced by 2 ghost triangles and 6 triangles.



Ghost Triangle Conflict Sets

62 Delaunay Mesh Generation

Figure 3.5: Inserting a vertex outside the triangulation. The black dot is the ghost vertex.

The white dot is a new vertex to be inserted. The circular arrow indicates two ghost edges

that are really the same edge. Three ghost triangles and three solid triangles (shaded) are

deleted and replaced with two new ghost triangles and six new solid triangles.

u

v
g

v v
g u

g

u

Figure 3.6: The ghost triangle uvg is deleted if a new vertex is inserted in the shaded open

halfplane (as at center) or on uv (as at right). The union of the open halfplane and uv is the

outer halfplane of uvg.

The ghost triangles are explicitly stored in the triangulation data structure. They are

not merely cosmetic; they make it possible for the Bowyer�Watson algorithm to efficiently

traverse the triangulation boundary, and thus they are essential to obtaining an incremental

insertion algorithm with optimal running time.

Consider an edge uv on the boundary of a triangulation, directed clockwise around the

boundary. De�ne a positively oriented ghost triangle uvg, where g is the ghost vertex. Like

any other triangle, uvg has a circumdisk�albeit a degenerate one�and must be deleted

if a new vertex is inserted in it. The de�nition of circumdisk is a bit tricky, though. The

circumcircle degenerates to the line aff uv, which divides the plane into two halfplanes.

There are two cases in which the ghost triangle uvg must be deleted (i.e. uv is no longer

a boundary edge of the triangulation), both illustrated in Figure 3.6: if a vertex is inserted

in the open halfplane on the other side of aff uv from the triangulation, or if a vertex is

inserted on the open edge uv. Call the union of these two regions the outer halfplane of uv.

It is neither an open nor a closed halfplane, but something in between. It is the set of points

in the open circumdisk of uvg in the limit as g moves away from the triangulation.

For weighted Delaunay triangulations, the rules are slightly more complicated. A ghost

triangle is deleted if a vertex is inserted in its outer halfplane, except perhaps if the vertex

lies on the solid edge of the ghost triangle, in which case the ghost triangle is deleted if the

new vertex is not submerged.

Ghost triangles have an intuitive interpretation in terms of the lifting map. Imagine that

in R3, the solid triangles are lifted to the paraboloid, and the ghost triangles and ghost edges

are vertical�parallel to the z-axis. By magic, the ghost vertex is interpreted as being di-

rectly above every other vertex at an in�nite height. The faces of the convex hull of this
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A ghost triangle uvg conflicts with a vertex a in two cases.

1. a is in the uv half space (middle).

2. a is on uv (right).

The conflict set update for q starts in a real triangle t and ends in
a real triangle or the first time it crosses into a ghost triangle.

Ghost edges neither have nor need equations.



Alternate Delaunay Triangulation Algorithm

1. Randomly permute the sites to obtain p1, . . . , pn.

2. Construct p1p2p3, ghost vertex g , ghost triangles p2p1g ,
p3p2g , and p1p3g , and initialize the conflict sets.

3. Insert p4, . . . , pn.

3.1 Find the conflict set of pr by graph traversal.
3.2 Remove the conflict set and remesh the resulting cavity.
3.3 Create the conflict sets of the cavity points and triangles.

4. Remove the ghost triangles.



Expected Time Complexity

Let Ti denote the Delaunay triangulation of p1, . . . , pi .

1. Ti contains 2i − 2 triangles and 3i − 3 edges.
Proof There are 2i − k − 2 regular triangles and 3i − k − 3 regular
edges by Theorem 9.1 with k the number of hull edges. There are
k ghost edges and k ghost triangles.

2. Inserting pi creates fewer than 6 triangles on average.
Proof The number of triangles equals the degree of pi in Ti .
There are 6i − 6 edge endpoints by 1, so the average degree of a
non-ghost vertex is bounded by (6i − 6)/i < 6.

3. The time excluding conflict set updates is O(n).
Proof The time is linear in the number of triangles created and
deleted. The former is bounded by 6n and the latter is smaller.

4. pi conflicts with fewer than 4 triangles on average.
Proof The conflicting triangles are deleted when pi is inserted.
The number deleted is two less than the number inserted because
there are 2i − 2 triangles in Ti by 1.



Expected Time Complexity (continued)
5. Inserting pi creates less than 12(n − i)/i conflicts on average.
Proof We bound the number of conflicts that disappear when pi is
removed from Ti (backward analysis). A triangle disappears when
pi is one of its vertices, which occurs with probability 3/i for a
regular triangle and 2/i for a ghost triangle. A conflict disappears
when its triangle disappears, which has probability at most 3/i .
The expected number of conflicts in Ti equals the sum of the
expected number over the n − i uninserted points, which is less
than 4(n − i) by 4. The expected number of conflicts that
disappear is less than 4(n − i)(3/i) = 12(n − i)/i .

6. The expected conflict set update time is O(n log n).
Proof Each step along the ray prq traverses a triangle that
conflicts with pr . Thus the time is bounded by the number of
conflicts that are created, which is

12
n∑

i=1

n − i

i
= 12n

n∑
i=1

1

i
− 12n = O(n log n).



Walking Algorithm114 Delaunay Mesh Generation

p

Figure 5.3: Walking to the triangle that contains p.

initial O(n log n)-time computation of a BRIO. This observation holds whether they use

a BRIO or a spatial ordering generated by traversing an octree with no randomness at

all. Randomness is often unnecessary in practice�frequently, simply sorting the vertices

along a space-�lling curve will yield excellent speed�but because points sets such as the

one illustrated in Figure 3.8 are common in practice, we recommend choosing a BRIO to

prevent the possibility of a pathologically slow running time.

5.6 The gift-wrapping algorithm in R3

The simplest algorithm for retriangulating the cavity evacuated when a vertex is deleted

from a three-dimensional Delaunay triangulation or CDT, or when a polygon is inserted

or deleted in a CDT, is gift-wrapping. (See the bibliographic notes for more sophisticated

vertex deletion algorithms, also based on gift-wrapping, that are asymptotically faster in

theory.) The gift-wrapping algorithm described in Section 3.11 requires few new ideas to

work in three (or more) dimensions. The algorithm constructs tetrahedra one at a time

and maintains a dictionary of un�nished triangular facets. The pseudocode for Finish and

GiftWrapCDT can be adapted, with triangles replaced by tetrahedra, oriented edges re-

placed by oriented facets, and circumdisks replaced by circumballs.

The biggest change is that triangles, not segments, seed the algorithm. But the polygons

in a PLC are not always triangles. Recall from Proposition 4.11 that a CDT of a PLC P

induces a two-dimensional CDT of each polygon in P. To seed the three-dimensional gift-

wrapping algorithm, one can compute the two-dimensional CDT of a polygon (or every

polygon), then enter each CDT triangle (twice, with both orientations) in the dictionary.

To gift-wrap a Delaunay triangulation, seed the algorithm with one strongly Delaunay

triangle. One way to �nd one is to choose an arbitrary input point and its nearest neighbor.

For the third vertex of the triangle, choose the input point that minimizes the radius of the

circle through the three vertices. If the set of input points is generic, the triangle having

these three vertices is strongly Delaunay.

If the input (point set or PLC) is not generic, gift-wrapping is in even greater danger in

three dimensions than in the plane. Whereas the planar gift-wrapping algorithm can han-

dle subsets of four or more cocircular points by identifying them and giving them special

treatment, no such approach works reliably in three dimensions. Imagine a point set that

includes six points lying on a common empty sphere. Suppose that gift-wrapping inad-

vertently tetrahedralizes the space around these points so they are the vertices of a hollow
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Alternative to search graph or conflict sets for point location

I Insert points based on locality (quadtree order).
I Locate the triangle that contains the point p.

1. Let t be the last triangle created and q be a point in t.
2. If t contains p, return t.
3. Replace t by the adjacent triangle that qp intersects.
4. Go to step 2.

I No theoretical bound, but good in practice.



Simple Data Structures

Alternative to subdivision representation of the triangulation

1. Point: (x , y) coordinates.

2. Designated ghost point.

3. Edge: two ordered points.

4. Triangle: three ordered points.

5. Map from edge to incident triangle.



Practical Delaunay Triangulation Algorithm

1. Construct p1p2p3 and three ghost triangles.

2. Insert p4, . . . , pn in quadtree order.

2.1 Find the triangle s that contains pr by walking.
2.2 Find the conflict set of pr by graph traversal.
2.3 Remove the conflict set and remesh the resulting cavity.

3. Remove the ghost triangles.



Steiner Delaunay Triangulation
Two-dimensional Delaunay triangulations 47

Figure 2.12: The Delaunay triangulation (upper right) may omit domain edges and contain

skinny triangles. A Steiner Delaunay triangulation (lower left) can �x these faults by intro-

ducing new vertices. A constrained Delaunay triangulation (lower right) �xes the �rst fault

without introducing new vertices.

f g

gf

Figure 2.13: A two-dimensional piecewise linear complex and its constrained Delaunay

triangulation. Each polygon may have holes, slits, and vertices in its interior.

2.10.1 Piecewise linear complexes and their triangulations

The domain over which a CDT is de�ned (and the input to a CDT construction algorithm) is

not just a set of points; it is a complex composed of points, edges, and polygons, illustrated

in Figure 2.13. The purpose of the edges is to dictate that triangulations of the complex must

contain those edges. The purpose of the polygons is to specify the region to be triangulated.

The polygons are linear 2-cells (recall De�nition 1.7), which are not necessarily convex and

may have holes.

De�nition 2.8 (piecewise linear complex). In the plane, a piecewise linear complex (PLC)

P is a �nite set of linear cells�vertices, edges, and polygons�that satis�es the following

properties.

• The vertices and edges in P form a simplicial complex. That is, P contains both

vertices of every edge in P, and the relative interior of an edge in P intersects no

vertex in P nor any other edge in P.

• For each polygon f in P, the boundary of f is a union of edges in P.

• If two polygons in P intersect, their intersection is a union of edges and vertices in

P.
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I Delaunay triangulation extends to polygons.

I Triangulating the vertices fails when edges are not Delaunay.

I This problem can be solved by subdividing the edges.

I The triangulation can be improved by adding interior points.

I A Delaunay triangulation with extra points is called Steiner.



Constrained Delaunay TriangulationTwo-dimensional Delaunay triangulations 47

Figure 2.12: The Delaunay triangulation (upper right) may omit domain edges and contain

skinny triangles. A Steiner Delaunay triangulation (lower left) can �x these faults by intro-

ducing new vertices. A constrained Delaunay triangulation (lower right) �xes the �rst fault

without introducing new vertices.

f g

gf

Figure 2.13: A two-dimensional piecewise linear complex and its constrained Delaunay

triangulation. Each polygon may have holes, slits, and vertices in its interior.

2.10.1 Piecewise linear complexes and their triangulations

The domain over which a CDT is de�ned (and the input to a CDT construction algorithm) is

not just a set of points; it is a complex composed of points, edges, and polygons, illustrated

in Figure 2.13. The purpose of the edges is to dictate that triangulations of the complex must

contain those edges. The purpose of the polygons is to specify the region to be triangulated.

The polygons are linear 2-cells (recall De�nition 1.7), which are not necessarily convex and

may have holes.

De�nition 2.8 (piecewise linear complex). In the plane, a piecewise linear complex (PLC)

P is a �nite set of linear cells�vertices, edges, and polygons�that satis�es the following

properties.

• The vertices and edges in P form a simplicial complex. That is, P contains both

vertices of every edge in P, and the relative interior of an edge in P intersects no

vertex in P nor any other edge in P.

• For each polygon f in P, the boundary of f is a union of edges in P.

• If two polygons in P intersect, their intersection is a union of edges and vertices in

P.
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I A constrained Delaunay triangulation forces the polygon edges
to be triangulation edges.

I The other edges are legal.

I The algorithm is quite complicated.



Constrained Delaunay Triangulation (continued)

Two-dimensional Delaunay triangulations 47

Figure 2.12: The Delaunay triangulation (upper right) may omit domain edges and contain

skinny triangles. A Steiner Delaunay triangulation (lower left) can �x these faults by intro-

ducing new vertices. A constrained Delaunay triangulation (lower right) �xes the �rst fault

without introducing new vertices.

f g

gf

Figure 2.13: A two-dimensional piecewise linear complex and its constrained Delaunay

triangulation. Each polygon may have holes, slits, and vertices in its interior.

2.10.1 Piecewise linear complexes and their triangulations

The domain over which a CDT is de�ned (and the input to a CDT construction algorithm) is

not just a set of points; it is a complex composed of points, edges, and polygons, illustrated

in Figure 2.13. The purpose of the edges is to dictate that triangulations of the complex must

contain those edges. The purpose of the polygons is to specify the region to be triangulated.

The polygons are linear 2-cells (recall De�nition 1.7), which are not necessarily convex and

may have holes.

De�nition 2.8 (piecewise linear complex). In the plane, a piecewise linear complex (PLC)

P is a �nite set of linear cells�vertices, edges, and polygons�that satis�es the following

properties.

• The vertices and edges in P form a simplicial complex. That is, P contains both

vertices of every edge in P, and the relative interior of an edge in P intersects no

vertex in P nor any other edge in P.

• For each polygon f in P, the boundary of f is a union of edges in P.

• If two polygons in P intersect, their intersection is a union of edges and vertices in

P.
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The input can be any set of vertices, edges, and triangles.



3D Voronoi Diagram

I The Voronoi diagram of 3D sites is a spatial subdivision.

I The cells are convex and can be unbounded.

I The facet between two cells lies on the bisector of their sites.

I Three facets meet at an edge where three sites are equidistant.

I Four edges meet at a vertex where four sites are equidistant.



3D Voronoi Diagram Construction

I The space complexity for n sites is n2.

I There are complicated optimal n2 algorithms.

I We will see a simple Delaunay triangulation algorithm.

I The Voronoi diagram is easily obtained as the dual.



3D Delaunay Triangulation

I The Delaunay triangulation of 3D points is a decomposition of
their convex hull into tetrahedra with empty circumspheres.

I It is the dual of the Voronoi diagram: vertices map to cells,
edges to facets, triangles to edges, and tetrahedra to vertices.

I The practical algorithm easily transfers to 3D.

I A ghost tetrahedron has one real and three ghost triangles.

I The cavity is a star-shaped cell.

I The simple data structures generalize easily.

I The expected time complexity with conflicts sets is O(n2).

I The walking algorithm crosses triangles and remains superior.


