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Chapter 9: Numerical Differentiation

Numerical Differentiation

Formulation of equations for physical problems often involve derivatives
(rate-of-change quantities, such as velocity and acceleration). Numerical solution of
such problems involves numerical evaluation of the derivatives.

One method for numerically evaluating derivatives is to use Finite DIfferences:

From the definition of a first derivative

we can take a finite approximation as

which is called Forward DIfference Approximation.

Similarly, we could use the
Backward Difference Approximation:

And, in either case, we can reduce a roundoff errors in the computations by choos-
ing ∆x to be a small value that can be exactly represented in binary (for example not
0.1).

dy
dx
------ y' x( )= yx ∆x+( ) y x( )–

∆x
----------------------------------------

∆x 0→
lim≡

y' x( ) y x ∆x+( ) y x( )–
∆x

----------------------------------------≈

y' x( ) y x( ) y x ∆x–( )–
∆x

----------------------------------------≈
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Also, in addition to anx difference that can be exactly represented in binary,
we can get a somewhat better approximation to the first derivative with a Central
Finite Difference:

Example:

Given an expression for the functionf(x, y) in the equation:

we can numerically approximatey values over the range ofx, with the
difference equation:

Assuming we know the initial valuey0 and we subdivide thex range

from x0 to xn into equal intervals∆x, we can solve for each successive

y value as

In general, such problems can be solved with nonuniformx subintervals
and with known initial or boundary conditons.

y' x( ) y x ∆x+( ) y x ∆x–( )–
2∆x

-----------------------------------------------------≈

dy
dx
------ f x y,( )=

y x ∆x+( ) y x( )– ∆xf x y,( )=

yk yk 1–= ∆xf xk 1– yk 1–,( )+ , k 1 2 … n, , ,=
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Using similar methods, we can evaluate equations involving partial deriva-
tives, and we can set up finite difference approximations for higher order deriva-
tives.

For instance, for second derivatives, we can use the approximation

Derivative Functions in Mathematica

Numerical evaluation of different equations accomplished with

Example:

NDSolve[{y’[x]==Exp[x],y[0]==1},y,{x,0,5}]
{{y -> InterpolatingFunction[{0., 5.}, <>]}}

Solution then stored as an interpolation table, and we retrieve
values with statements such as

y[1.0’ /. %

{2.71829}

y' x( ) y x ∆x+( ) 2y x ∆x–( )–

∆x
2

--------------------------------------------------------≈

NDSolve[ eqns, y, {x, ymin, xmax]} - numerically solves eqns (which
     include initial or boundary equations) for y with independent
     variable x in the rangexmin to xmax.

NDSolve[ eqns, {y1, y2, . . .}, {x, xmin, xmax}] - solves the set of
 eqns for values y1, y2, etc.
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Also, we can use statements such as

Plot[Evaluate[y[x] /. %n], {x,xmin, xmax}]

to plot the numeric solution.

Symbolic difference performed with

(Also can use D function to obtain partial derivatives.)

Examples:

D[Exp[x],x]

Ex

D[x^3, x]

3 x 2

D[x^3, {x, 2}]                      {second derivative

6x

D[x^2 y, x]  {partial derivative
2 x y

D[ f(x), x] - evaluates first derivative off(x) with respect  tox. (Can
     also be applied to f(x1, x2, . . .).)

D[ f(x), {x, n} ] - evaluates nth derivative off(x) with respect tox.
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Chapter 9: Numerical Integration

Numerical Integration

Most integrals arising from solutions of problems in engineering and science
cannot be represented in “closed form”

- they must be evaluated numerically.

• For function of a single variable, we seek an approximation to the
area “under” the curve:

• For function of several variables, we seek approximation to the size
of the “volume” for the specified integration region.

We will consider only algorithms for functions of a single variable:f(x).

Area f x( )
a

b

∫ dx=

f(x)

a b x
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Numerical evaluation procedures for a function of a single variablef(x)
involve summation of small subareas, using simple functions to approximatef(x).

For example, by definition of integral:

with

We can approximate integral with a finite number of subintervals using a con-
stant value forf(x) in each subinterval:

In this case, we approximate integral by adding the areas of a set of approxi-
mating rectangles.

f x( )
a

b

∫ dx f xk( )∆k
k 1=

n

∑
a ∞→
lim=

∆xk xk xk 1––=

f x( ) f x1( )= xk 1– x xk≤ ≤ , k 1 2 … n, , ,=

f(x)

x0=a x1 x2 x3 xn-1 xn=b
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Example:

Selecting equal width intervals with withn = 5, we have

The area is then approximated as

with  andx0 = -1.

Then

Actual size of area:

f x( ) 1 x
2,–= a 1 b,– 1= =

-1 0 1 x

f(x)
A g x( ) xd

1–

1

∫=

∆xk
b a–

n
------------ 2

5
--- 0.4= = = k∀

A f xk( )∆xk
k 1=

n

∑≈

xk xk 1– ∆xk+=

-1 -2 1 x

f(x)

-.6 .2 .6

A ∆x f xk( ) 0.4 0.8 0.98 0.98 0.8 0.0+ + + +( )≈
k 1=

n

∑≈

1.42≈

A
πr

2

2
-------- 1.57≈ ≈
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We can improve numerical estimate of integral by
• Increasing number of intervals.
• Using a more accurate approximation of f(x) in each interval.

Common Approximation Methods:
• Linear
• Quadratic or Higher-Order Polynomial

Trapezoidal Rule
Approximatef(x) with linear function over each subinterval.
Area is then calculated as the sum of the areas of resulting

trapezoids:

Area of each trapezoid is

Thus,

or

f(x)
Taking equal-width
     intervals:

x0 = a x1 x2 x3 . . .

∆x
b a–

n
------------=

Ak ∆x
f xk 1–( ) f xk( )+

2
------------------------------------------= , k 1 2 … n, , ,=

f x( )
a

b

∫ dx
∆x
2

------ f x0( ) f x1( ) ]+[ f x1( ) f x2( ) ] …++[+≈

f xn 1–( ) f xn( )+[ ] }+

f x( ) x ∆x
1
2
--- f a( ) f b( )+[ ] f xk( )

k 1=

n 1–

∑+

 
 
 
 
 

≈d

a

b

∫
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Example: Trapezoidal Rule to evaluate

Width of each interval is

Integral is then evaluated as

(Same result as obtained using rectangular areas.
   Why?)

1 x
2

– x,d

1–

1

∫ n 5=

∆x
1 1–( )–

5
-------------------- 0.5= =

x0 1,–= xk xk 1– ∆x,+= k 1 2 3 4 5, , , ,=

f x( ) x ∆x
f 1–( ) f 1( )+

2
-------------------------------- f xk( )

k 1=

4

∑+≈d

1–

1

∫
0.4 0.80 0.98 0.98 0.80+ + +( )≈
1.42≈
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Simpson’s Rule

Approximatesf(x) with a quadratic function.

More accurate evaluation of integral than Trapezoidal Rule (a linear
approximation).

In this case, the integral is approximated as

To evaluate the summation, we need to determine the parabola coefficients
 in each of then subdivisions.

We can accomplish this with three boundary conditions that require the
parabola to intersectf(x) at the endpoints and at the midpoint of each subdidivision.

Simpson’s Rule

Trapezoidal Rule
        (linear)

       (parabola)f(x)

xk-1 xk

xk 1– xk+

2
-------------------------

f x( ) x α0 α2+ x α2x
2

+( )
xk 1–

xk

∫
k 1=

n

∑≈d

a

b

∫ dx

α0 α1 α2, ,
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Applying Simpson’s Rule:

1. Divide interval (a, b) into n equal subintervals, withn a multiple of 2.

2. Approximatef(x) with parabola across every two subintervals.

Obtain coefficients  by solving

over each of the intervals (xk-1, xk+1).

f(x)

xk-1 xk+1

α0 α1x α2x
2

+ +

∆x ∆x

xk

α0 α1 α2, ,

α0 α1xk 1– α2xk 1–
2

+ + f xk 1–( )=

α0 α1xk α2xk
2

+ + f xk( )=

α0 α1xk 1+ α2xk 1+
2

+ + f xk 1+( )=
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We then approximate integral as

Substituting the solution forα0, α1, α2 over intervals (xk-1, xk+1), we obtain

where∆x = xk+1 - xk = xk - xk-1

{Note: An easy way to derive this result is to consider a parabols specified over
the interval (-∆x, ∆x).

Hence,

Collecting terms, we haveSimpson’s Rule:

with each successive x value calculated as

f x( )
a

n

∫ dx α0 α1x α2x
2

+ +( )
xk 1–

xk 1+

∫
k 1=
kodd

n 1–

∑≈ dx

α0x a1+
x

2

2
----- α2

x
3

3
-----+

xk 1–

xk 1+

k 1=
kodd

n 1–

∑≈

f x( )
s

b

∫ dx
1
3
---∆x f xk 1–( ) 4 f xk( ) f xk 1+( )++[ ]

 
 
 

k 1=
kodd

n 1–

∑≈

f x( ) xd

a

b

∫ ∆x
3

------ f 0 4 f 1 f 2+ +( ) f 2( 4 f 3 f 4) …+ + + +[ ]≈

f x( ) xd

a

b

∫ ∆x
3

------ f a( ) f b( ) 4 f x( ) 2 f xk( )
k 2=

even( )

n 2–

∑+

k 1=

odd( )

n 1–

∑+ +≈

xk xk 1– ∆x+= k 1= 2 … n, , ,( )



190

Example: Simpson’s Rule Evaluation of

Then,

And

Thus Simplson with n=4 is bettern than Trapezoidal with n=5.

1 x
2

– x,d

1–

1

∫ n 4=

∆x
1 1–( )–

4
-------------------- 0.5= =

x0 1,–= xk xk 1== ∆x,+ k 1= 2 3 4, , ,

f x( )
1–

1

∫ dx
∆x
3

------ f 1–( ) f 1( )+ 4 f xk( ) 2 f xk( )
k 2=

even( )

2

∑+

k 1=

odd( )

3

∑+≈

∆x
3

------ 4 f x1( ) f x3( )+[ ] 2 f x2( )+{ }≈

1
6
--- 4 0.87 0.87+( ) 2 1( )+[ ]≈

1
6
--- 8.96( )≈

1.49≈ where f x( ) xd

1–

1

∫ 1.57≡
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Psuedocode Algorithm - Simpson’s Rule
Input f, a, b, n (* fcn, integer limits, no. of intervals *)
dx = (b-a)/n
dx2 = dx + dx
odds = 0.0; evens = 0.0
x = a
Do k=2, n-2, 2

x = x + dx2
evens = evens + f(x)

Endofdo
x = a - dx
Do k = 1, n-1, 2

x = x + dx2
odds = odds + f(x)

Endofdo
simpsonArea=(dx/3.0)*(f(a)+f(b)+4.0*odds+2.0*evens)

Summary of Integration Methods
• Approximatef(x) = f(xk) (constant) over each interval

• Trapezoidal Rule: Linear Approximation

• Simpson’s Rule: Quadratic Approximation, n even

∆x = (b-a)/n

A
b a–

n
------------ f xk( )

k 1=

n

∑≈
x0 a xn, b= =

xk xk 1= b a–( ) n⁄+=

A
b a–

n
------------ f a( ) f b( )+

2
----------------------------- f xk( )

k 1=

n 1–

∑+≈

A
∆x
3

------ f a( ) f b( ) 4 f xk( ) 2 f xk( )
k 2=

even( )

n 2–

∑+

k 1=

odd( )

n 1–

∑+ +≈
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Numerical Integration Err ors

• For small n, error is primarily due to approx. of f(x) (width of subintervals
large).

• For large n, roundoff errors become significant; i.e., area of each subinterval
small, and this value can get lost in precision of larger accumulated area:

Error Magnitude Plot:

Ideal value for n depends on:
• Form of f(x)
• Integration method used
• Computer System

a b x

accumulated
area

f(x)

next subinterval

|error|

ideal number of
subintervals

n

roundoff error

approximation error
  (due to width of
     subintervals)
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Numerical Integration Impr ovements

• Repeatedly increase number of subintervals until area estimate is within speci-
fied tolerance.

A method for accomplishing this is to start with “large” subintervals and then
double the number of intervals at each step:

• Also, could use higher-order polynomials to approximate f(x) over each of the n
subintervals.

• And we could use higher precision in calculations to reduce roundoff errors.

(Tradeoff: more calculation time.)

Input n
compute: area

oldarea = area
          n = 2n
compute: area

relError = |(oldarea - area)|

relError < tolerance

return

yes

no
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Numerical Evaluation of Infinite Integrals

Divide integral into parts and apply a numerical integration technique to each
part until contributions tend to zero.

For example:

If integral is finite, then we must have

That is, we can compute the integral as a finite number of terms:

whter the error term is less than some specified tolerance.

f x( ) xd
a

∞
∫ f x( ) xd f x( ) xd

a1

a2

∫+
a1

a1

∫=

f x( ) x …+d
a1

a1

∫+

f x( ) 0→ as x ∞,→

f x( ) xd
a

∞
∫ f x( ) xd ε+

ak 1–

an

∫
k 1=

n

∑=
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Monte Carlo Methods

Use of random numbers to solve deterministic problems.

This approach useful for numerically evaluating complex integrals.

Examples:

• Multiple Integration

• Functions with High-Frequency Oscillations

Basic Approach:

where (b-a) may be positive or negative,
and we might havef(x) < 0 over part or all of the interval (a, b).

… f x1 x2 … xn, , ,( ) x1d x2d … xnd
bn

bn

∫bn

b1

∫bn

b1

∫

f(x)

a b x

Generate n uniformly
distributed random points in an
area containing f(x) and the
interval (a, b) -- wherearea is
not too large compared to
integral area. Then compute:

f(x)

a b x

h

f x( ) xd
a

b

∫
h b a–( )

-----------------------
number of points under f(x)

n
------------------------------------------------------------------

n ∞→
lim=
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Algorithm: Monte Carlo Integration

1. Generate two uniformly distributed random numbersr1, r2 in the interval (0,1).

2. Assuming f(x) ≥ 0, calculate coordinate positions (x,y) as:

Count point (x,y) as underf(x) if

3. If f(x) < 0 for a value ofx in the interval (a,b), calculate coordinate position as

Count point (x,y) as “under” f(x) if

In this case, we subtract 1 from the point count; i.e.,

ptcount = n, -n wheren is the number of points below thex axis.

x a r1 b a–( )+=

y r2h=

f(x)

a b x

h f(x,y)

0 y f x( )≤ ≤ f x( ) 0≥

h ymax ymin–=

x a r1 b a–( )+=

y ymin= r2h+

f(x)

b

ymax

a

ymin

f(x,y)

0 y f x( )≥ ≥ for f x( ) 0<
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Pseudocode Algorithm - Monte Carlo Integration

Input f, a, b, h, n                 (* assume f(x) > 0; how
width = b - a                          can this be modified
ptCount = 0                            for f(x) < 0 also? *)
Do k = 1, n

x = a + width * Random( )
y = h * Random( )
If (y < f(x) ) Then
     ptCount = ptCount + 1
Endofif

Endofdo
area = h * width * ptCount / n

r1 r2 x = -1 + 2r1 y = r2 f(x) = 1 - x2 ptcount1

1 0.972 0.466 0.944 0.466 0.330 0

2 0.069 0.001 -0.862 0.001 0.507 1

3 0.038 0.395 -0.924 0.395 0.382 1

4 0.740 0.267 0.480 0.267 0.877 2

5 0.152 0.948 -0.696 0.948 0.718 2

6 0.805 0.662 0.610 0.662 0.792 3

Example: 1 x
2

– xd
1–

1

∫
ymin 0,= ymax 1=

a 1– b, 1 h, 1 n, 10= = = =
0 1

y

-1 1 x
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Integration Functions in Mathematica

Examples:

Integrate[x^3,x]

Integrate[x^3,{x,a,b}]

Integrate[x^3,{x,0,1}]

7 0.227 0.034 -0.546 0.034 0.838 4

8 0.607 0.835 0.214 0.835 0.977 5

9 0.212 0.463 0.576 0.463 0.817 6

10 0.670 0.624 0.340 0.624 0.940 7

r1 r2 x = -1 + 2r1 y = r2 f(x) = 1 - x2 ptcount1

Integrate[f(x), x] - indefinite integral of f(x)

Integrate[f(x), {x, xmin, xmax}] - definite integral of f(x) with integration
     limits xmin and xmax

Integrate[f(x, y), {x, xmin, xmax}, {y, ymin, ymax}] - multiple integral
     of function f(x, y)

Nintegrate[ . . . ] - numerically evaluate integral

x
4

4
-----

x
4

–
4

-------- b
4

4
-----+

1
4
---
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Integrate[Sqrt[1-x^2],{x,-1,1}]

NIntegrate[Sqrt[1-x^2],{x,-1,1}]

1.5708

f[x_, y_1] := x y^2

Integrate[f[x,y], {x,0,a}, {y,0,b}]

Integrate[f[x,y], {x,0,3}, {y,0,2}]

12

NIntegrate[f[x,y], {x,0,3}, {y,0,2}]

12.000000000000000001

(roundoff error)

Pi
2
-----

a
2
b

3

6
-----------


