178

Chapter 9: Numerical Differentiation

Numerical Differ entiation

Formulation of equations for physical problems often involve derivatives
(rate-of-change quantities, such atoeity and acceleration). Numerical solution of
such problems involves numerical evaluation of the derivatives.

One method for numerically evaluating derivatives is torisge Dlfferences:

From the definition of a first derivative

dy_y'(X)E lim (yX+AX)_y(X)

dx Ax - 0 AX

we can take a finite approximation as

_ Y(X+AXx) —y(X)
y(x) = Ax

which is called Forward Dlfference Approximation.

Similarly, we could use the
Backward Difference Approximation:

_ Y(X) —y(x=AX)
y(x) = A

And, in either case, we can reduce a roundoff errors in the computations by choos-
ing Ax to be a smallalue that can bexactly represented in binary (foxample not
0.1).



179

Also, in addition to ax difference that can be exactly represented in binary,
we can get a somewhat better approximation to the first derivative with a Central
Finite Difference:

~ Y(x+ AX) —y(X=AX)
y(x)= SAX

Example:

Given an expression for the functiffr, y)in the equation:

dy _
dX - f(X’ y)

we can numerically approximayevalues over the range wfwith the
difference equation:

y(x+Ax) —y(x) = Axf(Xx )

Assuming we know the initial valug and we subdivide therange
from xg to xn into equal interval&x, we can solve for each successive
y value as

Yie = Yie— 1 FAXF(X _ 10 Vie_ 1) k=12..n

In general, such problems can be solved with nonunifosabintervals
and with known initial or boundary conditons.



180

Using similar methods, we can evaluate equations involving partial deriva-
tives, and we can set up finite difference approximations for higher order deriva-
tives.

For instance, for second derivatives, we can use the approximation

V(x) = y(x+ AX) — 2y(x—AX)

sz

Derivative Functions in Mathematica

Numerical evaluation of different equations accomplished with

NDSolve eqgns, vy, {X, ymin, xmax]} - numerically solves eqns (which
include initial or boundary equations) for y with independent
variable x in the ranganinto xmax.

NDSolvg egns, {y1, y2, . . .}, {X, xmin, xmax}] - solves the set of
eqrs for values y1, y2, etc.

Example:

NDSolve[{y'[x]==Exp[x],y[0]==1},y.,{X,0,5}]
{{y -> InterpolatingFunction[{0., 5.}, <>]}}

Solution then stored as an interpolation table, and we retrieve
values with statements such as

y[1.0' /. %

{2.71829}



181

Also, we can use statements such as
Plot[Evaluate[y[x] /. %n], {X,xmin, xmax}]

to plot the numeric solution.

Symbolic difference performed with

D[ f(x), X] - evaluates first derivative &fx) with respect tx. (Can
also be applied to f(x1, x2, .. .).)

D[ f(x), {X, n} ] - evaluates nth derivative d¢fx) with respect to.

(Also can use D function to obtain partial derivatives.)

Examples:

DIEXp[x].X]

EX

D[x"3, X]

3x 2

D[x"3, {x, 2}] {second derivative

6X

D[x"2y, X] {partial derivative
2XYy



182

Chapter 9: Numerical Integration

Numerical Integration

Most integrals arising from solutions of problems in engineering and science
cannot be represented in “closed form”

- they must be evaluated numerically.

* For function of a single variable, we seek an approximation to the
area “under” the curve:

(XA b
Area = [ f(Xdx
4

 For function of several variables, we seek approximation to the size
of the “volume” for the specified integration region.

We will consider only algorithms for functions of a single variafge:



183

Numerical evaluation procedures for a function of a single varigtle
involve summation of small subareas, using simple functions to approXixjate

For example, by definition of integral:
b

[fOodx = lim
a

a —» o
Kk

n
z f(X)A
=1

with Ax, = X, — X, _1

We can approximate irgeal with a finite number of subintexig using a con-
stant value fof(x) in each subinterval:

f(x) = f(xq) Xp_ 1S XS Ko k=12..n
A
f(x)
|
Xg=a X1 X2 X3 Xn1 Xn=b

In this case, we approximate integral by adding the areas of a set of approxi-
mating rectangles.



184

Example: f(x) = +/1-x a=-1b=1

fx) A 1
A = [ g(xdx
a
.
10 1 x

Selecting equal width intervals with with= 5, we have
A)(k:—:—:0.4 Ok
The area is then approximated as

n
A= Z f(x)AX,
k=1

with x, = % _4 +AX, andxg = -1.

0,

Then

A=Ax § f(x)=0.4(0.8+ 0.98 0.98 0.8 0)0
k=1
~1.42

2
Actual size of areaA= % =1.57



185

We can improve numerical estimate of integral by
* Increasing number of intervals.
» Using a more accurate approximation of f(x) in each interval.

Common Approximation Methods:
* Linear
» Quadratic or Higher-Order Polynomial

Trapezoidal Rule
Approximatef(x) with linear function over each subinterval.
Area is then calculated as the sum of the areas of resulting

trapezoids:
; A Taking equal-width
() intervals:
Ax = D=2
n
|
Xp=a X1 Xo X3
Area of each trapezoid is
F(Xe_ )+ F(x)
A= x| — =, K=12..,n
2
Thus,
b
F0dx= 221 £ (x0) + )] + [ (%) + F(x,)] +
I (x)dx=="[1(xg) + T(x)] +[T(xg) + T (%) ] + ...
a
HF(Xa_ )+ f(x)1}
or

b [ n-1
If(x)dx:Ax%[f(a) O]+ Y FOg)
a M k=1

I o




186

Example: Trapezoidal Rule to evaluate

1
Iall—xzdx, n=>5
-1

Width of each interval is

AX = 0.5
Xg = -1, X = X_q T AX k=1234F¢

Integral is then evaluated as

1

If(x)dszx = 1)+f(l) Z f (%)
]

=0.4(0.80+ 0.98- 0.98 0.90
=1.42

(Same result as obtained using rectangular areas.
Why?)



187

Simpson’s Rule

Approximated(x) with a quadratic function.

More accurate evaluation of integral than Trapezoidal Rule (a linear
approximation).

A Simpson’s Rule

(x) (parabola)

e Trapezoidal Rule
(linear)

| | | -
X—1+ X
X1 T Xy

In this case, the integral is approximated as

b n X
[food= 5 [ (g + 0LX + a,x°)dx
a kzlxk—l

To evaluate the summation, we need to determine the parabola coefficients
O 04, O, in each of the subdivisions.

We can accomplish this with three boundary conditions that require the
parabola to interseftx) at the endpoints and at the midpoint of each subdidivision.



188

Applying Simpson’s Rule

1. Divide interval &, b) into n equal subintervals, witha multiple of 2.

2. Approximatef(x) with parabola across every two subintervals.

2
GO+G1X+C(2X

f(x)

X1 Xy Xi+1

Obtain coefficientsr,, a4, o, by solving
+ + 2 = f
g+ 0y X1+ 0% _q = T(X_1)
2 _
O+ 04X+ 05X = f(X)
+ + 2 = f
g+ 09X 1 T 00X 1 = T(Xeyq)

over each of the intervalg,(;, Xi;1)-



189

We then approximate integral as

n n—1 Xk+1
[foode= 5 [ (ag+agx+ a,x°)dx
a k = 1Xk—1
kodd
n-1 2 3%
~ Z [u0x+ al? + azg}xk_l
k=1
kodd
Substituting the solution farg, a4, a, over intervalsXy_q, X+1), We obtain
b n-1
[h C
If(x)dx: Z EEAX[ f(x _ 1) +41(x) + (X, IC
k=1 -
s -
kodd

whereAx = X1 - X = Xi = %1

{Note: An easy way to derive this result is to consider a parabols specified over
the interval {A,, A,).

Hence,
b

AX
If(x)dng[(fo+4f1+ 1‘2)+(f2 +4f3+ f4) +...]
a

Collecting terms, we hav@mpsons$ Rule:

b n-1 n-2
If(x)dx:%)—( f(a)+ f(b) +4 Z f(x)+2 Z f(x,)
a k=1 k=2

- (odd) (even -

with each successive x value calculated as
X = xk_1+Ax (k=12 ...,n)



190

Example: Simpson’s Rule Evaluation of

1

1—x2dx, n=4
J
-1

Then,

4
Xg = -1, X = X = 1 HAX k=1,2314
And
1 A 3 2
X
J'f(x)dx=? f(-1)+f(1)+4 Z f(x)+2 z f(x,)
-1 k=1 k=2
- (odd) (even -

~ %X{ A1 F(xy) + f(xg)] +2f (X))}

= 2[4(0.87+ 0.87 +2(1)]

~1

~£(8.96
1

=1.49 whereJ' f( ydx=1.57
-1

Thus Simplson with n=4 is bettern than Trapezoidal with n=5.



1901

Psuedocode Algorithm - Simpsors Rule
Input f, a, b, n (* fcn, integer limits, no. of intervals *)
dx = (b-a)/n
dx2 = dx + dx
odds = 0.0; evens = 0.0
X=a
Do k=2, n-2, 2
X =X + dx2
evens = evens + f(x)
Endofdo
X =a-dx
Dok=1,n-1,2
X =X+ dx2
odds = odds + f(x)
Endofdo
simpsonArea=(dx/3.0)*(f(a)+f(b)+4.0*odds+2.0*evens)
Summary of Integration Methods
» Approximatef(x) = f(x) (constant) over each interval

n Xqa = a, X =b
n E X = X, =1+t (b=—2a)/n

» Trapezoidal Rule: Linear Approximation

Ao b= af(a)+f(b) Zf(x)

n

» Simpson’s Rule: Quadratic Approximation, n even

n-1 n-—2
A
A’:?X f(a) + f(b) +4 Z f(x,)+2 Z f(x,)
k=1 k=2
- (odd) (even -

Ax = (b-a)/n




192

Numerical Integration Err ors

» For small n, error is primarily due to approx. of f(x) (width of subintervals
large)

» For large n, roundoff errors become significant; i.e., area of each subinterval
small, and this value can get lost in precision of larger accumulated area:

fo) A accumulated
area

next subinterval

Y

Error Magnitude Plot:

|error|

T roundoff error

approximation error
(due to width of
subintervals)

|
! n

idea_ll number of
subintervals

Ideal value for n depends on:
* Form of f(x)
* Integration method used
* Computer System



193

Numerical Integration Impr ovements

» Repeatedly increase number of subintervals until area estimate is within speci-
fied tolerance.

A method for accomplishing this is to start with fat subinterals and then
double the number of intervals at each step:

Input n
compute: area

oldarea = area
— > n=2n

compute: area

relError = |(oldarea - area)|

relError < tolerance

» Also, could use highesrder polynomials to approximate f(xyer each of the n
subintervals.

» And we could use higher precision in calculations to reduce roundoff errors.

(Tradeoff: more calculation time.)



194

Numerical Evaluation of Infinite Inteqgrals

Divide intggral into parts and apply a numerical gri@ion technique to each
part until contributions tend to zero.

For example:

f° F(x)dx = Ialf(x)dx+J’a2 F(x)dx
a a; a
+J'alf(x)dx+
a

If integral is finite, then we must have
[f(x)] - 0 as X 00,

That is, we can compute the integral as a finite number of terms:
00 q n dp, q
f(x)dx = f(xX)dx +¢€
[, 1™ kzl [, 10

whter the error term is less than some specified tolerance.



195

Monte Carlo Methods

Use of random numbers to solve deterministic problems.
This approach useful for numerically evaluating complex integrals.

Examples:

» Multiple Integration
b, b, b,
J'b Ib ...Ib f(Xq, Xo, -y X)X A%, X

» Functions with High-Frequency Oscillations

f)

‘ -

Basic Approach:

Generate n uniformly

distributed random points in an f(x)
area containing f(x) and the

interval (a, b) -- wherarea is h
not too lage compared to
integral area. Then compute:

b
f (x)dx
.[a 09 ~ im [number of points under f(X)
h(b- a) no o n

where p-a) may be positive or negative,
and we might havix) < 0 over part or all of the intervad,(b).



196

Algorithm: Monte Carlo Integration

1. Generate two uniformly distributed random numlogrs, in the interval (0,1).
a+ri(b—a)

X
2. Assuming (x) = 0, calculate coordinate positionsyj as:

r2h

(%)

h f(x.y)

Count point X,y) as undef(x) if
O<sy< f(X) f(x)=0

3. If f(x) < O for a value ok in the interval ,b), calculate coordinate position as

f(x) A h = Ymax™ Ymin
Ymax X = a+r(b-a)
- Y= Ymin + r2h
a f(xy) |b
Ymin

Count point (x,y) as “under” f(x) if
O=2y= f(x) for f(x)<0

In this case, we subtract 1 from the point count; i.e.,

ptcount = n, -nwheren is the number of points below tkexis.



197

Pseudocode Algorithm - Monte Carlo Integration

Input f, a, b, h, n (* assume f(x) > 0; how
width=b - a can this be modified
ptCount =0 for f(x) < 0 also? *)
Dok=1,n

X = a + width * Random()
y = h * Random()
If (y <f(x)) Then
ptCount = ptCount + 1
Endofif
Endofdo
area = h * width * ptCount / n

Example:f 1—x2dx y
-1
Ymin = 0, Ymax = 1
a=-1b=1h=1n =10 >
1 1 x
rq rs X=-1+2§ y=ro f(x)=1-% | ptcountl
1 0.972 0.466 0.944 0.466 0.330 0
2 0.069 0.001 -0.862 0.001 0.507 1
3 0.038 0.395 -0.924 0.395 0.382 1
4 0.740 0.267 0.480 0.267 0.877 2
) 0.152 0.948 -0.696 0.948 0.718 2
6 0.805 0.662 0.610 0.662 0.792 3




198

ry ro X=-1+2§ y=ry f(x)=1-% | ptcountl

0.227 0.034 -0.546 0.034 0.838 4

0.607 0.835 0.214 0.835 0.977 5

0.212 0.463 0.576 0.463 0.817 6

10 0.670 0.624 0.340 0.624 0.940 7

Integration Functions in Mathematica

Integrate[f(x), x] - indefinite integral of f(x)

Nintegrate[ . . . ] - numerically evaluate integral

Integrate[f(x), {x, xmin, xmax}] - definite integral of f(x) with integration
limits xmin and xmax

Integrate[f(x, y), {x, xmin, xmax}, {y, ymin, ymax}] - multiple integral
of function f(x, y)

Examples:

Integrate[x"3,X]

IN ESIN

Integrate[x"3,{x,a,b}]

4 4
i+b_
4 4

Integrate[x"3,{x,0,1}]

iR




199

Integrate[Sqrt[1-x"2],{x,-1,1}]

Pi

2
NIntegrate[Sqrt[1-x"2],{x,-1,1}]

1.5708

fix ,y 1] :=xy"2
Integrate[f[x,y], {x,0,a}, {y,0,b}]

2
ab3

6
Integrate[f[x,y], {x,0,3}, {y,0,2}]

12

NIntegrate[f[x,y], {x,0,3}, {y,0,2}]
12.000000000000000001

(roundoff error)



