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Chapter 9: Numerical Differentiation

Numerical Differ entiation

Formulation of equations for physical problems often involve derivatives
(rate-of-change quantities, such atoeity and acceleration). Numerical solution of
such problems involves numerical evaluation of the derivatives.

One method for numerically evaluating derivatives is torisge Dlfferences:

From the definition of a first derivative

dy_y'(X)E lim (yX+AX)_y(X)

dx Ax - 0 AX

we can take a finite approximation as

_ Y(X+AXx) —y(X)
y(x) = Ax

which is called Forward Dlfference Approximation.

Similarly, we could use the
Backward Difference Approximation:

_ Y(X) —y(x=AX)
y(x) = A

And, in either case, we can reduce a roundoff errors in the computations by choos-
ing Ax to be a smallalue that can bexactly represented in binary (foxample not
0.1).
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Also, in addition to ax difference that can be exactly represented in binary,
we can get a somewhat better approximation to the first derivative with a Central
Finite Difference:

~ Y(x+ AX) —y(X=AX)
y(x)= SAX

Example:

Given an expression for the functiffr, y)in the equation:

dy _
dX - f(X’ y)

we can numerically approximayevalues over the range wfwith the
difference equation:

y(x+Ax) —y(x) = Axf(Xx )

Assuming we know the initial valug and we subdivide therange
from xg to xn into equal interval&x, we can solve for each successive
y value as

Yie = Yie— 1 FAXF(X _ 10 Vie_ 1) k=12..n

In general, such problems can be solved with nonunifosabintervals
and with known initial or boundary conditons.
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Using similar methods, we can evaluate equations involving partial deriva-
tives, and we can set up finite difference approximations for higher order deriva-
tives.

For instance, for second derivatives, we can use the approximation

V(x) = y(x+ AX) — 2y(x—AX)

sz

Derivative Functions in Mathematica

Numerical evaluation of different equations accomplished with

NDSolve eqgns, vy, {X, ymin, xmax]} - numerically solves eqns (which
include initial or boundary equations) for y with independent
variable x in the ranganinto xmax.

NDSolvg egns, {y1, y2, . . .}, {X, xmin, xmax}] - solves the set of
eqrs for values y1, y2, etc.

Example:

NDSolve[{y'[x]==Exp[x],y[0]==1},y.,{X,0,5}]
{{y -> InterpolatingFunction[{0., 5.}, <>]}}

Solution then stored as an interpolation table, and we retrieve
values with statements such as

y[1.0' /. %

{2.71829}
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Also, we can use statements such as
Plot[Evaluate[y[x] /. %n], {X,xmin, xmax}]

to plot the numeric solution.

Symbolic difference performed with

D[ f(x), X] - evaluates first derivative &fx) with respect tx. (Can
also be applied to f(x1, x2, .. .).)

D[ f(x), {X, n} ] - evaluates nth derivative d¢fx) with respect to.

(Also can use D function to obtain partial derivatives.)

Examples:

DIEXp[x].X]

EX

D[x"3, X]

3x 2

D[x"3, {x, 2}] {second derivative

6X

D[x"2y, X] {partial derivative
2XYy
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Chapter 9: Numerical Integration

Numerical Integration

Most integrals arising from solutions of problems in engineering and science
cannot be represented in “closed form”

- they must be evaluated numerically.

* For function of a single variable, we seek an approximation to the
area “under” the curve:

(XA b
Area = [ f(Xdx
4

 For function of several variables, we seek approximation to the size
of the “volume” for the specified integration region.

We will consider only algorithms for functions of a single variafge:
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Numerical evaluation procedures for a function of a single varigtle
involve summation of small subareas, using simple functions to approXixjate

For example, by definition of integral:
b

[fOodx = lim
a

a —» o
Kk

n
z f(X)A
=1

with Ax, = X, — X, _1

We can approximate irgeal with a finite number of subintexig using a con-
stant value fof(x) in each subinterval:

f(x) = f(xq) Xp_ 1S XS Ko k=12..n
A
f(x)
|
Xg=a X1 X2 X3 Xn1 Xn=b

In this case, we approximate integral by adding the areas of a set of approxi-
mating rectangles.



184

Example: f(x) = +/1-x a=-1b=1

fx) A 1
A = [ g(xdx
a
.
10 1 x

Selecting equal width intervals with with= 5, we have
A)(k:—:—:0.4 Ok
The area is then approximated as

n
A= Z f(x)AX,
k=1

with x, = % _4 +AX, andxg = -1.

0,

Then

A=Ax § f(x)=0.4(0.8+ 0.98 0.98 0.8 0)0
k=1
~1.42

2
Actual size of areaA= % =1.57



185

We can improve numerical estimate of integral by
* Increasing number of intervals.
» Using a more accurate approximation of f(x) in each interval.

Common Approximation Methods:
* Linear
» Quadratic or Higher-Order Polynomial

Trapezoidal Rule
Approximatef(x) with linear function over each subinterval.
Area is then calculated as the sum of the areas of resulting

trapezoids:
; A Taking equal-width
() intervals:
Ax = D=2
n
|
Xp=a X1 Xo X3
Area of each trapezoid is
F(Xe_ )+ F(x)
A= x| — =, K=12..,n
2
Thus,
b
F0dx= 221 £ (x0) + )] + [ (%) + F(x,)] +
I (x)dx=="[1(xg) + T(x)] +[T(xg) + T (%) ] + ...
a
HF(Xa_ )+ f(x)1}
or

b [ n-1
If(x)dx:Ax%[f(a) O]+ Y FOg)
a M k=1

I o
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Example: Trapezoidal Rule to evaluate

1
Iall—xzdx, n=>5
-1

Width of each interval is

AX = 0.5
Xg = -1, X = X_q T AX k=1234F¢

Integral is then evaluated as

1

If(x)dszx = 1)+f(l) Z f (%)
]

=0.4(0.80+ 0.98- 0.98 0.90
=1.42

(Same result as obtained using rectangular areas.
Why?)
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Simpson’s Rule

Approximated(x) with a quadratic function.

More accurate evaluation of integral than Trapezoidal Rule (a linear
approximation).

A Simpson’s Rule

(x) (parabola)

e Trapezoidal Rule
(linear)

| | | -
X—1+ X
X1 T Xy

In this case, the integral is approximated as

b n X
[food= 5 [ (g + 0LX + a,x°)dx
a kzlxk—l

To evaluate the summation, we need to determine the parabola coefficients
O 04, O, in each of the subdivisions.

We can accomplish this with three boundary conditions that require the
parabola to interseftx) at the endpoints and at the midpoint of each subdidivision.
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Applying Simpson’s Rule

1. Divide interval &, b) into n equal subintervals, witha multiple of 2.

2. Approximatef(x) with parabola across every two subintervals.

2
GO+G1X+C(2X

f(x)

X1 Xy Xi+1

Obtain coefficientsr,, a4, o, by solving
+ + 2 = f
g+ 0y X1+ 0% _q = T(X_1)
2 _
O+ 04X+ 05X = f(X)
+ + 2 = f
g+ 09X 1 T 00X 1 = T(Xeyq)

over each of the intervalg,(;, Xi;1)-
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We then approximate integral as

n n—1 Xk+1
[foode= 5 [ (ag+agx+ a,x°)dx
a k = 1Xk—1
kodd
n-1 2 3%
~ Z [u0x+ al? + azg}xk_l
k=1
kodd
Substituting the solution farg, a4, a, over intervalsXy_q, X+1), We obtain
b n-1
[h C
If(x)dx: Z EEAX[ f(x _ 1) +41(x) + (X, IC
k=1 -
s -
kodd

whereAx = X1 - X = Xi = %1

{Note: An easy way to derive this result is to consider a parabols specified over
the interval {A,, A,).

Hence,
b

AX
If(x)dng[(fo+4f1+ 1‘2)+(f2 +4f3+ f4) +...]
a

Collecting terms, we hav@mpsons$ Rule:

b n-1 n-2
If(x)dx:%)—( f(a)+ f(b) +4 Z f(x)+2 Z f(x,)
a k=1 k=2

- (odd) (even -

with each successive x value calculated as
X = xk_1+Ax (k=12 ...,n)
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Example: Simpson’s Rule Evaluation of

1

1—x2dx, n=4
J
-1

Then,

4
Xg = -1, X = X = 1 HAX k=1,2314
And
1 A 3 2
X
J'f(x)dx=? f(-1)+f(1)+4 Z f(x)+2 z f(x,)
-1 k=1 k=2
- (odd) (even -

~ %X{ A1 F(xy) + f(xg)] +2f (X))}

= 2[4(0.87+ 0.87 +2(1)]

~1

~£(8.96
1

=1.49 whereJ' f( ydx=1.57
-1

Thus Simplson with n=4 is bettern than Trapezoidal with n=5.
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Psuedocode Algorithm - Simpsors Rule
Input f, a, b, n (* fcn, integer limits, no. of intervals *)
dx = (b-a)/n
dx2 = dx + dx
odds = 0.0; evens = 0.0
X=a
Do k=2, n-2, 2
X =X + dx2
evens = evens + f(x)
Endofdo
X =a-dx
Dok=1,n-1,2
X =X+ dx2
odds = odds + f(x)
Endofdo
simpsonArea=(dx/3.0)*(f(a)+f(b)+4.0*odds+2.0*evens)
Summary of Integration Methods
» Approximatef(x) = f(x) (constant) over each interval

n Xqa = a, X =b
n E X = X, =1+t (b=—2a)/n

» Trapezoidal Rule: Linear Approximation

Ao b= af(a)+f(b) Zf(x)

n

» Simpson’s Rule: Quadratic Approximation, n even

n-1 n-—2
A
A’:?X f(a) + f(b) +4 Z f(x,)+2 Z f(x,)
k=1 k=2
- (odd) (even -

Ax = (b-a)/n
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Numerical Integration Err ors

» For small n, error is primarily due to approx. of f(x) (width of subintervals
large)

» For large n, roundoff errors become significant; i.e., area of each subinterval
small, and this value can get lost in precision of larger accumulated area:

fo) A accumulated
area

next subinterval

Y

Error Magnitude Plot:

|error|

T roundoff error

approximation error
(due to width of
subintervals)

|
! n

idea_ll number of
subintervals

Ideal value for n depends on:
* Form of f(x)
* Integration method used
* Computer System
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Numerical Integration Impr ovements

» Repeatedly increase number of subintervals until area estimate is within speci-
fied tolerance.

A method for accomplishing this is to start with fat subinterals and then
double the number of intervals at each step:

Input n
compute: area

oldarea = area
— > n=2n

compute: area

relError = |(oldarea - area)|

relError < tolerance

» Also, could use highesrder polynomials to approximate f(xyer each of the n
subintervals.

» And we could use higher precision in calculations to reduce roundoff errors.

(Tradeoff: more calculation time.)
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Numerical Evaluation of Infinite Inteqgrals

Divide intggral into parts and apply a numerical gri@ion technique to each
part until contributions tend to zero.

For example:

f° F(x)dx = Ialf(x)dx+J’a2 F(x)dx
a a; a
+J'alf(x)dx+
a

If integral is finite, then we must have
[f(x)] - 0 as X 00,

That is, we can compute the integral as a finite number of terms:
00 q n dp, q
f(x)dx = f(xX)dx +¢€
[, 1™ kzl [, 10

whter the error term is less than some specified tolerance.
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Monte Carlo Methods

Use of random numbers to solve deterministic problems.
This approach useful for numerically evaluating complex integrals.

Examples:

» Multiple Integration
b, b, b,
J'b Ib ...Ib f(Xq, Xo, -y X)X A%, X

» Functions with High-Frequency Oscillations

f)

‘ -

Basic Approach:

Generate n uniformly

distributed random points in an f(x)
area containing f(x) and the

interval (a, b) -- wherarea is h
not too lage compared to
integral area. Then compute:

b
f (x)dx
.[a 09 ~ im [number of points under f(X)
h(b- a) no o n

where p-a) may be positive or negative,
and we might havix) < 0 over part or all of the intervad,(b).
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Algorithm: Monte Carlo Integration

1. Generate two uniformly distributed random numlogrs, in the interval (0,1).
a+ri(b—a)

X
2. Assuming (x) = 0, calculate coordinate positionsyj as:

r2h

(%)

h f(x.y)

Count point X,y) as undef(x) if
O<sy< f(X) f(x)=0

3. If f(x) < O for a value ok in the interval ,b), calculate coordinate position as

f(x) A h = Ymax™ Ymin
Ymax X = a+r(b-a)
- Y= Ymin + r2h
a f(xy) |b
Ymin

Count point (x,y) as “under” f(x) if
O=2y= f(x) for f(x)<0

In this case, we subtract 1 from the point count; i.e.,

ptcount = n, -nwheren is the number of points below tkexis.
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Pseudocode Algorithm - Monte Carlo Integration

Input f, a, b, h, n (* assume f(x) > 0; how
width=b - a can this be modified
ptCount =0 for f(x) < 0 also? *)
Dok=1,n

X = a + width * Random()
y = h * Random()
If (y <f(x)) Then
ptCount = ptCount + 1
Endofif
Endofdo
area = h * width * ptCount / n

Example:f 1—x2dx y
-1
Ymin = 0, Ymax = 1
a=-1b=1h=1n =10 >
1 1 x
rq rs X=-1+2§ y=ro f(x)=1-% | ptcountl
1 0.972 0.466 0.944 0.466 0.330 0
2 0.069 0.001 -0.862 0.001 0.507 1
3 0.038 0.395 -0.924 0.395 0.382 1
4 0.740 0.267 0.480 0.267 0.877 2
) 0.152 0.948 -0.696 0.948 0.718 2
6 0.805 0.662 0.610 0.662 0.792 3
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ry ro X=-1+2§ y=ry f(x)=1-% | ptcountl

0.227 0.034 -0.546 0.034 0.838 4

0.607 0.835 0.214 0.835 0.977 5

0.212 0.463 0.576 0.463 0.817 6

10 0.670 0.624 0.340 0.624 0.940 7

Integration Functions in Mathematica

Integrate[f(x), x] - indefinite integral of f(x)

Nintegrate[ . . . ] - numerically evaluate integral

Integrate[f(x), {x, xmin, xmax}] - definite integral of f(x) with integration
limits xmin and xmax

Integrate[f(x, y), {x, xmin, xmax}, {y, ymin, ymax}] - multiple integral
of function f(x, y)

Examples:

Integrate[x"3,X]

IN ESIN

Integrate[x"3,{x,a,b}]

4 4
i+b_
4 4

Integrate[x"3,{x,0,1}]

iR
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Integrate[Sqrt[1-x"2],{x,-1,1}]

Pi

2
NIntegrate[Sqrt[1-x"2],{x,-1,1}]

1.5708

fix ,y 1] :=xy"2
Integrate[f[x,y], {x,0,a}, {y,0,b}]

2
ab3

6
Integrate[f[x,y], {x,0,3}, {y,0,2}]

12

NIntegrate[f[x,y], {x,0,3}, {y,0,2}]
12.000000000000000001

(roundoff error)



