
84

Chapter 4: Data structures

Data Structure

• A particular organization for computer data (e.g., a list).
• And the allowed operations on the structure (e.g., can only add or remove items

from one end of the list).

Elementary Data Types

• Bit (Binary Digit) - Lowest level of every data structure.

• Single Variable
E.g., Fixed Point (Integer)

Floating Point (Real)

Character String

Boolean Variable

User-Defined Type

Basic Data Formats

• Integer
One way to store an integer:

sign bit (0 = +, 1 = -)

 magnitude (in binary rep.)

85

• Real (Floating-Point)

stored value

- with m normalized so first
 (leftmost) digit is not zero.

• Character String

With bit encoding scheme that satisfies collating sequence:
blank < a < b < . . . < z
 etc.

• Boolean

Stored as 1, 0 (True, False)

. . . and similarly for other types

 m

exponent
on 2 or 16

significant digits
 (“mantissa”)

sign
bit

0.mx2
θ±=

86

Higher-Order Data Structur es

• Array

Set of data values of one type (such as, integer, real, complex,
string, etc.) stored in contiguous storage locations and referenced
with a subscript (index).

• Record

Set of related data of various types stored in contiguous storage
locations.

Examples
Student Record (name, address, age, sex, major,
grade-point average, etc.)

Equipment Record (part ID, description, manufacturer,
price, etc.)

• File - Collection of records.

E.g., Student File, inventory File

.

.

.

x1

x2

xn

Use single variable
name and subscript to
reference individual
data items.

87

List Structur es

• Linear Lists

Set of data with a linear ordering; i.e., each item in list has a
single successor.

E.g., List of names in alphabetical order (Could be stored in
array or other available data structure in a particular language.)

• Nonlinear Lists

Set of data items ordered so that any item may have multiple
successors.

E.g., Tree Structures

(such as organizatgional
 chart or family tree)

Graphs

(such as network representations --
 can contain loops and closed paths)

88

Basic Operations on Lists

• Inserting a Data Item
(at beginning, at end, or elsewhere)

• Deleting a Data Item
(at various list positions)

• Sorting
(alphabetically, numerically; in ascending or descending order)

• Searching
(for specified data item or set of items, or for those satisfying

certain conditions)

• Copying
(parts of a list to another list)

• Combining
(two or more lists)

• Separating
(a list into sublists)

89

Can implement lists with:

• Sequential Storage (Arrays) start

Then reference data positions with array name and the appropriate
subscript number: 1, 2, . . . n.

• Linked Locations (Pointers)

Each block of storage, containing a data part and a link part, is called anode.
The link fields of each node contain the memory address of the next node in the list,
andstart contains the memory address of the first node in the list.

In this schema, the link fields and start are special types of variables called
pointer variables. They can only store a memory address.

(Have pointers in C and Pascal, for example, but not in FORTRAN. All three lan-
guages have array structures.)

data data data

1 2 n

. . .

data link data linkstart . . .

90

Sequential Storage is Preferred When:

• No data insertions or deletions are to be made to the list.

• No splitting or combining of lists is to be made.

• Direct access is required. (For example the list is to be frequently sorted on dif-
ferent fields, such as name field or ID number. Also fast search procedures can
be implemented using direct access to the various data items.)

Linked storage Locations are Preferred When:

• Data insertions and deletions are required.

• Frequent combining of lists is necessary.

• The list is to be frequently divided into sublists.

• We need to store and manipulate “sparse” lists.

(An example of a sparse list is a table with most of the entries
having a common value, say 0. We can save space by storing
only the nonzero values and their locations.)

Linked Storage:

Requires extra storage for the pointers.

Does not provide direct access to data items.

91

Array Implementation of Link ed Lists

For programming languages that do not provide pointer variables, we can imple-
ment linked-list processing using two or more arrays. For example, using a data
array, a link array, and a variable called start, we can store a set of data items and
associated “links” as:

To insert or delete data items, we now only need to reset pointer values. Otherwise,
with single array storage, we would need to shift data items around to insert or
delete values.

For instance, if we want to delete the first node in the list (at position 4), we change
the value of start to the value stored in link position 4 -- which is 6.

To handle these operations, we need to set up a program with subparts (modules) to
process insertions and deletions, to keep track of available positions in the list, etc.

data link

(end of list)

1

2

3

4

5

6

4

5

1

0

6

3

2

start

92

Arrays

A common data structure provided in high-level programming languages.

• One-Dimensional Arrays(Vectors)

- array elements referenced with a single subscript, e.g.,

Often, programming languages allow starting and stopping values
to be specified as any integer values.

• Two-Dimensional Arrays (Matrices)

- also sometimes referred to as Tab les.

- array elements referenced with two subscripts; e.g.,

Mij wherei, j reference row and column positions,

 respectively

Vk k 1 2 …,,=

1 2 3 4 5

2 3 4 5 6

3 4 5 6 7

4 5 6 7 8

(a 4 by 5 array)

row

col

93

• Higher-Dimensional Arrays

- In general, called Tensors (although, mathematically, the term
“tensor” refers to arrays with certain transformation
properties).

- array elements referenced with multiple subscripts; e.g., a 3D
array:

 Tijk

Can represent a 3D array as data items stored within a 3D block:

Visually representing arrays with 4 or more subscripts more difficult.

Also, access time increases as the dimension of an array increases, since more cal-
culation is required to locate element positions.

depth

cols

rows

94

List Structur es in Mathematica

As in high-level programming languages, Mathematica provides mechanisms for
creating and manipulating list structures.

Creating Lists

One way to create a simple linear list (vector) is to explicitly specify the list ele-
ments; e.g.,

list1 = {10, 20, 30}
{10, 20, 30}

list2={“Curly”, “Moe”, “Larry”)
{Curly, Moe, Larry}

l ist3 = {a+Sin[x], a+2Sin[2x]
{a + Sin[x], a + 2 Sin[2 x]

Many Mathematica functions produce lists. E.g.,

Solve[x^2 == 9, x]
{{x -> 3}, {x -> -3}}

Each element of this list is a one-element list. For simultaneous equations, elements
will be lists of length 2 or more, depending on number of variables.

95

Linear lists (vectors) can also be generated in Mathematica with the Range and
Table functions.

Range Function

Generates a list of equality spaced numbers. The general form is:

- creates a list of numbers with spacingdn, starting with the number
nstart and ending with a value less than or equal tonstop,
Parametersnstart anddn are optional, with default values of 1.

Integer Examples:
Range [5]
{1, 2, 3, 4, 5}

Range [-2, 5]
{-2, -1, 0, 1, 2, 3, 4, 5}

Range [-2, 5, 3]
{-2. 1, 4}

We can also generate lists of floating-point numbers:
Range [2.5, 6.7, 1.2]
{2.5, 3.7, 4.9, 6.1}

And we can evaluate the numbers in the list with expressions:
x=2; Range[x^2, x^3, x]
{4, 6, 8}

Range [nstart, nstop, dn]

96

Table Function

A general list-generating function that can be used to produce arbitrary list elements
(any data type or expression). General form is:

- generates a list of elements by evaluatingexpr with variable k
varying fromkstartto kstop in steps ofdk. Default values
for kstart anddk are 1. Ifk, kstart, anddk are all omitted,
thenexpr is simply listed kstop times.

Table Function Examples:

Table [a^2, {4}]

{a 2, a 2, a 2, a 2}

Table [a^2, {a,4}]
{1, 4, 9, 16}

Table [x^k+k, {k, 0, 3}]
{1, 1 + x, 2 + x2, 3 + x2}

Table [x^(1/2), {x, 0, 1, 0.25}]
{0, 0.629961, 0.793701, 0.90856, 1.}

Table[Sin[n Pi/3], {n, 0, 6, 2}]

N[%]
{0, 0.866025, -0.866025, 0}

Table [expr,{k, kstart, kstop, dk}]

0
Sqrt 3[]

2

Sqrt 3[]–
2

--------------- 0, , ,








97

List Size

We can determine the number of elements in a list with theLength function.

For example:

aList = {e, i, e, i, o};
aListSize = Length[aList]
5

Referencing List Elements

Given: alphaList={a,b,c,d,e,f}

we can reference particular elements using subscript notation,
as in

element3 = alphaList[[3]]
c

or we can use thePart function, as in

element3 = Part[alphabet, 3]
c

We can reference list positions relative to the end of the list
using negative subscript values.

For example,

element3 = alphaList[[-4]]
c

98

Although we can reference the first and last elements of a list with subscripts,
Mathematica provides the functions:

element1 = First[alphaList]
a

lastElement = Last[alphabet]
f

List pr ogramming Example

The following code uses the Table function and subscript notation to define a
nonrecursive function for calculating the nth Fibonacci number, given an input
value n.

Variablefib is initialized t the list {1,1, . . . , 1} of length n. Then a Do loop
is used to calculate Fibonacci numbers, starting at list position 3.

Clear[fibonacci];
fibonacci[] := {This defines a fcn with no args

Module[{k,n,fib},
n=1+Input[“Input an integer >0.”];
fib=Table[1, {n}];
Do[fib[[k]]=fib[[k-1]]+fib[[k-2]],

 k,3,n}
];

fib[[n]] (Since Mathematica subscripts are numbered

] from 1, we must shift the Fibonacci
 numbering by . Also, we could include
 checks on input.)

Then, within some program block, we could reference the function as

fibNum=fibonacci[] {returns fib[[n]], for an input value of n

89 (For the input value: n = 10.)

99

Set Operations

In Mathematica, a linear list can be treated as a set, so that the order of the elements
is ignored. E.g., givens1 = {b,a,c}; s2 = {f,c,b};

unions1s2 = Union[s1,s2]
{ a, b, c, f} (listed in alphabetical order)

commons1s2 = Intersection[s1,s2]
{b, c}

subtracts1s2 = Complement[s1,s2]
{a} (overlapping elements of s2 subtracted from s1)

List Operations in Mathematica

• Inserting List Elements
list1 = {10, 20, 30}
(10, 20, 30)

list1 = Prepend[list1, 25]
{25, 10, 20, 30}

list1 = Append[list1, 5]
{25, 10, 20, 30, 5}

list1=Insert[list1, 0, 3] (insert value 0

{25, 10, 0, 20, 30, 5} at position 3)

list1=Insert[list1, 1 (insert value 15

{25, 10, 20, 30, 15, 5} at position 2

 from end of list)

list1=Insert[list1, -1,{{2},{4},{6}}]
{25, -1, 10, 20, -1, 30, 15, -1, 5}

(Insertion positions 2,4, and 6 are relative to original
 list positions.)

100

• Deleting-Replacing List Elements

list1 = {25, -1, 10, 20, -1, 30, 15, -1, 5};

list1 = Delete[list1, 6]

{25, -1, 10, 20, -1, 15, -1, 5}

list1 = Delete[list1, {{4}, {{8}}]

{25, -1, 10, -1, 15, -1}

list1 = ReplacePart[list1, 0, 3]

{25, -1, 0, -1, 15, -1} (3rd element replaced
 with 0

list1 = ReplacePart[list1,5,-3]

{25, -1, 0, 5, 15, -1} (3rd element from end

replaced with 5)

list1=ReplacPart[list1,-2,{{4},{{5}}]

{25, -1, 0, -2, -2, -1}

101

• Sorting List Elements

sortedlist1 = Sort[list1]

{-2, -2, -1, -1, 0, 25}

To sort and eliminate duplicate elements, we apply theUnion function. This gener-
ates a “set” of data values. E.g.,

set1=Union[list1]

{-2, -1, 0, 25}

We can also sort lists of character strings or variable names with theSort function.
E.g.,

charList = {“d”,”a”,”m”,”f”};
sortedcharList=Sort[charList]

{a, d, f, m}

To obtain a list arranged in descending order, we can use theGreater ordering
function:

Sort[charList, Greater]

{m, f, d, a}

Another way to sort a list in descending order is to use a combination ofSort and
Reverse :

Reverse[Sort[charList]]
{m, f, d, a}

(Other functions are available for rearranging lists.)

102

Searching-Testing Lists

We determine whether an element is in a list with the MemberQ function.
E.g.,

aList = {e, i, e, i, 0};
elements = MemberQ[aList, e]
True

Similarly,

elementa = MemberQ[aList,a]
False

We determine the number of times “e” appears in the list with

counte = Count[aList, e]
2

And we determine where an element occurs with the Position function.
E.g.,

positione = Position[aList, e]
{{1}, {3}}

When an specified value is not in a list, the Position function returns the empty list:

positionf = Position[aList, f]
{}

103

• Extracting Sublists

Given: alphaList={a,b,c,d,e,f}

We can form sublists using the Take, Rest and Drop functions:

firstHalf = Take[alphaList, 3]
{a, b, c}

lastHalf = Take[alphaList, -3]
{d, e, f}

middle4 = Take[alphaList, {2, 5}]
{b, c, d, e, f}

allButFIrstElem = Rest[alphaList]
{b, c, d, e, f}

last4elements = Drop[alphaList, 2]
{c, d, e, f}

first4elements = Drop[alphaList, -2]
{a, b, c, d}

de1Mid4 = Drop[alphaList, {2, 5}]
{a, f}

Using combinations of Take, Drop, and Join operations, we can generate sub-
lists with a variety of arrangements.

104

• Partitioning Lists into Sublists

Given aList={a,b,c,d,e} , we can form:

newList = Partition[aList,2]
{{a, b}, {c, d}}

which gives a new list whose elements are lists of length 2 (a 2 by 2 matrix), and
drops the last element “e”.

Thus, the first element of newList is

newList[[1]]
{a, b}

We can also partition using an offset. For example:

offsetNewList=Partition[aList,3,1]
{{a, b, c}, {b, c, d}, {c, d, e}}

• Concatenating Lists

Any number of lists can be combined with the Join function:

catList = Join[{a,b,c},{d,e,f},{g}]
{a, b, c, d, e, f, g}

105

String Manipulations

-similar to those for lists. Following are some of the string functions
available in Mathematica

Examples:

StringLength[“A string.”]
9

StringReverse[“A string.”]
.gnirts A

StringPosition[“A string.”, “ “]
 {{2, 2}} (gives a list of starting and ending

substring positions)

StringDrop[“A string.”, {3, 4}]
A ring. (elements 3 through 4 deleted)

Characters[“A string.”]
{A, , s, t, r, i, n, g, .}

StringLength - give number of characters

StringJoin - concatenate two or more strings

StringReverse - reverse characters

StringTake - delete specified characters

StringReplace - replace specified characters

StringInsert - insert a substring

StringPosition - find position of a specified substring

Characters - list characters in the string

UpperCaseQ - test for all upper-case characters

Sort - sort a list of strings

106

Numerical LIst Operations in Mathematica

For lists of numerical values, we can perform various arithmetic operations on the
list elements. For example, given

numList = {10, -20, 30, -40}

we can form the following new lists:

add5 = numList + 5
{15, -15, 35, -35}

multiply5 = 5 numList
{50, -100, 150, -200}

squarenumlist = numList^2
{100, 400, 900, 1600}

sumE1ements = Apply[Plus,numList]
-20 (Similarly, have Apply[Times, . . .] to multiply all

 elements.)

addLists = add5 + multiply5
{65, -125, 185, -24 (must have equal

 length lists

multiplyLists = numList {1,2,3,4}
{10, -40, 90, -160} (must have equal

 length lists

smallestVal = Min[numList]
-40

biggestVal = Max[numList]
30

Positive[numList]
{True, False, True, False}

107

Lists in Mathematica are also used to represent vectors in chosen coordinate
reference frames. Thus we can apply vector operations to lists.

Examples:

Given two vectors in 3D Courtesan space

v1={x1,y1,z1}, v2={x2,y2,z2}

we can perform the following vector operations:

1. Dot Product (Scalar Product)

v1otv2 = v1.v2
x1 x2 + y1 y2 + z1 z2

Similarly, v1.v1 gives the magnitude squared of vectorv1 (Pythagorean Theo-
rem).

2. Cross Product (Vector Product)

First need to load Vector Analysis package and select a coordinate representation:

<<Calculus‘VectorAnalysis‘
SetCoordinates[Cartesian[x,y,z]]

v1Xv2 = CrossProduct{v1, v2]
{-(y2 z1) + y1 z2, x2 z1 - x1 z2,

-(x2 y1) + x1 y2)

3. Other Vector Functions

Includes Div and Curl, as well as vector operators such as Grad and Laplacian, that
operate on scalar functions to produce vectors.

108

Column Display of A Linear List

Given:abcList = {a, b, c}

We can display the list in column form:
a
b
c

using any of the following statements:

Column[abcList]

abcList //ColumnForm

TableForm[abcList]

abcList //TableForm

(however, TableForm skips a line between each element
 of the list)

Array Function

Allows us to set up “symbolic” array names that can be referenced with a simplified
subscript notation -- and allows subscripts to start any specified value. For example:

vect = Array[v, 3, 0] (defines a 3-element vector,

{v[0], v[1], v2]} with a starting subscript

value of 0)

Then, can assign values to elements as in

Do[v[k]=k+1,{k,0,2}];
vect
{1, 2, 3}

Note: Cannot reference entire array with symbolic namev, must use assigned
name vect.

109

Higher-Dimensional Arrays

- are specified in Mathematica as a list of lists, a list of lists of lists,
etc.

Example: Creating a matrix with Table function.

matrx = Table[i+j, {i,0,2), {j,0,3}]
{{0, 1, 2}, {1, 2, 3}, {2, 3, 4}}

We can display a matrix in tabular form using either of the functions: Matrix-
Form or Table-Form. For example,

matrx //MatrixForm
0 1 2
1 2 3
2 2 4

MatrixForm displays each element with the same number of character positions.
TableForm displays columns of varying width, in general.

Table[n^k, {n,4}, {k,3}] //TableForm
1 1 1
2 4 8 (Outer loop varies n from 1 to 4;

3 9 27 inner loop varies k from 1 to 3.)

4 16 64

The above table could also be generated by eliminating the inner loop and replacing
n^k with the list:{n, n^2, n^3 .

110

UsingArray function with higher-dimensional arrays, we can use symbolic
array name, simplified subscript notation, and arbitrary starting subscript values.
E.g.,

Clear[mat, m]; mat = Array[m, {3,3}, 0];
Do[m[j,k]=j+k, {j,0,2}, {k,0,2}]; mat
{{0, 1, 2}, (1, 2, 3), {2, 3, 4}}

Matrix Operations

matRow1 = mat[[1]] (each row of a matrix is

{0, 1, 2} a linear list)

matRow1 = Part[mat, 1]
{0, 1, 2}

matElement00 = m[0,0] (or mat[[1,1]])
0

matRow2Diag = DiagonalMatrix[mat[[2]]]
{{1, 0, 0}, {0, 2, 0}, {0, 0, 3}}

(i.e., creates a diagonal matrix using

MatrixForm[%] second row of mat)

1 0 0
0 2 0
0 0 3

Dimensions[matRow2DDiag]
{3,3}

Ident=IdentityMatrix[3] //MatrixForm
1 0 0
0 1 0
0 0 1

111

Given:m1={{a,b},{c,d}} m2={{e,f},{g,h}
 v={x,y}

detm1 = Det[m1]
-(b c) + a d

transpm1 = Transpose[m1]

{{a, c}, {b, d}} (Interchange: rows <-> cofs)

twoTimesm1 = 2m1

{{2 a, 2 b}, {2 c, 2 d}}

As with vector dot products, matrix products are formed with the “Dot” operator (.):

m12 = m1.m2

{{a e + b g, a f + b h}, {c e + d g, c f
+ d h} (Matrix multiplication not cumulative, in general.)

postTransfMatrixMultiply = v.m1

{a x + c y, b x + d y}

preTransfmatrixMultiply = m1.v

{a x + b y, c x + d y} (Note: v treated as column
 vector when premultiplied by

a “transformation” matrix)

(Also have other functions:
Inverse, MatrixPower , etc.)

112

Two special lists that are useful for processing items in a prescribed
order are:

• Stack
Items are inserted and deleted atonly one end of the list.

• Queue
Items are inserted at one end of the list, and deleted at the
other end.

Stack Processing

A stack, also called a Last-In-First-Out (LIFO) list, has two operations:

Push (or Stack) - places an element at the top of the list.

Pop (or Unstack) - removes the top element from the list.

Overflow Condition - triggered by Push operation on a full stack (finite storage).

Underflow Condition - triggered by Pop operation on an empty stack.

top

Examples:

 - Stack of boxes, or books

 - Stack of trays in a cafeteria

 - Spring-loaded coin changer

 - Railroad shunting yard

113

In high-level languages, can implement a stack as an array or as a linked list
(depending on capabilities of language).

For example, consider an array implementation:

Have empty stack, when top=0.

Have full stack, when top=kmax.

Push Operation

If top<kmax, then

set: top=top+1,

assign input value to position top

else

stack full.

Pop Operation

If top>0, then

assign data at top of stack to output,

set top=top-1

else

stack empty.

1 2 3 4 5 kmax

stack
top

114

In Mathematica, we can implement a stack as a list. And we have enough list
operators so we don’t need pointer “top”.

• First, initialize the stack data structure to the empty list:

stack={}
{}

• To load items onto the top of the stack, we can use the Append function:

stack=Append[stack,item]

• To remove (and save) the top item from stack, we can use the Last and Delete
functions:

If[stack!={}, {check for empty stack

output=Last[stack];
stack=Delete[stack,-1],
emptyStackRoutine {go here if stack empty

]

Note that the stack is not implemented as a fixed size array in Mathematica, but as a
variable sized (linked) list.

Have overflow, when memory is used up.

115

An Example Stack-Processing Program

Input two lists: a data list and an instruction-code list. Items in the data list are to be
processed through a stack according to the instruction codes: “s” means stack the
corresponding data item; “o” means send the item directly to an output list. After all
data items are processed, unload any items in the stack to the output list.

Clear[stackProc];
stackProc[data_List,instr_List] :=
 Module[{k,dataLength,stack={},outList={}},

dataLength=Length[data];
Do[If[instr[[k]]==”s”,

stack=Append[stack,data[[k]]],
outList=Append[outList,

 data[[k]]]
], {k,dataLength}

];(* Process Codes *)
stackSize = Length[stack];
Do[outList=

Append[outList,stack[[k]]],
{k, stackSize, 1, -1}

];(* Unload Stack to Outlist *)
 outList

]

Example Data Set

dataList={a,b,c,d,e};
instrList={“s”,”a”,”o”,”a”,”o”);
outputList=stackProc[dataList,instrCode]
{c, e, d, b, a}

(In general, stack processing would be accomplished with 3 separate routines;
initialize, push, pop.}

116

Queue Processing

A queue, also called a First-In-First-Out (FIFO) list, has two operations:

Load - an item onto the rear of the list.

Unload - an item from the front of the list.

Need two pointers to mark front and rear:

Examples:

A waiting line with no priority cut-ins and no exits from middle
of line.

Items moving along an assembly line or through a manufacturing
process.

Traffic along a one-way, one-lane street, with no side exits.

Again:

Have overflow condition when attempting to load an item onto a
full queue.

Have underflow condition when attempting to remove an item from
an empty queue.

front rear

117

Array implementations of a queue are conveniently set up with array posi-
tions labeled from 0 to kmax-1, and with pointers referencing the positions shown
below:

Items are loaded onto the queue at position “rear”, then the rear pointer is incre-
mented by 1.

Items are unloaded at position “front”, then the front pointer is incremented by 1.

Since rear and front pointers may reach position kmax-1, the queue is implemented
as a circular list. That is, if rear=kmax-1, the next position for the rear pointer is 0.

Linked list implementations are not restricted by finite list size (only by size of
available memory).

Items are loaded into queue by affixing a new node at the end of the list. Items are
deleted at front of queue by changing the address of the start pointer.

0 1 2 kmax-1

 queue
front rear

start data link data link . . .

118

Queue Implementation in Mathemataica

As with stack processing, we can handle queue processing without the need
for list pointers.

Initialize:

queue = {}

{}

Load items onto rear of queue:

queue=Append[queue,item1]

{item1}

queue=Append[queue.item2]

{item1, item2}

Unload an item from front of queue:

If[queue!={},
output=First[queue];

queue=Rest[queue],
queueEmptyRoutine

]
{item}

For this example, the queue now contains only item2 and the output is item1.

119

As with stack processing, queue operations can be modularized with 3 rou-
tines: Initialization, loadqueue and unloadqueue:

Initialization

loadqueue

unloadqueue

Application program to
process input data
values through a queue
{possibly with priorities},
with calls to loadqueue
and unloadquque.

120

Computer Programming Concepts

There are several methods for setting up programs in a high-level language, depend-
ing on the structure of the language.

• Procedural Programming

- arrange program as a series of independent “blocks”
of code.

• Functional Programming

- statements are functions or nested sequence of
functions.

• Rule-Based Programming

- statements set up as pattern-matching constructs.

Procedural Programming

- writing code sequences that contain a series of operations,
such as assignment statements, loops, and conditionals.

We have already done a good bit of procedural programming examples in
Mathematica:

Do, For, While

If

Modules

 etc.

121

Educational Programming

Statements are functions or nested functions. No assignment statements,
expressions, etc.

Examples:

(1) Assignment as a function.

(set x a) - assign to x the value of a

(set lst ‘(a b c)) - assign list (a,b,c) to lst

(2) Arithmetic operations.

(add a b)

(sub a b)

 etc.

(3) List operations.

(append lst ‘(d e))

(4) Loops.

(Loop n f) - n iterations of f

(5) Nested functions (allow modules to be written as
“one-liners”).

(loop 3 (set a (add 1 (sub a b))))

(Above examples are based on Lisp language - which is the model for many Mathe-
matica functions.)

122

Functional Programming in Mathematica

• Assignment Function

set[a,3] (assigns value 3 to variable a;

3 must have variables as first arg.)

• Arithmetic Functions
- Plus, Subtract, Divide, Times, Power

Examples:

Plus[3,4] (Plus and Times can
7 have 3 or more args.)

Times[3,4]
12

Power[3,4]
81

• Arithmetic List Operations

- can be performed with above functions. E.g.,

Plus[{2,3},2]
{4,5}

Subtract[{2,3},2]
{0, 1}

Power[{2,3},2]
{4, 9}

123

Other Mathematica functions include:

Examples:

Map[Sqrt,{2,3}] {obtain numerical values with

{Sqrt[2], Sqrt[3]} Map[N, Map[Sqrt, [2,3]]], or

use //N or N[%]

Apply[f,{a,b}]
f[a, b]

Apply[Plus,{2,3}]
5

Map[Function[x, x^3],{2,3}]
{8, 27}

Map[Function[x, x^3],{a,b}]

{{a - b} 3}

For some applications, functional programming can make code more efficient and
easier to read.

Functional programming is also more of a mathematical approach to coding algo-
rithms.

Map[fcn, list] - mapsfcn onto each separate element oflist

Apply[fcn, list] - apply elements oflist as arguments offcn

Function[arg, body] - a ‘pure’ function (one with no name)

Function[arg1, arg2, . . . , body] - multiple arg. purefcn

