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Chapter 10: Error Analysis

Err or Analysis

To complete the solution of a numerical problem, we need some
estimate errors.

Source of Errors:

•  Measurement Errors

determined by accuracy of measuring instruments and built-in
bias of equipment and conditions.

For example, an instrument may be able to record values for a
particular physical quantity only to the nearest one tenth (0.1) of
a unit.

• Truncation Errors

due to approximations that use finite sequence of operations. E.g.,

•  (error equal to numerical value of

omitted terms)

• Newton Root-Finding Methods, etc.

•  Roundoff Errors
       due to finite precision of computer storage.
        For example,

Thus, some decimal values do not have an exact internal numerical
representation.

        Can get roundoff with input values and with computed values.
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Methods for Describing Errors

• Absolute Error = Actual Value - Approx. Value

But we usually don’t know the actual value.
So use Bound on Absolute Error. E.g.,

x = 2.374± 0.001

whereε = 0.001 is called

Absolute Error Bound

and 2.373≤ x ≤ 2.375

•

(fractural representation or error)
Since actual value rarely known, use

E.g., Supposex = 1.500 (approx. value)
with ε = 0.015. Then

and we can express the approx. value and error as
1.500± 1%

i.e., 1.500 (1± 1%) = 1.500 (1± ρ)

Relative Error Absolute Error
Actual Data Value
--------------------------------------------=

Relative Error

Bound(ρ )
Absolute Error Bound

Approximation Data Value
-----------------------------------------------------------------=

ρ ε
x
-- 0.015

1.500
------------- 0.01= = = or ρ 1%=
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Significant Digits

A measured or calculated quantity usually has some uncertainty, which limits
the number of digits that are “significant” in the representation of the quan-
tity.

For example,x = 3.74 implies thatx has three significant digits with some
uncertainty in the last digit. In the absence of any other information about the
error associated with this quantity, we can take the error to be± 0.005;
     i.e.,

3.735≤ x ≤ 3.745

We determine the number of significant digits in a value by counting the number of
specified digits starting at the leftmost nonzero digit to the left of the decimal point.
Thus,

0.456 - has 3 significant digits

0815.0 - has 4 significant digits
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Propagation of Errors

Consider two values x1, x2 with error bounds

εx1, εx2, ρx1, ρx2

1. Addition

sum = (x1± εx1) + (x1± εx2)

       = (x1 + x2)± (εx1 + εx2)

with absolute error bound:

εsum = εx1 + εx2

Example: sum= (4.678  0.001) + (1.236± 0.005)

    = 5.914± 0.006

i.e., 5.908≤ sum≤ 5.920 (with four significant digits)

When two numbers are combined, the result cannot have more significant digits
than either of the original numbers. E.g.,

sum = (15.2± 0.1) + (0.010± 0.003)

       = 15.210  0.102

But results cannot have more that three significant digits. Therefore,

sum = 15.2± 0.1 and significant digits in second number are lost.

It may be possible to avoid this in a particular problem by rearranging the order of
the calculations; i.e., accumulate small numbers before adding to larger numbers.
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2. Subtraction

diff = (x1 ± εx1) - (x2 ± εx2)

               = (x1 - x2) ± (εx1 + εx2)

Example:

diff = (4.678± 0.001) - (1.236± 0.005)
               = 3.442± 0.006

or      3.436≤ diff ≤ 3.448

3. Multiplication

prod= x1(1 ± ρx1) ⋅ x2(1 ± ρx2)

        =x1 ⋅ x2 (1± ρx1 ± ρx2 ± ρx1ρx2 )

Assuming the error productρx1ρx2 is much smaller than eitherρx1 orρx2, we

can neglect the product term.

Thus,
prod = x1 ⋅ x2 [1 ± ρx1 +ρx2)]

and relative error bound for the product is

with

εdiff εx1 εx2+=
Absolute error bound
same as addition.

ρprod ρx1= ρx2+

Absolute Error Bound
x1
x2
------ ρdiv( )=



205

4. Division

Neglecting the product term, we have

Relative error bound is thus the same as for multiplication:

and

div
x1 1 ρx1±( )
x2 1 ρx2±( )
-----------------------------=

x1 1 ρx1±( )
x2

----------------------------- 1 ρx2 ρx2
2±+− ρx2

3
+− …±( )=

x1
x2
------ 1 ρx1±( ) 1 ρx2±( )= neglecting terms with power > 1( )

x1
x2
------ 1 ρx1 ρx2 ρx1ρx2+ +( )±[ ]=

div
x1
x2
------ 1 ρx1 ρx2+( )±[ ]=

ρdiv ρx1= ρx2+

Absolute Error Bound
x1
x2
------ ρdiv( )=
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Example - Calculating Errors

For addition or subtraction, absolute error bound is

For multiplication or division, relative error bound is

And corresponding absolute error bound for multiplication is

(What is absolute error bound for division?)

x1 3.500= εx1 0.001=

x2 2.70= εx2 0.001=

εx1 εx2+ 0.002 2 10
3–×= =

ρx1 ρx2+
εx1
x1
--------

εx2
x2
--------+=

10
3–

3.500
-------------= 10

3–

2.701
-------------+

0.29 0.37+( )≈ 10
3–×

0.7 10
3–×≈ 0.07%( )

x1 x2 ρx2( )⋅ 3.500( ) 2.70( ) 0.7 10
3–×( )=

7 10
3–×≈
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Numerical Err ors in Computations

Besides roundoff and truncation errors, we can also pickup errors in our com-
putations due to “sampling” procedures.

In numerical integration, for instance, the integration range and subinterval
positions can cause significant areas to be unsampled if the function has many oscil-
lations or sharp peaks.

The following function is an example of this:

Plot[Exp[-x^4],{x,-10,10}, PlotRange->All]

This function has a narrow peak centered on x = 0. If the integration range is
not too wide, the function values near 0 will be properly samples.

NIntegrate[Exp[-x^4], {x, -10, 10}]

1.8128

  1
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But for larger integration intervals, we begin to pick up some sampling errors.

NIntegrate[Exp[-x^4], {x, -100, 100}]

NIntegrate::slwcon:
Numerical integration converging too slowly;

suspect one of thefollowing: singularity,
oscillagory integrand, or insufficient
WorkingPrecision.

NIntegrate::slwcon:
Numerical integration converging too slowly;

suspect one of the following: singularity,
oscillatory integrand, or isufficient
WorkingPrecision.

NIntegrate::ncvb:
NIntegrate failed to converge to prescribed

accuracy after 7 recursive bisections
in x near x = 0.78125.

1.813

(At least Mathematica tells us about the problem.)



209

And for a very wide integration range, we can miss the peak altogether:

NIntegrate[Exp[-x^4], {x, -500, 500}]

NIntegrate::ploss
Numerical integration stopping due to loss

of precision. Achieved neither the
requested PrecisionGoal no AccuracyGoal;
suspect one of the following: highly
oscillatory integrand or the true value
of the integral is 0.

0.

We can often improve the numerical evaluation of such integrals using Monte
Carlo techniques with a large number of random points.

Similar problems can occur in other types of numerical evaluations, such as
computing the value of a series of terms or locating function extrema.

In many computational problems, we can reduce errors by carrying out oper-
ations sybolically as far as possible. Numerical evaluations are then performed only
at the last step.
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Complex Numbers - Review

Need for complex number representations arises from solution of equation such as

 which has no real-number solution.

Thus need to introduce an extension to real numbers:

Define:

i.e., special type of 2D vector:
z = (x,y), with x, y as real numbers

x
2

1+ 0=

complex number = ordered pair of real
                                     numbers
(with special rules for arithmetic operations)

x - real part ofz,

y - imaginary part ofz.

realx

y

z
imag



211

Complex Arithmetic

• Addition/Subtraction:

• Multiplication By Scalar (Real Number):

• Equality Conditions:

{Above are same rules as for 2D vectors.}

• Complex Conjugate:

• Multiplication:

{For vectors have “dot” and cross” products.}

• Absolute Value (Modulus):

i.e., Pythagorean Theorem: length of “vector” z.

• Division

x1 y1,( ) x2 y2,( )± x1 x2± y1 y2±,( )=

a x y,( ) ax xy,( )=

x1 y1,( ) x2 y2,( ) x1⇒ x2 y1, y2= = =

z x y–,( )= where{ z x y,( ) }=

x1 y1,( ) x2 y2),( x1x2 y1y2 x1y2 x2y1)+,–(=

z z z⋅ x
2

y
2

+= =
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Also:

• Any real number can be written in complex form as

• “Pure imaginary number”: (0, b)

z1
z2
-----

z1 z2⋅
z2 z2⋅
--------------

x1 y1,( ) x2 y– 2,( ),

x2
2

y2
2

+
--------------------------------------------= =

x1x2 y1y2+

x2
2

y2
2

+
-----------------------------

x2y1 x1y2–

x2
2

x2
2

+
-----------------------------,=

a a 0,( )=



213

Solution to
is then a complex number (a, b) satisfying:

with solution

or .

Alternate Notation:

Denote

Then solution to

is written .

And

with complex numbers now written as

{in EE, use }

x
2

1+ 0=

a b,( )2
1+ 0=

a
2

b
2

2ab,–( ) 1 0,( )+ 0 0,( )=

a 0 b, 1±= =

x 0 1,( )±=

i 1–=

x
2

1+ 0=

x i±=

i 0 1,( )=

z x iy+=

j 1–=
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Polar Coordinate Representation

or

                                       (Euler’s Formula)

where

Complex concepts can be extended to higher dimensions using

Quaternions:

For:

 we have a 3D complex number,

 we have a 2D complex number.

imag

real

r = |z|

z = (x,y)

z r θ i θsin+cos( )=

z re
iθ

=

x r θcos= y r θsin=

z x0 ix1 jx2 kx3+ + +=

i
2

j
2

k
2

1–= = = and ij ji– k= =

x3 0=

x2 x3 0= =


