
5

Chapter 1: General Topics

Digital Computer Hardware

Central Processing Unit Main (Internal)
(CPU): Memory:

• Transfers Information • Stores
Info, out of, and Instructions and
between memory data values.
locations.

Storage locations
Carries out instructions referenced
stored in memory. (Internally) with

integer values 0,1,2, . . .

CPU

Control
Unit (CU)

Arithmetic
-Logic Unit

 (ALU)

Main
Memory

Instr1
Instr2
Instr3

101.101
-75

label

0
1
2

5074
5075
5076

Input
Device

Auxiliary
Storage

Output
Devices

6

Information transfer between hardware components is along an electrical
connection called a Bus:

Special Architectures

Vector Processor
- a processor with multiple ALUs, which can simultaneously
perform an arithmetic or logic operation on corresponding
elements of two lists (vectors).

Multiprocessing System
- has multiple CPUs for simultaneous processing of
different programs.

Supercomputer Systems- based on vector processor and
multiprocessor technology.

• Cray XMP

• Cyber 205

• Convex

• Connection Machine (“massively parallel”)

Auxiliary
Storage

CPU
Main

Memory

Bus

I/O Devices

7

Basic Operation of CPU

Control Unit

decoder clock

instruction

operation

address

Arithmetic-Logic Unit

register A

register B

adder

accumulator

sequence

Expansion slots

I/O ports

Data
Bus

Address
Buss

128
132
136

LOAD
ADD
STORE

ACC, 1024
ACC, 1028
ACC, 1032

Memory

.

.

.

8

CPU Circuitry

adder - ALU circuitry that performs arithmetic operations (add,
subtract, multiply, divide) and comparisons.

decoder - CU circuitry that interprets and instruction.

clock - CU circuitry that synchronizes operations of the system,
sending out millions of pulses (or “ticks”) per second.
Clock speeds expressed in Megahertz (Mhz).

CPU Registers

- fast-access storage areas.

instruction register - holds instruction that CPU is currently
executing.

operation register - holds operation code for instruction that
CPU is currently processing.

address register- holds address for data needed to execute
the instruction.

sequence register - holds address of next instruction to be
executed.

accumulator - holds results of arithmetic operation.

general-purpose registers - such as A and B, hold data to be
processed.

9

Memory Classifications

• RAM (Random-Access Memory)

Stores information, such as your programs, data, and “outline” font shapes,
that can be both placed into and retrieved from storage locations.

• ROM (Read-Only Memory)

Stores system-related “stuff”, such as programs that are not to be altered by a
user and fixed-shape bit-mapped fonts.

Memory Divisions

• BIT (BInary Digit)

Each bit position in main memory constructed with a “flip-flop” circuit,
which can be flipped between two states (called 0 and 1).

• Byte

Storage size for one character of information (usually 8 bits).

Characters = letters, decimal digits, punctuation symbols, arithmetic opera-
tors, etc.

Have various Binary Codes for characters (ASII, EBCDIC).

• Word

Group of bits addressed and manipulated as a unit. Word length is the number
of bits that can be transferred in one step between CPU and main memory.
Word length also determines size of numbers that can be processed in one
step by CPU. Usually, bus size equals word length, but some small computers
transfer half a word at a time along bus.

Word length is typically an integral number of bytes, and values from 8 to 64
bits.

10

Memory Size

• Usually expressed in terms of number of bytes (characters) that can be stored.

• Units of measurement:

Kilobytes (KB)

Megabytes (MB)

Gigabytes (GB)

where K = 1,024 = 210

(M = K2, G = K3)

Examples:

64 KB = 65,536 bytes

512 KB = 524,28 bytes

40 MB = 41,943,040 bytes

11

Input Devices

Keyboard

Disk Drive

Magnetic Tape Drive

Card Reader

Paper Tape Reader

Mouse

Joystick

Track Ball

Light Pen

Tablet (“Digitizer Pad”)

Data Glove (Virtual-Reality Systems)

Touch-Sensitive Screen

Button Boxes

Dials, Switch Boxes

Optical Scanners

Magnetic-Ink Character Recognition Systems

Voice

12

Output Devices

Raster Video Monitor

Vector Displays, Plasma Panels, LCDs, etc.

Disk Drive

Magnetic Tape Drive *

Card Punch

Paper Tape Punch

Printer

Plotter

Head Sets (Virtual-Reality Systems)

Other 3D Display Devices

Stereoscopic Displays (Glasses + Raster Monitor)

Voice and Sound Systems

Presentation Devices:

Microfilm

35mm Slides

Overhead Transparencies

* External Storage Devices
(also called Secondary or Auxiliary Storage)

• Direct-Access Devices (Disks: Hard, Floppy
• Sequential-Access Devices (Tape)

13

Computer Software

- Programs (and their documentation)

System Software:

• Operating Systems

• Translators and Interpreters

• Editor Programs, etc.

Applications Software:

• Word Processors

• Desk-Top Publishing System

• Equation Makers (e.g., Math Type)

• Math-Stat Packages

• Mathematics Systems (e.g., Mathematica)

• Graphics Packages

• Accounting Packages

• Data-Management Packages

• User Programs

14

Programming - Process for obtaining a computer solution
to a problem.

1. ProblemDefinition

2. Refine, Generalize, Decompose the problem definition.
(i.e., Identify subproblems, I/O, etc.)

3. DevelopAlgorithm
(processing steps to solve problem)

4. Write the “Program” (Code).
(instruction sequence to be carried out by the computer)

5. Test and Debugthe Program.

6. Run Program.

{ Documentation - prepare during development of program.}

15

Problem-Solving Example:

• Problem Statement

Compute:

(a harmonic series)

• Refinement of Problem Specification

Generalize problem by computing:

for “any” .

Also for other ranges, .

And for any input function .

 Input = starting/stopping values for .
Output = calculated sum.

No modularization or subparts needed for this simple problem.

• Algorithm
Compute sum being a loop.

i.e., repeatedly adding to previously calculated sum at

each step.

1
k

k 1=

10

∑ 1
1
--- 1

2
--- … 1

10
------+ + +=

1
k

k 1=

n

∑ n 1≥

k 0≠
f k()

k

1 k⁄

16

Algorithm steps can be specified with

• Natural Language (e.g., English)

• Pseudocode

• Flowchart, or other type of flow diagram

(typically used in documentation)

Natural-Language Algorithm

Store value 0.0 in storage location called k.

Store value 0.0 in storage location calledsum.

Repeat following steps 10 times:

incrementk by the value 1.0

increment sum by the value 1.0/k

Print out the value stored in locationsum.

Pseudocode Algorithm

initialize: sum = 0.0

do (k = 1, 10)

sum = sum + 1.0/k

enddo

print sum

17

Flowchart Algorithm

(To generalize this algorithm, we
 can add an Input box for
 starting/stopping values.)

(loop)

Flow is assumed down
 unless otherwise
 specified with an
 arrow.

Circle used as
 continuation symbol
 for transfer to
 another page.

yes

no

start

initialize:
sum = 0.0,k = 0.0

add
1.0 tok

add
1.0/k to sum

 output:
 sum

stop

 is
k < 10.0
 ?

18

Next Step:

Write Program - the instruction sequence corresponding to the
algorithm.

Then enter into computer.

Execution Sequence

Computer Memory stores:

• Instructions

• Data

In our example problem, data storage needed for variable names:
k, sum (also constants such as 10):

k
sum

.

.

.

.

.

.

0

1024
1025

19

Initial data storage contents:

After the twoadd instructions are processed, the storage contents are:

Contents of locationk are then checked against the value 10.0, and theadd
instructions repeated:

This process repeats until value in locationk is 10.0 (and value in location
sum is 2.9289. . .)

Then, contents of locationsum is output.

0.0

0.0
k

sum

k
sum

1.0
1.0

k
sum

2.0
1.5

20

Programming Languages

Classified as

√ Low Level

• Machine Language

(binary-based code; machine dependent)

• Assembly Language

(mnemonic form of machine language)

√ High Level

• Closer to natural languages

• Generally, machine independent

• Usually, several machine instructions are combined into

one high-level instruction.

• Examples:

FORTRAN
BASIC (each language with

Pascal various versions)

PL/I
C
Ada
Lisp
GPSS
COBOL

etc.

21

To illustrate differences in syntax for language levels, consider how computer
could be instructed to subtract two numbers stored in locations 63 and
2047:

• Machine Language:

011111000000111111011111111111

(6-bit OpCode, 12-bit address fields with values 63 and 2047)

• Assembly Language:

S VALUE, INCR

• Pascal:

value := value - increment

.

.

.

63

2047increment

value

22

Programs written in high-level languages must be converted to
machine language.

Two approaches:

(1) Compilation

(2) Interpretation

Used with versions of microcomputer BASIC, for example,

No object code created.

Each source code statement is interpreted (translated, executed)
each time it is processed.

An assembly language program is converted to machine code with
an Assembler Program.

FORTRAN
 program

Compiler
 program

Machine
Language
program

(Source
 Code)

(Object
 Code)

run

 Source
 Code

Interpreter
program

run

23

Example Code for with input value for .

FORTRAN 77

program series
real k, sum {reserves storage locations

integer n
sum = 0.0
k = 0.0
read*, n {input a value for n

do 10 k = 1, n
sum = sum + 1/k

10 continue
write (*,*) ‘sum = ‘, sum {output sum

stop {end of execution

end {end of compilation

(Compiler converts all statements above to machine code
then execute with “run” statement.)

Mathematica

sum = 0.0;
n = Input [“Input an integer.”];
Do [sum = sum + 1.0/k, {k, 1, n}]
Print [“sum = “, sum]

(Statements are interpreted and executed in sequence.)

(Each line ended with “return” key; statements executed with “enter” key; semico-
lon suppresses output.)

1
k

k 1=

n

∑ n

24

Programs written in high-level languages use:

• Symbol Names (Variables)

- to designate memory locations; e.g.,

k, sum

• Constants

3.50, -17, “sum = ” (or other string notation)
(floating point, fixed point, character string)
etc.

• Lists

linear and nonlinear; e.g., arrays, tree
structures

• Expressions

- specifying operations on variables,
constants, and lists; e.g.,

(4.0/3.0) * pi * radius^ 3

25

• Assignment Statements

- assign a data value to a storage location;
e.g.,
value1 = value2 (or other assign notation)
sum = sum+ 1.0/k

• Input-Output Statements

Examples:read, print

• Loop Structures

Examples: do, for, while- specify how many times a set
of statements is to be processed, based on value assigned
to a counter or result of a test condition.

• Decision Structures

Typically of the form:

if (condition)then(do something)

• Built-In and User-Defined Functions

sin, cos, tan, sqrt, exp, etc. (built-in) special-application
fcns (user-defined)

• Subprograms

Provide for modularization of programs. (Can be user-
defined functions.)

